Improved Monitoring and Diagnosis of Transformer Solid Insulation Using Pertinent Chemical Indicators
Abstract
:1. Introduction
2. Chemical Tests to Monitor the Status of Transformer Solid Insulation
2.1. Furan Analysis
2.2. Carbon Oxides
2.3. Methanol
2.4. Hydrogen (H2)
3. Experimental Investigation of the Transformer Fleet and Laboratory Testing
4. Intelligent Neural and Simulation Results
4.1. Description of Artificial Neural Networks
4.2. Practice and Simulations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rao, U.M.; Fofana, I.; Betie, A.; Senoussaoui, M.L.; Brahami, M.; Briosso, E. Condition monitoring of in-service oil-filled transformers: Case studies and experience. IEEE Electr. Insul. Mag. 2019, 35, 33–42. [Google Scholar] [CrossRef]
- Saha, T. Review of modern diagnostic techniques for assessing insulation condition in aged transformers. IEEE Trans. Dielectr. Electr. Insul. 2003, 10, 903–917. [Google Scholar] [CrossRef] [Green Version]
- Aciu, A.-M.; Nicola, C.-I.; Nicola, M.; Nițu, M.-C. Complementary Analysis for DGA Based on Duval Methods and Furan Compounds Using Artificial Neural Networks. Energies 2021, 14, 588. [Google Scholar] [CrossRef]
- Abu-Siada, A.; Lai, S.P.; Islam, S. A Novel Fuzzy-Logic Approach for Furan Estimation in Transformer Oil. IEEE Trans. Power Deliv. 2012, 27, 469–474. [Google Scholar] [CrossRef]
- Hadjadj, Y.; Fofana, I.; Sabau, J.; Briosso, E. Assessing insulating oil degradation by means of turbidity and UV/VIS spectrophotometry measurements. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2653–2660. [Google Scholar] [CrossRef]
- Power Transformers, IEC 60076-26. 2020. Available online: https://webstore.iec.ch/publication/64383&preview (accessed on 29 June 2021).
- Azis, N. Ageing Assessment of Insulation Paper with Consideration of In-service Ageing and Natural Ester Application. Ph.D. Thesis, Manchester University, Manchester, UK, 2012. [Google Scholar]
- Molavi, H.; Yousefpour, A.; Mirmostafa, A.; Sabzi, A.; Hamedi, S.; Narimani, M.; Abdi, N. Static headspace GC/MS method for determination of methanol and ethanol contents, as the degradation markers of solid insulation systems of power transformers. Chromatographia 2017, 80, 1129–1135. [Google Scholar] [CrossRef]
- Pahlavanpour, P.; Eklund; Martins, M.A. Insulating paper ageing and furfural formation. In Proceedings of the Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Technology Conference (Cat. No.03CH37480), Indianapolis, IN, USA, 25 September 2003; pp. 283–288. [Google Scholar] [CrossRef]
- Leibfried, T.; Jaya, M.; Majer, N.; Schafer, M.; Stach, M.; Voss, S. Postmortem Investigation of Power Transformers—Profile of Degree of Polymerization and Correlation With Furan Concentration in the Oil. IEEE Trans. Power Deliv. 2013, 28, 886–893. [Google Scholar] [CrossRef]
- Zhang, C.; Macalpine, J.M.K. Furfural Concentration in Transformer Oil as an Indicator of Paper Ageing, Part 1: A Review. In Proceedings of the PES Power Systems Conference and Exposition, Atlanta, GA, USA, 29 October–1 November 2006; pp. 1088–1091. [Google Scholar] [CrossRef]
- Eklund, M.; Jarman, P.; Newesely, G.; Pahlavanpour, B.; Sundkvist, K.; Wetterholm, C. Transformer Oil Handbook; Nynas AB: Stockholm, Sweden, 2004. [Google Scholar]
- Behjat, V.; Emadifar, R. Monitoring and evaluation of paper insulation of distribution transformers using modern chemical methods (A case study of Tabriz distribution transformers). In Proceedings of the Power System Conference (PSC2019), Tehran, Iran, 25–30 December 2019. [Google Scholar]
- Scheirs, J.; Camino, G.; Avidano, M.; Tumiatti, W. Origin of furanic compounds in thermal degradation of cellulosic insulating paper. J. Appl. Polym. Sci. 1998, 69. [Google Scholar] [CrossRef]
- Standard Test Method for Furanic Compounds in Electrical Insulating Liquids by High-Performance Liquid Chromatography (HPLC); ASTM D5837; ASTM International: West Conshohocken, PA, USA, 2012.
