The Spirit of Time—The Art of Self-Renovation to Improve Indoor Environment in Cultural Heritage Buildings
Abstract
:1. Introduction
1.1. National Regulations for Conservation of Cultural Heritage Buildings
1.2. Improving Energy Efficiency in Existing Buildings
- -
- Insulation of roof or upper ceiling.
- -
- Insulation of façade wall.
- -
- Insulation of basement ceiling.
- -
- Painting and mending the façade.
- -
- Replacement of doors and windows.
- -
- Use of hybrid HVAC systems.
- -
- Installation of a low temperature boiler.
- -
- Installation of wood pellet or wood chip heating systems (biomass heating systems).
- -
- Insulation of heating pipes.
- -
- Installation of solar heating collectors.
- -
- Installation of heat pumps.
1.3. The Scope of This Study
- (i)
- To keep the alternative community acting as a pioneer in terms of sustainable, low-cost urban living models and retaining the strong identity of the district;
- (ii)
- To advance the relationship between the community and the municipality by improving the co-management model facing the safety building level as a foundation for self-renovation outset;
- (iii)
- To self-renovate the houses more in accordance with sustainable refurbishment principles.
2. Materials and Methods
The Overview of the Study Area
3. Results
3.1. Case Study Description—Observation
3.2. Results of the Survey
“We are saving up to buy a thermoelectric generator which will help us utilize our solar energy system better during the dark months of winter, via the wood stove. We are also saving up for a bio/compost toilet”.(Survey respondent)
“I have what I need”, “My house doesn’t need anything else, nor is our house big enough”, “The rooms are original 1880s, and I like the quiet atmosphere in the rooms”.(Survey respondents)
4. Guidance for Sustainable Refurbishment for Improving Indoor Environment
4.1. Reuse of Materials
- -
- Demolition and cleaning: approx. 5.5 NOK/brick;
- -
- Re-burning of brick with low frost resistance: approx. 3NOK/brick;
- -
- Price for new brick: 3kr/stone.
4.2. Indoor Environment
- -
- Replace air windows with low leakage units;
- -
- Seal around door and window frames and other components with flexible mastic seal;
- -
- Seal cracks and holes in the envelope, mainly around duct, pipe passage.
5. Discussion and Conclusions
- (i)
- Available resources and reuse of materials;
- (ii)
- Renovation guidance for inhabitants from the building physics perspective and improvements to the indoor comfort.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lidelöw, S.; Örn, T.; Luciani, A.; Rizzo, A. Energy-efficiency measures for heritage buildings: A literature review. Sustain. Cities Soc. 2019, 45, 231–242. [Google Scholar] [CrossRef]
- Loli, A.; Bertolin, C. Towards zero-emission refurbishment of historic buildings: A literature review. Buildings 2018, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Terama, E.; Peltomaa, J.; Mattinen-Yuryev, M.; Nissinen, A. Urban Sustainability and the SDGs: A Nordic Perspective and Opportunity for Integration. Urban Sci. 2019, 3, 69. [Google Scholar] [CrossRef] [Green Version]
- Esser, A.; Dunne, A.; Meeusen, T.; Quaschning, S.; Denis, W. Comprehensive Study of Building Energy Renovation Activities and the Uptake of Nearly Zero-Energy Buildings in the EU Final Report; European Commission: Brussels, Belgium, 2019; 87p. [Google Scholar]
