Identification of the Major Noise Energy Sources in Rail Vehicles Moving at a Speed of 200 km/h
Abstract
:1. Introduction
- Measuring of the sound level in the measurement cross-section with the use of the 2 × 4 microphone array (four measurement points at the distance of 5 m, 10 m, 20 m, 40 m from the track axis, and two microphones each at the height of the railhead and 4 m from the railhead);
- Measurements of track and sub-track vibrations.
- Identification of the main sources of noise;
- Obtaining time history, recorded for each train passage separately, with a step of 1 s, containing the average sound level LAeq 1s, as well as obtaining the frequency spectrum of noise ranging from 20 Hz to 20 kHz, with bands divided into thirds;
- Obtaining the vibration propagation pattern in the nearest surroundings of the railway line (track and sub-track);
- Obtaining the vibrations propagation scheme in the nearest surrounding of the railway line (track and substructure).
2. Materials and Methods
2.1. Technical Specification of the Alstom Composite Trainsets, Type ETR610—ED250 Series—Pendolino
2.2. Railway Track Tested
2.3. Location of the Testing Ground
- Curve—approximately km 18 + 600 (Świnice, Dluga street);
- Straight section—approximately km 21 + 300 (Szeligi, Dojazdowa street).
2.4. Selection of Measuring Equipment
- Noise Inspector Bionic M-112 acoustic camera;
- Speedmeter;
- Davis Instruments Vantage Pro2 weather station.
2.5. Weather Conditions
2.6. Methodology of Site Measurements
2.7. Intensity and Energy of Sound Waves
3. Reference to the Normative Values in Force
- -
- The equivalent continuous sound level A of the unit (LpAeq,T(unit));
- -
- The equivalent continuous sound level A at the nearest measuring position “i”, including the main air compressor (LipAeq,T).
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bell, J.R.; Burton, D.; Thompson, M.C.; Herbst, A.H.; Sheridan, J. Dynamics of trailing vortices in the wake of a generic high-speed train. J. Fluids Struct. 2016, 65, 238–256. [Google Scholar] [CrossRef]
- Gągorowski, A.; Korzeb, J. Road traffic noise assessment in the light of the European union and national legislation. Logistyka 2011, 6, 150–158. [Google Scholar]
- Němec, M.; Danihelová, A.; Gergeľ, T.; Gejdoš, M.; Ondrejka, V.; Danihelová, Z. Measurement and Prediction of Railway Noise Case Study from Slovakia. Int. J. Environ. Res. Public Health 2020, 17, 3616. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, Y.; Xian, L.; Huang, Y. Fatigue Life Prediction for Semi-Closed Noise Barrier of High-Speed Railway under Wind Load. Sustainability 2021, 13, 2096. [Google Scholar] [CrossRef]
- Polak, K. High-Speed Rail versus environmental protection. In High-Speed Rail in Poland: Advances and Perspectives; Żurkowski, A., Ed.; CRC Press: Warsaw, Poland, 2018; pp. 421–439. [Google Scholar] [CrossRef]
- AlShorman, O.; Alkahatni, F.; Masadeh, M.; Irfan, M.; Glowacz, A.; Althobiani, F.; Kozik, J.; Glowacz, W. Sounds and acoustic emission-based early fault diagnosis of induction motor: A review study. Adv. Mech. Eng. 2021, 13, 2. [Google Scholar] [CrossRef]
- Zhao, H.; Li, Z.; Zhu, S.; Yu, Y. Valve Internal Leakage Rate Quantification Based on Factor Analysis and Wavelet-BP Neural Network Using Acoustic Emission. Appl. Sci. 2020, 10, 5544. [Google Scholar] [CrossRef]
- Ye, G.-Y.; Xu, K.-J.; Wu, W.-K. Standard deviation based acoustic emission signal analysis for detecting valve internal leakage. Sens. Actuators A Phys. 2018, 283, 340–347. [Google Scholar] [CrossRef]
- Duong, B.P.; Kim, J.; Jeong, I.; Kim, C.H.; Kim, J.-M. Acoustic Emission Burst Extraction for Multi-Level Leakage Detection in a Pipeline. Appl. Sci. 2020, 10, 1933. [Google Scholar] [CrossRef] [Green Version]