- British Standards Institute Staff. Mineral Insulating Oils—Methods for the Determination of 2-Furfural and Related Compounds; IEC 61198; BSI Group: London, UK, 1993. [Google Scholar]
- Lütke, H.; Höhlein, I.; Kachler, A.J. Transformer aging research on furanic compounds dissolved in insulating oil. In Proceedings of the Large High Voltage Electrical Systems Conference, Paris, France, 25–30 August 2002. [Google Scholar]
- Chendong, X. Monitoring paper insulation aging by measuring furfural contents in oil. In Proceedings of the High Voltage Engineering Conference, Dresden, Germany, 26–30 August 1991; pp. 139–142. [Google Scholar]
- Ortiz, F.; Fernandez, F.O.; Santisteban, A.; Delgado, F.; Ortiz, A. Estimating the age of power transformers using the concentration of furans in dielectric oil. Renew. Energy Power Qual. J. 2016, 1011–1015. [Google Scholar] [CrossRef]
- Standard Test Method for Analysis of Gases Dissolved in Electrical Insulating Oil by Gas Chromatography; ASTM D 3612; ASTM International: West Conshohocken, PA, USA, 2009.
- IEC. 60567: Oil-Filled Electrical Equipment—Sampling of Gases and of Oil for Analysis of Free and Dissolved Gases-Guidance; IEC: London, UK, 2005. [Google Scholar]
- Wei, C.; Hao, L.; Long, Y. Investigate transformer fault diagnosis performance of dissolved gas analysis with measurement error. Electr. Power Compon. Syst. 2017, 45, 894–904. [Google Scholar] [CrossRef]
- Dennison, J.C.; Trout, J.M. Transformer oil DGA monitoring technology study 2015. In Proceedings of the 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Dallas, TX, USA, 3–5 May 2016; pp. 1–5. [Google Scholar] [CrossRef]
- IEEE Guide for the Interpretation of Gases Generated in Mineral Oil-Immersed Transformers; IEEE Std C57.104-2019 (Revision of IEEE Std C57.104-2008); IEEE: Piscataway, NJ, USA, 2019; pp. 1–98. [CrossRef]
- IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers; IEEE Std C57.104-2008 (Revision of IEEE Std C57.104-1991); IEEE: Piscataway, NJ, USA, 2009. [CrossRef]
- Jalbert, J.; Gilbert, R.; Tétreault, P.; Morin, B.; Lessard-Déziel, D. Identification of a chemical indicator of the rupture of 1,4-β-glycosidic bonds of cellulose in an oil-impregnated insulating paper system. Cellulose 2007, 14, 295–309. [Google Scholar] [CrossRef]
- Arroyo, O.H.; Fofana, I.; Jalbert, J.; Ryadi, M. Relationships between methanol marker and mechanical performance of electrical insulation papers for power transformers under accelerated thermal aging. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 3625–3632. [Google Scholar] [CrossRef]