- Burman, E.; Mumovic, D. Measurement and Verification Models for Cost-Effective Energy-Efficient Retrofitting; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780081011287. [Google Scholar]
- Lucchi, E.; Delera, A.C. Enhancing the historic public social housing through a user-centered design-driven approach. Buildings 2020, 10, 159. [Google Scholar] [CrossRef]
- Abdellatif, M.; Al-Shamma’a, A. Review of sustainability in buildings. Sustain. Cities Soc. 2015, 14, 171–177. [Google Scholar] [CrossRef]
- Semprini, G.; Gulli, R.; Ferrante, A. Deep regeneration vs shallow renovation to achieve nearly Zero Energy in existing buildings: Energy saving and economic impact of design solutions in the housing stock of Bologna. Energy Build. 2017, 156. [Google Scholar] [CrossRef]
- Gianfrate, V.; Piccardo, C.; Longo, D.; Giachetta, A. Rethinking social housing: Behavioural patterns and technological innovations. Sustain. Cities Soc. 2017, 33. [Google Scholar] [CrossRef]
- McCabe, A.; Pojani, D.; van Groenou, A.B. The application of renewable energy to social housing: A systematic review. Energy Policy 2018, 114. [Google Scholar] [CrossRef]
- Guarini, M.R. Self-renovation in Rome: Ex ante, in itinere and ex post evaluation. In Computational Science and Its Applications, Proceedings of the ICCSA 2016 Conference, Beijing, China, 4–7 July 2016; Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2016; Volume 9789, pp. 204–218. ISBN 9783319420882. [Google Scholar]
- Risholt, B.; Berker, T. Success for energy efficient renovation of dwellings—Learning from private homeowners. Energy Policy 2013, 61, 1022–1030. [Google Scholar] [CrossRef] [Green Version]
- Godbolt, Å.L.; Flyen, C.; Hauge, Å.L.; Flyen, A.C.; Moen, L.L. Future resilience of cultural heritage buildings—How do residents make sense of public authorities’ sustainability measures? Int. J. Disaster Resil. Built Environ. 2018, 9, 18–30. [Google Scholar] [CrossRef]
- Xue, Y.; Temeljotov-Salaj, A.; Engebø, A.; Lohne, J. Multi-sector partnerships in the urban development context: A scoping review. J. Clean. Prod. 2020, 268, 122291. [Google Scholar] [CrossRef]
- Hauge, Å.L.; Hanssen, G.S.; Flyen, C. Multilevel networks for climate change adaptation—What works? Int. J. Clim. Chang. Strateg. Manag. 2019, 11. [Google Scholar] [CrossRef]
- Kobal Grum, D. Interactions between human behaviour and the built environment in terms of facility management. Facilities 2018, 36. [Google Scholar] [CrossRef]
- Grum, B.; Kobal Grum, D. Concepts of social sustainability based on social infrastructure and quality of life. Facilities 2020, 38. [Google Scholar] [CrossRef]
- Bissonnette, J.F.; Dupras, J.; Messier, C.; Lechowicz, M.; Dagenais, D.; Paquette, A.; Jaeger, J.A.G.; Gonzalez, A. Moving forward in implementing green infrastructures: Stakeholder perceptions of opportunities and obstacles in a major North American metropolitan area. Cities 2018, 81. [Google Scholar] [CrossRef]
- Gan, X.; Chang, R.; Wen, T. Overcoming barriers to off-site construction through engaging stakeholders: A two-mode social network analysis. J. Clean. Prod. 2018, 201. [Google Scholar] [CrossRef]
- Le Feuvre, M.; Medway, D.; Warnaby, G.; Ward, K.; Goatman, A. Understanding stakeholder interactions in urban partnerships. Cities 2016, 52. [Google Scholar] [CrossRef]
- Hein, A.M.; Jankovic, M.; Feng, W.; Farel, R.; Yune, J.H.; Yannou, B. Stakeholder power in industrial symbioses: A stakeholder value network approach. J. Clean. Prod. 2017, 148. [Google Scholar] [CrossRef]