- Ahn, B.; Kim, J.; Choi, B. Artificial intelligence-based machine learning considering flow and temperature of the pipeline for leak early detection using acoustic emission. Eng. Fract. Mech. 2019, 210, 381–392. [Google Scholar] [CrossRef]
- Xargay, H.; Folino, P.; Nuñez, N.; Gómez, M.; Caggiano, A.; Martinelli, E. Acoustic emission behavior of thermally damaged self-compacting high strength fiber reinforced concrete. Constr. Build. Mater. 2018, 187, 519–530. [Google Scholar] [CrossRef]
- Xu, J.; Fu, Z.; Han, Q.; Giuseppe, L.; Alberto, C. Micro-cracking monitoring and fracture evaluation for crumb rubber concrete based on acoustic emission techniques. Struct. Health Monit. 2018, 17, 946–958. [Google Scholar] [CrossRef]
- Kitagawa, T.; Thompson, D.J. Comparison of wheel/rail noise radiation on Japanese railways using the TWINS model and microphone array measurements. J. Sound Vib. 2006, 293, 496–509. [Google Scholar] [CrossRef]
- Polak, K.; Korzeb, J. Measurements of noise from high-speed rail vehicles, Railway Problems. Pomiary hałasu pochodzącego od pojazdów kolejowych zwiększonych prędkości. Probl. Kolejnictwa 2019, 184, 33–38. (In Polish) [Google Scholar]
- Zhang, J.; Xiao, X.; Wang, D.; Yang, Y.; Fan, J. Source Contribution Analysis for Exterior Noise of a High-Speed Train: Experiments and Simulations. Shock Vib. 2018. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhong, S.; Deng, T.; Zhu, Z.; Sheng, X. Analysis of source contribution to pass-by noise for a moving high-speed train based on microphone array measurement Measurement. J. Int. Meas. Confed. 2021, 174, 109058. [Google Scholar] [CrossRef]
- Noh, H.M. Noise-source identification of a high-speed train by noise source level analysis. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2017, 231, 717–728. [Google Scholar] [CrossRef]
- Sheng, X.; Cheng, G.; Thompson, D.J. Modelling wheel/rail rolling noise for a highspeed train running along an infinitel long periodic slab track. J. Acoust. Soc. Am. 2020, 148, 174–190. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, X.; Sheng, X.; Li, Z. Sound Source Localisation for a High-Speed Train and Its Transfer Path to Interior Noise. Chin. J. Mech. Eng. 2019, 32, 59. [Google Scholar] [CrossRef] [Green Version]
- Wawrzyniak, A. ETR610 electric multiple units of the ED250 series for PKP Intercity, S.A. Elektrycznepociągizespołowe ETR610 serii ED250 dla PKP Intercity S.A. Tech. Transp. Szyn. 2013, 9, 20–24. (In Polish) [Google Scholar]
- Czarnecki, M.; Witold, G.; Massel, A.; Walczak, S. Introduction of High-Speed Rolling Stock into Operation on the Polish Railway Network. In High-Speed Rail in Poland: Advances and Perspectives; Żurkowski, A., Ed.; CRC Press: Warsaw, Poland, 2018; pp. 203–228. [Google Scholar] [CrossRef]
- Raczyński, J. The ED250 (Pendolino) Experiences in Poland–First Years of Exploitation. Technika Transportu Szynowego. 2018, pp. 30–32. Available online: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-9b7e36f1-647f-4ee4-aaf5-b0e7d9495dcd/c/Raczynski1TTS4en.pdf (accessed on 20 June 2021).
- Id-12 (D-29). The List of Lines, Introduced by Order No. 1/2009 of the Management Board of PKP PolskieLinieKolejowe, S.A. of 9 February 2009, as AMENDED., PKP Polskie Linie Kolejowe, 2009, In Id-12 (D-29). Wykaz linii, wprowadzony Zarządzeniem Nr 1/2009 Zarządu PKP Polskie Linie Kolejowe, S.A. z Dnia 09lutego 2009 r., z Późn.zm. (In Polish), PKP Polskie Linie Kolejowe, 2009. Available online: https://www.plk-sa.pl/files/public/user_upload/pdf/Akty_prawne_i_przepisy/Instrukcje/Wydruk/Id-12_Wykaz_linii_06.2021.pdf (accessed on 20 June 2021).