- Arroyo, O.H.; Fofana, I.; Jalbert, J. Relationship between some chemical markers and the mechanical properties of the solid insulation used in power transformers. In Proceedings of the Electrical Insulation Conference (EIC), Philadelphia, PA, USA, 8–11 June 2014; pp. 348–352. [Google Scholar]
- Bruzzoniti, M.C.; Maina, R.; de Carlo, R.M.; Sarzanini, C.; Tumiatti, V. GC methods for the determination of methanol and ethanol in insulating mineral oils as markers of cellulose degradation in power transformers. Chromatographia 2014, 77, 1081–1089. [Google Scholar] [CrossRef]
- Grisaru, M. Transformer maintenance: Hydrogen–the most measured and monitored transformer parameter. Transform. Mag. 2018, 5, 42–49. [Google Scholar]
- Bustamante, S.; Manana, M.; Arroyo, A.; Castro, P.; Laso, A.; Martinez, R. Dissolved Gas Analysis Equipment for Online Monitoring of Transformer Oil: A Review. Sensors 2019, 19, 4057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betie, A.; Rao, U.M.; Fofana, I.; Fethi, M.; Yeo, Z. Influence of cellulose paper on gassing tendency of transformer oil under electrical discharge. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1729–1737. [Google Scholar] [CrossRef]
- Xiang, J.; Zhou, X.Y.; Liu, Q.; Wang, Z.; Hinshaw, J.; Mavrommatis, P. Correlation of hydrogen generation with sparking discharges in a mineral insulating oil. IEEE Electr. Insul. Mag. 2018, 34, 7–12. [Google Scholar] [CrossRef]
- Kondalkar, V.V.; Jihoon, P.; Keekeun, L. MEMS hydrogen gas sensor for in-situ monitoring of hydrogen gas in transformer oil. Sens. Actuators B Chem. 2021, 326, 128989. [Google Scholar] [CrossRef]
Indicators | Range | Ai |
---|---|---|
Age (year) | 0–10 | 1 |
10–20 | 2 | |
>20 | 3 | |
CO2 (ppm) | 0–1500 | 1 |
>1500 | 2 | |
CO (ppm) | 0–500 | 1 |
>500 | 2 | |
CO2/CO | 3–10 | 1 |
0–3 or >10 | 2 | |
H2 (ppm) | 0–100 | 1 |
>100 | 2 | |
2-Fal (ppb) | 0–100 | 1 |
100–500 | 2 | |
500–1000 | 3 | |
>1000 | 4 | |
CH3OH (ppm) | 0–0.2 | 1 |
0.2–1 | 2 | |
1–2 | 3 | |
>2 | 4 |
Class | Description | Condition | Requirement |
---|---|---|---|
1 | 7 ≤ B < 10 | Good | Normal Maintenance |
2 | 10 ≤ B < 13 | Fair | Increase Diagnostic Testing |
3 | 13 ≤ B < 16 | Poor | Start Planning Process to Replace or Rebuild Considering Risk |
4 | 16 ≤ B < 19 | Very Poor | Immediately Assess Risk |