- Yang, A.; Bentley, J. A balance theory approach to stakeholder network and apology strategy. Public Relat. Rev. 2017, 43. [Google Scholar] [CrossRef]
- Tyl, B.; Vallet, F.; Bocken, N.M.P.; Real, M. The integration of a stakeholder perspective into the front end of eco-innovation: A practical approach. J. Clean. Prod. 2015, 108. [Google Scholar] [CrossRef]
- Aoki, N. Sequencing and combining participation in urban planning: The case of tsunami-ravaged Onagawa Town, Japan. Cities 2018, 72. [Google Scholar] [CrossRef]
- Ferguson, L.; Chan, S.; Santelmann, M.; Tilt, B. Exploring participant motivations and expectations in a researcher-stakeholder engagement process: Willamette Water 2100. Landsc. Urban Plan. 2017, 157. [Google Scholar] [CrossRef]
- Li, H.; de Jong, M. Citizen participation in China’s eco-city development. Will ‘new-type urbanization’ generate a breakthrough in realizing it? J. Clean. Prod. 2017, 162. [Google Scholar] [CrossRef]
- Temeljotov Salaj, A.; Gohari, S.; Senior, C.; Xue, Y.; Lindkvist, C. An interactive tool for citizens’ involvement in the sustainable regeneration. Facilities 2020, 38, 859–870. [Google Scholar] [CrossRef]
- Temeljotov Salaj, A.; Lindkvist, C.M. Urban facility management. Facilities 2021, 39, 525–537. [Google Scholar] [CrossRef]
- Esmaeilpoorarabi, N.; Yigitcanlar, T.; Kamruzzaman, M.; Guaralda, M. How can an enhanced community engagement with innovation districts be established? Evidence from Sydney, Melbourne and Brisbane. Cities 2020, 96. [Google Scholar] [CrossRef]
- Fleiß, E.; Hatzl, S.; Seebauer, S.; Posch, A. Money, not morale: The impact of desires and beliefs on private investment in photovoltaic citizen participation initiatives. J. Clean. Prod. 2017, 141. [Google Scholar] [CrossRef]
- Swapan, M.S.H. Who participates and who doesn’t? Adapting community participation model for developing countries. Cities 2016, 53. [Google Scholar] [CrossRef]
- Foultier, C. Empowering the Unprivileged: The Case of Self-renovation in Disadvantaged Areas. In Current Issues in European Cultural Studies, Linköping Electronic Conference Proceedings, Norrköping, Sweden, 15–17 June 2011; Linköping University Electronic Press: Linköping, Sweeden, 2011; pp. 545–551. [Google Scholar]
- Royston, S.; Foulds, C. The making of energy evidence: How exclusions of Social Sciences and Humanities are reproduced (and what researchers can do about it). Energy Res. Soc. Sci. 2021, 77, 102084. [Google Scholar] [CrossRef]
- Overland, I.; Sovacool, B.K. The misallocation of climate research funding. Energy Res. Soc. Sci. 2020, 62, 101349. [Google Scholar] [CrossRef]
- Baum, C.M.; Bartkowski, B. It’s not all about funding: Fostering interdisciplinary collaborations in sustainability research from a European perspective. Energy Res. Soc. Sci. 2020, 70, 101723. [Google Scholar] [CrossRef]
- Norwegian Government Bygningsvern i Norge. Available online: https://www.regjeringen.no/no/tema/klima-og-miljo/kulturminner-og-kulturmiljo/innsiktsartikler-kulturminner/bygningsvern-i-norge/id2343540/ (accessed on 20 May 2021).
- Det Kongelige Miljøverndepartementet. Living with our Cultural Heritage St.meld. nr. 16 (2004–2005); Norwegian Government: Oslo, Norway, 2005; Volume 16. [Google Scholar]
- Bystrategi 2017–2020; Riksantikvaren: Oslo, Norway, 2017.