- Ordinance of the Minister of the Environment of 30 October 2014 on the Requirements for Measuring Emissions and Measuring the Smount of Water Consumed. Annex 7-Reference Methodology for Periodic Measurements of Environmental Noise from Installations or Devices, Except for Impulse Noise, Minister of the Environment 2014, In Rozporządzenie Ministra Środowiska z Dnia 30 Października 2014 r. w Sprawie Wymagań w Zakresie Prowadzenia Pomiarów Wielkości Emisji Oraz Pomiarów Ilości Pobieranej Wody. Załącznik nr 7 Metodyka Referencyjna Wykonywania Okresowych Pomiarów Hałasu w Środowisku Pochodzącego z Instalacji lub Urządzeń z Wyjątkiem Hałasu Impulsowego, Minister Środowiska, 2014. (In Polish). Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190002286 (accessed on 20 June 2021).
- Kołaski, W.; Arnold, A. Decrease in noise level as a function of distance from source. Spadek poziomu hałasu w funkcji odległości od źródła, OchronaŚrodowiska. J. Pol. Sanit. Eng. Assoc. 1982, 3, 26–28. Available online: http://www.os.not.pl/docs/czasopismo/1982/Kolaski_3-1982.pdf (accessed on 20 June 2021). (In Polish).
- Puzyna, C. Noise reduction in industry. General principles. In Zwalczaniehałasu w Przemyśle; Zasadyogólne WNT: Warszawa, Poland, 1974. (In Polish) [Google Scholar]
- Technical Specification of an Acoustic Camera Bionic M-112. Available online: http://www.wibroakustyka.com.pl/dokumenty/datasheet_acoustic_camera_bionic_m_112.pdf (accessed on 14 May 2021).
- Cigada, A.; Lurati, M.; Ripamonti, F.; Vanali, M. Moving microphone arrays to reduce spatial aliasing in the beamforming technique: Theoretical background and numerical investigation. J. Acoust. Soc. Am. 2008, 124, 3648–3658. [Google Scholar] [CrossRef] [PubMed]
- Dwyer-Joyce, R.S.; Yao, C.; Lewis, R.A. Comparison of three methods for the measurement of wheel rail contact. In Proceedings of the STLE/ASME International Joint Tribology Conference, Miami, FL, USA, 20–22 October 2008; pp. 541–543. [Google Scholar] [CrossRef]
- Graf, H.R.; Czolbe, C. Pass-by noise source identification for railroad cars using array measurements. In Proceedings of the International Congress on Acoustics, Aachen, Germany, 9–13 September 2019; pp. 1574–1581. [Google Scholar]
- Motylewski, J.; Pawłowski, P.; Rak, M.; Zieliński, T.G. Identification of sources of vibroacoustic activity in machines by beam shaping (beamforming). In Identyfikacja Źróde Łaktywności Wibroakustycznej Maszyn Metodą Kształtowania Wiązki Sygnału (Beamforming), XXXVII Polish SYMPOSIUM on Machine Diagnostics; PWN: Warszawa, Poland, 2010; pp. 1–8. (In Polish) [Google Scholar]
- Zhang, J.; Squicciarini, G.; Thompson, D.J. Implications of the directivity of railway noise sources for their quantification using conventional beamforming. J. Sound Vib. 2019, 459, 114841. [Google Scholar] [CrossRef]
- Noh, H.-M.; Choi, S.; Kim, S.-W.; Koh, H.-I. Aerodynamic noise characteristics of a specific position of a passing high-speed train by the beam power spectrum. In Proceedings of the 41st International Congress and Exposition on Noise Control Engineering, New York, NY, USA, 19–22 August 2012; Volume 8, pp. 6309–6316. [Google Scholar]
- Polak, F.; Sikorski, W.; Siodła, K. Prototype measurement system for locating sources of acoustic emission-microphone matrix (in Polish Prototypowy układ pomiarowy do lokalizacji źródeł emisji akustycznej–matryca mikrofonów), Poznan University of Technology Academic Journals. Electr. Eng. 2015, 84, 207–214. [Google Scholar]