Sample | Age (year) | CO2 (ppm) | CO (ppm) | CO2/ CO | H2 (ppm) | 2-Fal (ppb) | CH3OH (ppm) | B | Class |
---|---|---|---|---|---|---|---|---|---|
S1 | 37 | 2569 | 187 | 13.7 | 12 | 42.3 | 2.203 | 14 | 3 |
S2 | 49 | 1983 | 189 | 10.4 | 11 | 6.3 | 0.884 | 12 | 2 |
S3 | 12 | 2998 | 197 | 15.2 | 10 | 98.6 | 0.976 | 11 | 2 |
S4 | 33 | 1760 | 379 | 4.6 | 3 | 715.1 | 12.34 | 15 | 3 |
S5 | 6 | 1283 | 157 | 8.1 | 10 | 9.1 | 0.735 | 8 | 1 |
S6 | 29 | 1903 | 192 | 9.9 | 1 | 92.7 | 0.138 | 10 | 2 |
S7 | 35 | 1734 | 83 | 20.8 | 3 | 5.8 | 1.123 | 13 | 3 |
S8 | 31 | 1666 | 159 | 10.4 | 1 | 15.8 | 0.455 | 12 | 2 |
S9 | 41 | 1504 | 192 | 7.8 | 1 | 13.6 | 0.867 | 11 | 2 |
S10 | 34 | 1720 | 152 | 11.3 | 1 | 587.0 | 3.458 | 16 | 4 |
S11 | 34 | 3461 | 219 | 15.8 | 16 | 55.1 | 0.542 | 12 | 2 |
S12 | 36 | 1867 | 194 | 9.6 | 3 | 192.7 | 4.658 | 14 | 3 |
S13 | 42 | 1351 | 183 | 7.3 | 1 | 186.9 | 3.370 | 13 | 3 |
S14 | 12 | 2460 | 155 | 15.8 | 18 | 64.0 | 0.534 | 11 | 2 |
S15 | 41 | 1669 | 126 | 13.2 | 1 | 185.6 | 1.183 | 14 | 3 |
S16 | 44 | 1979 | 117 | 16.9 | 6 | 177 | 20.20 | 15 | 3 |
S17 | 37 | 1808 | 227 | 7.9 | 4 | 47.5 | 1.675 | 12 | 2 |
S18 | 13 | 3644 | 167 | 21.8 | 9 | 90.0 | 0.873 | 11 | 2 |
S19 | 10 | 1319 | 120 | 10.9 | 0 | 75.0 | 0.124 | 9 | 1 |
S20 | 12 | 762 | 114 | 24.22 | 5 | 520 | 15.6 | 14 | 3 |
S21 | 15 | 1819 | 129 | 14.1 | 6 | 155.2 | 1.806 | 13 | 3 |
S22 | 14 | 3160 | 292 | 10.8 | 8 | 32.9 | 0.304 | 11 | 2 |
S23 | 14 | 2650 | 192 | 13.8 | 6 | 63.5 | 0.422 | 11 | 2 |
S24 | 14 | 3797 | 496 | 7.6 | 22 | 7.8 | 0.897 | 10 | 2 |
S25 | 4 | 2311 | 442 | 5.2 | 4 | 4.5 | 0.238 | 9 | 1 |
S26 | 25 | 3351 | 300 | 11.1 | 4 | 286.9 | 1.020 | 14 | 3 |
S27 | 13 | 1761 | 244 | 7.21 | 19 | 244 | 13.24 | 13 | 3 |
S28 | 15 | 2247 | 264 | 8.5 | 133 | 270.9 | 2.501 | 13 | 3 |
S29 | 14 | 2274 | 450 | 5.05 | 12 | 21.1 | 0.100 | 9 | 1 |
S30 | 6 | 2752 | 92 | 29.91 | 1 | 1391 | 20.16 | 15 | 3 |
S31 | 42 | 4778 | 1062 | 4.5 | 34 | 47.5 | 0.306 | 12 | 2 |
S32 | 42 | 7310 | 1128 | 6.5 | 64 | 120.5 | 1.090 | 14 | 3 |
S33 | 5 | 1261 | 139 | 9.0 | 4 | 23.6 | 0.603 | 8 | 1 |
S34 | 15 | 1752 | 235 | 11.71 | 5 | 222.2 | 10.108 | 14 | 3 |
S35 | 25 | 4778 | 457 | 10.4 | 0 | 519.1 | 1.846 | 15 | 3 |
S36 | 12 | 1296 | 255 | 5.08 | 2 | 305.3 | 13.83 | 12 | 2 |
S37 | 36 | 1335 | 110 | 12.1 | 5 | 24.4 | 0.768 | 11 | 2 |
S38 | 12 | 2131 | 220 | 9.7 | 2 | 450 | 16.6 | 13 | 3 |
S39 | 43 | 3144 | 400 | 7.8 | 9 | 1447 | 2.030 | 16 | 4 |
S40 | 23 | 1812 | 151 | 12 | 3 | 9.9 | 0.273 | 12 | 2 |