- Igor, S.; Wachenfeldt, B.J.; Anne Grete, H. Energy demand in the Norwegian building stock: Scenarios on potential reduction. Energy Policy 2009, 37, 1614–1627. [Google Scholar] [CrossRef]
- Ugarte, S.; Van Der Ree, B.; Voogt, M.; Eichhammer, W.; Ordoñez, J.A.; Reute, M.; Schlomann, B.; Llore, P.; Villafáfila, R. Policy Department: Economic and Scientific Policy-Energy Efficiency for Low-Income Households; European Parliament: Brussels, Belgium, 2016. [Google Scholar]
- Talbot, J. Mobilizing Energy Efficiency in the Manufactured Housing Sector; American Council for an Energy-Efficient Economy: Washington, DC, USA, 2012; Volume 20045. [Google Scholar]
- Stieß, I.; Dunkelberg, E. Objectives, barriers and occasions for energy efficient refurbishment by private homeowners. J. Clean. Prod. 2013, 48, 250–259. [Google Scholar] [CrossRef]
- Humar, M.; Lesar, B.; Kržišnik, D. Moisture Performance of Façade Elements Made of Thermally Modified Norway Spruce Wood. Forests 2020, 11, 348. [Google Scholar] [CrossRef] [Green Version]
- Zafar, F.; Sharmin, E.; Ashraf, S.M.; Ahmad, S. Ambient-cured polyesteramide-based anticorrosive coatings from linseed oil—A sustainable resource. J. Appl. Polym. Sci. 2005, 97, 1818–1824. [Google Scholar] [CrossRef]
- Larsen, K.E.; Nils, M. Conservation of Historic Timber Structures an Ecological Approach; Butterworth-Heinemann Series in Conservation and Museology; Reed Educational and Professional Publishing Ltd.: Oxford, UK, 2000. [Google Scholar]
- Lisø, K.R.; Kvande, T.; Time, B. Climate Adaptation Framework for Moisture-resilient Buildings in Norway. Energy Procedia 2017, 132, 628–633. [Google Scholar] [CrossRef]
- Kristl, Ž.; Senior, C.; Temeljotov Salaj, A. Key challenges of climate change adaptation in the building sector. Urbani Izziv 2020, 31, 101–111. [Google Scholar] [CrossRef]
- Bradshaw, J.L.; Bou-Zeid, E.; Harris, R.H. Comparing the effectiveness of weatherization treatments for low-income, American, urban housing stocks in different climates. Energy Build. 2014, 69, 535–543. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Kaklauskas, A.; Tupenaite, L.; Mickaityte, A. 2008. Decision-Making Model for Sustainable Buildings Refurbishment. Energy Efficiency Aspect. In Proceedings of the 7th International Conference on Environmental Engineering, ICEE, Vilnius, Lithuania, 22–23 May 2008; pp. 894–901. [Google Scholar]
- Korjenic, A.; Zach, J.; Hroudová, J. The use of insulating materials based on natural fibers in combination with plant facades in building constructions. Energy Build. 2016, 116, 45–58. [Google Scholar] [CrossRef]
- Pye, M. Energy Efficiency Programs for Low-Income Households: Successful Approaches for a Competitive Environment; American Council for an Energy-Efficient Economy: Washington, DC, USA, 1996; Volume 20036. [Google Scholar]
- Underhill, L.J.; Milando, C.W.; Levy, J.I.; Dols, W.S.; Lee, S.K.; Fabian, M.P. Simulation of indoor and outdoor air quality and health impacts following installation of energy-efficient retrofits in a multifamily housing unit. Build. Environ. 2020, 170, 106507. [Google Scholar] [CrossRef]
- New European Bahaus-Initiative European Commission. Why the New European Bauhaus (NEB)? What Are the Next Concrete Steps? European Commission: Brusels, Belgium, 2021. [Google Scholar]
- Hermelink, A.; Schimschar, S.; Offermann, M.; John, A.; Reiser, M.; Pohl, A.; Grözinger, J. Comprehensive Study of Building Energy Renovation Activities and the Uptake of Nearly Zero-Energy Buildings in the EU; European Commission: Cologne, Germany, 2019. [Google Scholar]
- Trouillon, D.; Gendarme, E.; Mouton, L.; Dehon, O.; Pauchon, S.; Beck Heremans, V.; Sekkal, Y. How to Improve the Living Standard of Inhabitants of Svartlamon in a Sustainable Way? Report for TBA4178—Refurbishment Technology Specialised Course; NTNU: Trondheim, Norway, 2019. [Google Scholar]
- Berge, I.C.M.; Horten, H.; Hua, C.R.R.; Knudsen, A.H.V.; Solli, C.J.; Pérez Celaya, N. Sustainable Refurbishment at Biskop Darres Gate 10, Svartlamon; Report for TBA4178 Course “Refurbishment Technology Specialised”; NTNU: Trondheim, Norway, 2020. [Google Scholar]
- EUROPAN 10 Comittee. EUROPAN10 Trondheim, Norway 2010. Available online: http://europan.no/ukategorisert/e10-the-sites/ (accessed on 20 May 2021).