- Gade, S.; Ginn, B.; Gomes, J.; Hald, J. Recent advances in rail vehicle moving source beamforming, Sound & Vibration. In Proceedings of the INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Innsbrug, Austria, 15–18 September 2013; pp. 8–14. [Google Scholar]
- Le Courtois, F.; Thomas, J.-H.; Poisson, F.; Pascal, J.-C. Genetic optimisation of a plane array geometry for beamforming. Application to source localisation in a high speed train. J. Sound Vib. 2016, 371, 78–93. [Google Scholar] [CrossRef]
- Meng, F.; Wefers, F.; Vorlaender, M. Acquisition of exterior multiple sound sources for train auralization based on beamforming. In Proceedings of the Euronoise 2015, 10th European Conference on Noise Control, Maastricht, The Netherlands, 31 May–3 June 2015; pp. 1703–1708. [Google Scholar]
- Chiariotti, P.; Martarell, M.; Castellini, P. Acoustic Beamforming for Noise Source Localization—Reviews, Methodology and Applications. Mech. Syst. Signal Process 2019, 120, 422–448. [Google Scholar] [CrossRef]
- He, B.; Xiao, X.-B.; Zhou, Q.; Li, Z.-H.; Jin, X.-S. Investigation into external noise of a high-speed train at different speeds. J. Zhejiang Univ. Sci. A 2014, 15, 1019–1033. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.; Zeng, Z.; Zhang, Y.; Sun, L.; Rui, X.; Li, X.; Wang, L.; Liu, T.; Yue, G. Research on Leakage Location of Spacecraft in Orbit Based on Frequency Weighting Matrix Beamforming Algorithm by Lamb Waves. Appl. Sci. 2020, 10, 1201. [Google Scholar] [CrossRef] [Green Version]
- Korzeb, J. Prediction of selected dynamic impacts in the transport infrastructure influence zone. In Redykcja Wybranych Oddziaływań Dynamicznych w Strefie Wpływu Infrastruktury Transportowej; OWPW: Warszawa, Poland, 2013; p. 202. ISBN 978-83-7814-111-2. (In Polish) [Google Scholar]
- Nader, M. Vibrations and noise in transport: Selected issues. In Drgania i Hałas w Transporcie: Wybrane Zagadnienia; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2016. (In Polish) [Google Scholar]
- Rosssing, T. (Ed.) Springer Handbook of Acoustics; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Ozimek, E. Sound and its perception. Physical and psychoacoustic aspects. In Dźwięk i jego percepcja. Aspekty fizyczne i Psychoakustyczne; PWN: Warszawa, Poland, 2018. (In Polish) [Google Scholar]
- Beranek, L.; Mellow, T. Acoustics: Sound Fields, Transducers and Vibration; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Commission Regulation (EU). No 1304/2014 of 26 November 2014 on the Technical Specification for Interoperability Relating to the Subsystem ‘Rolling Stock—Noise’ Amending. Decision 2008/232/EC and Repealing Decision 2011/229/EU. 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32014R1304 (accessed on 20 June 2021).
- Regulation of the Minister of Environment of 14 June 2007 on Permissible Noise Levels in the Environment; Minister of Environment 2007. In Rozporządzenie Ministra Środowiska z dnia 14 Czerwca 2007 r. w Sprawie Dopuszczalnych Poziomów Hałasu w Środowiska (Tekst Jednolity Dz.U. 2014 poz. 112); Minister Środowiska: Warsaw, Poland, 2007. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20140000112 (accessed on 20 June 2021). (In Polish)
Track Width | 1435 mm |
---|---|
Drive power | 5664 MW; |
Supply voltage | 3 kV DC 15 kV AC; 25 kV AC |
Body width | 2830 mm |
Body height | 4100 mm |
Pavement height over the railhead | 1260 mm |
Length of the outermost section | 28,200 mm |
Length of the middle section | 26,200 mm |