Sample | Age (year) | CO2 (ppm) | CO (ppm) | CO2/ CO | H2 (ppm) | 2-Fal (ppb) | CH3OH (ppm) | DP | B | Class |
---|---|---|---|---|---|---|---|---|---|---|
1 | 41 | 1669 | 126 | 13.2 | 1 | 185.6 | 1.183 | 800 | 14 | 3 |
2 | 49 | 1983 | 189 | 10.4 | 11 | 6.3 | 0.884 | 800 | 12 | 2 |
3 | 4 | 2311 | 442 | 5.2 | 4 | 4.5 | 0.238 | 800 | 9 | 1 |
4 | 42 | 1351 | 183 | 7.3 | 1 | 186.9 | 3.370 | 740 | 13 | 3 |
5 | 34 | 1720 | 152 | 11.3 | 1 | 587.0 | 3.458 | 338 | 16 | 4 |
Sample | Class | Learning Results | Test Results | True/False |
---|---|---|---|---|
S1 | 3 | 3 | - | T |
S2 | 2 | 3 | - | F |
S3 | 2 | 2 | - | T |
S4 | 3 | 3 | - | T |
S5 | 1 | 2 | - | F |
S6 | 2 | 2 | - | T |
S7 | 3 | 3 | - | T |
S8 | 2 | 2 | - | T |
S9 | 2 | 2 | - | T |
S10 | 4 | 4 | - | T |
S11 | 2 | 1 | - | F |
S12 | 3 | 3 | - | T |
S13 | 3 | 3 | - | T |
S14 | 2 | 2 | - | T |
S15 | 3 | 3 | - | T |
S16 | 3 | 3 | - | T |
S17 | 2 | 2 | - | T |
S18 | 2 | 1 | - | F |
S19 | 1 | 1 | - | T |
S20 | 3 | 4 | - | F |
S21 | 3 | 3 | - | T |
S22 | 2 | 3 | - | F |
S23 | 2 | 2 | - | T |
S24 | 2 | 2 | - | T |
S25 | 1 | 1 | - | T |
S26 | 3 | 3 | - | T |
S27 | 3 | 2 | - | F |
S28 | 3 | 3 | - | T |
S29 | 1 | 1 | - | T |
S30 | 3 | 3 | - | T |
S31 | 2 | 2 | - | T |
S32 | 3 | 3 | - | T |
S33 | 1 | - | 1 | T |
S34 | 3 | - | 4 | F |
S35 | 3 | - | 3 | T |
S36 | 2 | - | 2 | T |
S37 | 2 | - | 2 | T |
S38 | 3 | - | 3 | T |
S39 | 4 | - | 3 | F |
S40 | 2 | - | 2 | T |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behjat, V.; Emadifar, R.; Pourhossein, M.; Rao, U.M.; Fofana, I.; Najjar, R. Improved Monitoring and Diagnosis of Transformer Solid Insulation Using Pertinent Chemical Indicators. Energies 2021, 14, 3977. https://doi.org/10.3390/en14133977
Behjat V, Emadifar R, Pourhossein M, Rao UM, Fofana I, Najjar R. Improved Monitoring and Diagnosis of Transformer Solid Insulation Using Pertinent Chemical Indicators. Energies. 2021; 14(13):3977. https://doi.org/10.3390/en14133977
Chicago/Turabian StyleBehjat, Vahid, Reza Emadifar, Mehrdad Pourhossein, U. Mohan Rao, Issouf Fofana, and Reza Najjar. 2021. "Improved Monitoring and Diagnosis of Transformer Solid Insulation Using Pertinent Chemical Indicators" Energies 14, no. 13: 3977. https://doi.org/10.3390/en14133977
APA StyleBehjat, V., Emadifar, R., Pourhossein, M., Rao, U. M., Fofana, I., & Najjar, R. (2021). Improved Monitoring and Diagnosis of Transformer Solid Insulation Using Pertinent Chemical Indicators. Energies, 14(13), 3977. https://doi.org/10.3390/en14133977