- Øverland Gater, P. Historieglimt 7; Lademoen Kirkes Småskrifter: Trondheim, Norway, 2011. [Google Scholar]
- Leuraers, C.; van Dooren, A.; Bjørberg, S.; Temeljotov Salaj, A. Alternative Community—Promotor or Inhibitor of Sustainable Development. In Keeping up with Technologies to Turn Built Heritage into the Places of Future Generations, Conference Proceedings, 6th International Academic Conference on Places and Technologies, Pecs, Hungary, 9–10 May 2019; University of Pecs Faculty of Engineering and Information Technology: Pecs, Hungary, 2019; pp. 582–590. [Google Scholar]
- Sager, T. Planning by intentional communities: An understudied form of activist planning. Plan. Theory 2018, 17, 449–471. [Google Scholar] [CrossRef]
- Kozeny, G. Intentional Communities: Lifestyles Based on Ideals. In Communities Directory: A Guide to Cooperative Living; Fellowship for Intentional Community: Langley, DC, USA, 1995; pp. 18–24. [Google Scholar]
- Lowenstein, O. Svartlamoen’s Ragged Glory—Where Alt-Culture Meets Avant Timber Architecture. Available online: http://www.fourthdoor.co.uk/unstructured/unstructured_08/svartlamon.php (accessed on 10 May 2021).
- Svartlamon Webgruppe Hva er Svartlamon-Organisering. Available online: https://svartlamon.org/organisering/ (accessed on 10 May 2021).
- Vukmirović, M.; Nikolić, M. Industrial heritage preservation and the urban revitalisation process in Belgrade. J. Urban Aff. 2021. [Google Scholar] [CrossRef]
- Salaj, A.T.; Lindkvist, C.; Jowkar, M. Social needs for sustainable refurbishment in Trondheim. In Proceedings of the 19th EuroFM Research Symposium 2020, Online. 3–4 June 2020; pp. 51–61. [Google Scholar]
- Jowkar, M.; Temeljotiv-Salaj, A.; Lindkvist, C.M.; Støre-Valen, M. Sustainable Building Renovations: Barriers and Potential Motivations. Constr. Manag. Econ. 2021, in press. [Google Scholar]
- Kulenović, R. MOGUĆNOSTI (Re)Aktivacije Napuštenih Industrijskih Objekata: Raskršća i Putokazi (Possibilities for (Re)Activation of Vacant Industrial Buildings: Crossroads and Road Signs); Kulturklammer-Centar za Kulturne Interakcije: Belgrade, Serbia, 2008. (In Serbian) [Google Scholar]
- Trondheim Municipality. R 219b-Bestemmelser til Endret Reguleringsplan for Svartlamoen (Reinaområdet); Trondheim Municipality: Trondheim, Norway, 2006; pp. 1–10. [Google Scholar]
- Municipal Council of Trondheim. Saksdokumenter—Sak PS 0193/16-Evaluaering Av Svartlamon; Municipal Council of Trondheim: Trondheim, Norway, 2016. [Google Scholar]
- Wahlström, M.; Castell-Rüdenhausen, M.; Astrup, T.F.; Oberender, A.; Jensen, C.; Johansson, P.; Wærner, E. Strategies and Methods for Implementing CE in Construction Activities in the Nordic Countries—Supporting Cases, 508th ed.; Nordic Council of Ministers, Ed.; Nordic Energy Research, Nordisk Ministerråd: Copenhagen, Denmark, 2021; ISBN 9789289369299. [Google Scholar]
- Madsø, F. Lilleborg Gjenbruk av Tegl Raporter; NCC Statsbygg: Oslo, Norway, 2001. [Google Scholar]
- Kilvær, L.; Sunde, O.W.; Eid, M.S.; Rydningen, O.; Fjeldheim, H. Forsvarlig Ombruk av Byggevarer. 2019. Available online: https://dibk.no/globalassets/02.-om-oss/rapporter-og-publikasjoner/forsvarlig-ombruk-av-byggevarer_resirqel-2019.pdf (accessed on 20 May 2021).