Wheelbase of trolley | 2700 mm |
Train weight | 395.5 t |
Loaded train weight | 427.7 t |
Medium acceleration from 0 to 40 km/h | 0.49 m/s2 |
Medium acceleration from 0 to 120 km/h | 0.46 m/s2 |
Minimal curve radius | 250 m |
Number of seating places | 402 |
Vehicle Type | Stationary Noise (dB) | Starting Noise (dB) | Pass-By Noise (dB) V = 80 km/h | |
---|---|---|---|---|
LpAejedn | LipAeq,T | |||
Electric traction units | 65 | 68 | 80 | 80 |
The value obtained for the straight section of the track at a speed of 200 km/h | - | - | - | 76 |
The value obtained for the curve section of the track at a speed of 200 km/h | - | - | - | 77 |
Lp. | Area Designation | Permissible Noise Level in dB | |
---|---|---|---|
Railway Tracks or Railway Lines | |||
LAeqD Daytime t = 16 h | LAeqN Nighttime t = 8 h | ||
1. | (a) Health-resort protection; (b) Hospitals located outside the city. | 50 | 45 |
2. | (a) Single-family housing; (b) Housing with permanent or temporary occupation by children and youth. (c) Seniors care facilities; (d) Hospital areas in cities; | 61 | 56 |
3. | (a) Multi-family housing and collective residence. (b) Homestead development; (c) Recreational and leisure; (d) Commercial and administrative facilities. | 65 | 56 |
4. | Downtown zones of cities with populations over 100,000. | 68 | 60 |
Passage | Maximum Sound Levels (dB) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Frequency Range | |||||||||
500–1000 Hz | 1000–2000 Hz | 2000–3000 Hz | |||||||
Straight Section | Curve | Difference | Straight Section | Curve | Difference | Straight Section | Curve | Difference | |
1 | 93 | 102 | −9 | 106 | 109 | −3 | 104 | 101 | +3 |
2 | 96 | 102 | −6 | 94 | 103 | −9 | 101 | 99 | +2 |
3 | 91 | 98 | −7 | 97 | 106 | −9 | 99 | 101 | −2 |
4 | 96 | 105 | −9 | 99 | 108 | −9 | 101 | 103 | −2 |
5 | 95 | 98 | −3 | 102 | 100 | +2 | 104 | 103 | +1 |
6 | 91 | 93 | −2 | 96 | 96 | 0 | 98 | 99 | −1 |
7 | 93 | 99 | −6 | 99 | 108 | −9 | 100 | 103 | −3 |
8 | 93 | 104 | −11 | 99 | 106 | −7 | 101 | 105 | −4 |
9 | 95 | 92 | 3 | 104 | 99 | +5 | 104 | 104 | 0 |
10 | 93 | 98 | −5 | 100 | 108 | −8 | 101 | 101 | 0 |
11 | 93 | 94 | −1 | 105 | 99 | 6 | 105 | 103 | +2 |
12 | 98 | 93 | 5 | 97 | 101 | −4 | 103 | 102 | +1 |
13 | 94 | 99 | −5 | 105 | 106 | −1 | 104 | 103 | +1 |
14 | 95 | 92 | +3 | 106 | 98 | 8 | 103 | 99 | +4 |
15 | 95 | 102 | −7 | 101 | 106 | −5 | 102 | 105 | −3 |
16 | 99 | 92 | +7 | 101 | 97 | 4 | 102 | 100 | +2 |
17 | 96 | 94 | 2 | 107 | 100 | 7 | 105 | 101 | +4 |
18 | 97 | 99 | −2 | 97 | 100 | −3 | 101 | 97 | +4 |
19 | 93 | 97 | −4 | 109 | 109 | +0 | 106 | 103 | +3 |
20 | 97 | 101 | −4 | 100 | 105 | −5 | 99 | 104 | −5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polak, K.; Korzeb, J. Identification of the Major Noise Energy Sources in Rail Vehicles Moving at a Speed of 200 km/h. Energies 2021, 14, 3957. https://doi.org/10.3390/en14133957
Polak K, Korzeb J. Identification of the Major Noise Energy Sources in Rail Vehicles Moving at a Speed of 200 km/h. Energies. 2021; 14(13):3957. https://doi.org/10.3390/en14133957
Chicago/Turabian StylePolak, Krzysztof, and Jarosław Korzeb. 2021. "Identification of the Major Noise Energy Sources in Rail Vehicles Moving at a Speed of 200 km/h" Energies 14, no. 13: 3957. https://doi.org/10.3390/en14133957
APA StylePolak, K., & Korzeb, J. (2021). Identification of the Major Noise Energy Sources in Rail Vehicles Moving at a Speed of 200 km/h. Energies, 14(13), 3957. https://doi.org/10.3390/en14133957