- Pettersen, N. Gjenbrukshus i Trondheim; Miljøenheten in Trondheim Kommune: Trondheim, Norway, 2005; ISBN 8277270917. (In Norwegian) [Google Scholar]
- Sørnes, K.; Nordby, A.S.; Fjeldheim, H.; Hashem, S.M.B.; Mysen, M.; Dahl Schlanbusch, R. Anbefalinger ved Ombruk av Byggematerialer; Sintef: Trondheim, Norway, 2014. [Google Scholar]
- Walker, A. Natural Ventilation. 2016. Available online: https://www.wbdg.org/resources/natural-ventilation (accessed on 20 May 2021).
- Nunes de Freitas, P.; Guedes, M.C. The use of windows as environmental control in “Baixa Pombalina’s” heritage buildings. Renew. Energy 2015, 73, 92–98. [Google Scholar] [CrossRef]
- Atkinson, J.; Yves, C.; Pessoa-Silva, C.-L.; Jensen, P.; Li, Y.; Seto, W.-H. Natural Ventilation for Infection Control in Health-Care Settings; Atkinson, J., Chartier, Y., Pessoa-Silva, C.L., Jensen, P., Li, Y., Seto, W.-H., Eds.; WHO Press: Geneva Switzerland, 2009. [Google Scholar]
- Lin, Y.-P.; Iba, C.; Lai, C.-M. Natural Ventilation Effectiveness of Round Wall-Mounted Vent Caps in Residential Kitchens. Energies 2018, 11, 1230. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, B. Sound insulation between dwellings—Requirements in building regulations in Europe. Appl. Acoust. 2010, 71, 373–385. [Google Scholar] [CrossRef]
- Patnaik, A.; Mvubu, M.; Muniyasamy, S.; Botha, A.; Anandjiwala, R.D. Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies. Energy Build. 2015, 92, 161–169. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, X.M.; Chang, J.M.; Yao, Y.; Cui, Q. Sound insulation property of wood-waste tire rubber composite. Compos. Sci. Technol. 2010, 70, 2033–2038. [Google Scholar] [CrossRef]
- Zhu, X.; Kim, B.J.; Wang, Q.W.; Wu, Q. Recent advances in the sound insulation properties of bio-based materials. BioResources 2014, 9, 1764–1786. [Google Scholar] [CrossRef] [Green Version]
- Dovjak, M.; Košir, M.; Kristl, Ž.; Krainer, A. Assessment of Sustainability Aspects of Daylighting in Buildings. In Proceedings of the Euro Sun Conference, Aix-les-Bains, France, 16–17 September 2015; ISBN 9783981465938. [Google Scholar]
- Pajek, L.; Košir, M.; Kristl, Ž.; Kacjan Žgajnar, K.; Dovjak, M. Indoor evnironmental quality (IEQ) in Slovenian children daycare centres. Part I: Results of in-situ measurements. Int. J. Sanit. Eng. Res. 2017, 11, 27. [Google Scholar]
- Blecich, P.; Franković, M.; Kristl, Ž. Energy retrofit of the Krsan Castle: From sustainable to responsible design—A case study. Energy Build. 2016, 122, 23–33. [Google Scholar] [CrossRef]
- Košir, M.; Gostiša, T.; Kristl, Ž. Influence of architectural building envelope characteristics on energy performance in Central [European climatic conditions. J. Build. Eng. 2018, 15, 278–288. [Google Scholar] [CrossRef]
- Kristl, Z.; Zbasnik-senegacnik, M. Energy Renovation of Large Neighbourhoods in Slovenia. In Proceedings of the Fourth ISES-Europe Solar Congress, Bologna, Italy, 23–26 June 2002; Renewable Energy for Local Communities of Europe, Toward Rio+10. International Solar Energy Society: Trento, Italy, 2000; pp. 1–8. [Google Scholar]
- Garnier, C.; Muneer, T.; McCauley, L. Super insulated aerogel windows: Impact on daylighting and thermal performance. Build. Environ. 2015, 94, 231–238. [Google Scholar] [CrossRef]
- Burattini, C.; Nardecchia, F.; Bisegna, F.; Cellucci, L.; Gugliermetti, F.; De Lieto Vollaro, A.; Salata, F.; Golasi, I. Methodological approach to the energy analysis of unconstrained historical buildings. Sustainability 2015, 7, 10428–10444. [Google Scholar] [CrossRef] [Green Version]
- Aho, H.; Vinha, J.; Korpi, M. Implementation of airtight constructions and joints in residential buildings. In Proceedings of the 8th Nordic Building Physics Symposium, Copenhagen, Denmark, 16–18 June 2008; Technical University of Denmark: Twente, Danemark, 2008. [Google Scholar]
- Kalamees, T. Air tightness and air leakages of new lightweight single-family detached houses in Estonia. Build. Environ. 2007, 42, 2369–2377. [Google Scholar] [CrossRef]
- Langmans, J.; Klein, R.; Eykens, P.; De Paepe, M.; Roels, S. Feasibility of using wind barriers as air barriers in wood frame construction. In Proceedings of the International Conference on Thermal Performance of the Exterior Envelopes of Whole Buildings, Buildings XI, Clearwater, FL, USA, 5–10 December 2010. [Google Scholar]
- Martín-Garín, A.; Millán-García, J.A.; Hidalgo-Betanzos, J.M.; Hernández-Minguillón, R.J.; Baïri, A. Airtightness analysis of the built heritage–field measurements of nineteenth century buildings through blower door tests. Energies 2020, 13, 6727. [Google Scholar] [CrossRef]
- Boro, M. Veileder-Råd om Energisparing i Gamle Hus; Riksantikvaren: Oslo, Norway, 2013; ISBN 9788275740807. [Google Scholar]
- Yan, L.; Liu, C. Techno-economic analysis for constructing solar photovoltaic projects on building envelopes. Build. Environ. 2018, 127, 37–46. [Google Scholar]
- Xu, C.; Shuhong, L.; Zou, K. Study of heat and moisture transfer in internal and external wall insulation configurations. Build. Eng. 2019, 24, 100724. [Google Scholar] [CrossRef]
- Barbosa, R.M.; Mendes, N. Combined simulation of central HVAC systems with a whole-building hygrothermal model. Energy Build. 2008, 40, 276–288. [Google Scholar] [CrossRef]
- Harrestrup, M.; Svendsen, S. Internal insulation applied in heritage multi-storey buildings with wooden beams embedded in solid masonry brick façades. Build. Environ. 2016, 99, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, I.; Ladener, H. Vom Altbau zum Effizienzhaus; Ökobuch: Staufen im Breisgau, Germany, 2018; ISBN 9783936896756. [Google Scholar]
- Kolb, B. Altbausanierung mit Nachwachsenden Rohstoffen (Renovation of Old Buildings with Renewable Raw Materials); Fachagentur Nachwachsende Rohstoffe: Gülzow, Germany, 2014. [Google Scholar]
- Beck, S. Insulation Improvement Considering Sustainable and Ecological Aspects; Report for TBA4178 Course “Refurbishment Technology Specialised”; NTNU: Trondheim, Norway, 2019. [Google Scholar]
Aerial picture of Svartlamon (©Blom) | area | Ca. 27 km2 |
population | Ca. 200 inhabitants | |
type and number of buildings (year of construction) | 25 residential buildings and 4 commercial buildings | |
type and number of flats | 130 dwellings | |
main infrastructure | Kindergarten, culture house, shops, railways, and roads | |
maintenance funding (per year) | Housing Foundation ca. 1.3 M. NOK + Municipality ca. 1.2 M NOK |
Foundation, Basement | Facade | Walls | Floors | Windows | Basic Infrastructure |
---|---|---|---|---|---|
humidity, stability, cracks, missing drainage | cracks on the wall, rotten wooden panels, deteriorating paint | cracks on the walls, molds, fungus, rotten elements, humidity | noise disturbance between floors | simple glazing, humidity damages on wood frames | missing toilets, baths |
Further Improvement Costs | Available Funds | |
---|---|---|
Strandveien 19 | 709,090 NOK | 126,270 NOK |
Strandveien 21 | 591,936 NOK | 105,408 NOK |
Material | Thickness [cm] | Aprox.Cost* [NOK/m²] W/m²k | Primary Energy Consumption [kwh/m³] | Heat Insulation Effect | Summer Heat Protection | Moisture Control |
---|---|---|---|---|---|---|
For U-Value= 0.2 W/m²K | ||||||
Flax | 20 | 250–300 | 200–400 | |||
Hemp | 22.5 | 200–300 | 200–400 | |||
Mineral bonded wood wool board | 45 | 750–950 | 450 | |||
Sheep wool | 20 | 350–600 | 40–80 | |||
Cellulose (a) loose (b) panels | 20–22.5 | 150–200 250–300 | 25–30 100–600 | |||
Calcium silicate boards | 50–100 | 250 (50 mm) | – | - | ||
Mineralfiber (a) glass wool (b) rock wool | 17.5–25 | 100–300 | 95 | |||
Expanded perlite (a) thermal insulation (b) impact sound insulation | 22.5–30 | 200–400 | 300–500 | |||
Polystyrene panels (a) EPS (b) XPS | 12.5–20 | 100–150 400–500 | 360–600 600–900 |
Sustainable Raw Materials Usable | Change in Facade Appearance | Thermal Bridge Reduction to a Minimum | Fire Protection Improvement | Personal Contribution Possible | Area of Application | Costs [NOK/m²] at Thickness t [cm] | |
---|---|---|---|---|---|---|---|
Curtain wall | All building types | 1300–1700; t = 16 | |||||
Thermal insulation composite system | All building types | 1100–1500; t = 10 | |||||
Internal insulation | Listed facades | 900–1200; t = 10 | |||||
Blow-in insulation | Double-shell wall (cavities needed) | 150–300; | |||||
Insulation plaster | All building types | 600–800; | |||||
Above rafter insulation | Rafter roof construction | 2000–2500; | |||||
Between-/under- rafter insulation | Rafter roof construction | 400–600; | |||||
Attic insulation | All building types | 400–600; |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senior, C.; Salaj, A.T.; Vukmirovic, M.; Jowkar, M.; Kristl, Ž. The Spirit of Time—The Art of Self-Renovation to Improve Indoor Environment in Cultural Heritage Buildings. Energies 2021, 14, 4056. https://doi.org/10.3390/en14134056
Senior C, Salaj AT, Vukmirovic M, Jowkar M, Kristl Ž. The Spirit of Time—The Art of Self-Renovation to Improve Indoor Environment in Cultural Heritage Buildings. Energies. 2021; 14(13):4056. https://doi.org/10.3390/en14134056
Chicago/Turabian StyleSenior, Coline, Alenka Temeljotov Salaj, Milena Vukmirovic, Mina Jowkar, and Živa Kristl. 2021. "The Spirit of Time—The Art of Self-Renovation to Improve Indoor Environment in Cultural Heritage Buildings" Energies 14, no. 13: 4056. https://doi.org/10.3390/en14134056
APA StyleSenior, C., Salaj, A. T., Vukmirovic, M., Jowkar, M., & Kristl, Ž. (2021). The Spirit of Time—The Art of Self-Renovation to Improve Indoor Environment in Cultural Heritage Buildings. Energies, 14(13), 4056. https://doi.org/10.3390/en14134056