Pandemic of Childhood Myopia. Could New Indoor LED Lighting Be Part of the Solution?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Myopia and Overwork at Close Distances
3.2. Medication to Treat the Progression of Myopia
3.3. Light in the Lives of Children and Adolescents
3.4. Myopia and Light Insufficiency
3.5. The Non-Visual Effects of Light on Humans
3.6. Regulatory Lighting Framework
3.7. New Indoor LED Lighting Luminaires
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mutti, D.O.; Sinnott, L.T.; Mitchell, G.L.; Jordan, L.A.; Friedman, N.E.; Frane, S.L.; Lin, W.K. Ocular Component Development during Infancy and Early Childhood. Optom. Vis. Sci. 2018, 95, 976–985. [Google Scholar] [CrossRef]
- Walline, J.J.; Lindsley, K.B.; Vedula, S.S.; Cotter, S.A.; Mutti, D.; Ng, S.M.; Twelker, J.D. Interventions to slow progression of myopia in children. Cochrane Database Syst. Rev. 2020, 1, CD004916. [Google Scholar] [CrossRef] [Green Version]
- Morgan, I.; Megaw, P. Using natural stop growth signals to prevent excessive axial elongation and ther development of Myopia. Ann. Acad. Singap. 2004, 33, 16–20. [Google Scholar]
- Mutti, D.O.; Mitchell, G.L.; Jones, L.A.; Friedman, N.E.; Frane, S.L.; Lin, W.K.; Moeschberger, M.L.; Zadnik, K. Axial Growth and Changes in Lenticular and Corneal Power during Emmetropization in Infants. Investig. Opthalmol. Vis. Sci. 2005, 46, 3074–3080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saw, S.-M. How blinding is pathological myopia? Br. J. Ophthalmol. 2006, 90, 525–526. [Google Scholar] [CrossRef] [Green Version]
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.; Resnikoff, S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourne, R.R.; Stevens, G.A.; White, R.A.; Smith, J.L.; Flaxman, S.R.; Price, H.; Jonas, J.B.; Keeffe, J.; Leasher, J.; Naidoo, K.; et al. Causes of vision loss worldwide, 1990–2010: A systematic analysis. Lancet Glob. Health 2013, 1, e339–e349. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, A.; Beuerman, R.W. Biological Mechanisms of Atropine Control of Myopia. Eye Contact Lens Sci. Clin. Pract. 2020, 46, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Jan, C.; Li, L.; Keay, L.; Stafford, R.S.; Congdon, N.; Morgan, I. Prevention of myopia, China. Bull. World Health Organ. 2020, 98, 435–437. [Google Scholar] [CrossRef]
- Morgan, I.G.; French, A.N.; Ashby, R.S.; Guo, X.; Ding, X.; He, M.; Rose, K.A. The epidemics of myopia: Aetiology and prevention. Prog. Retin. Eye Res. 2018, 62, 134–149. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Pardue, M.T.; Iuvone, P.M.; Qu, J. Dopamine signaling and myopia development: What are the key challenges. Prog. Retin. Eye Res. 2017, 61, 60–71. [Google Scholar] [CrossRef]
- Wu, P.-C.; Chang, L.-C.; Niu, Y.-Z.; Chen, M.-L.; Liao, L.-L.; Chen, C.-T. Myopia prevention in Taiwan. Ann. Eye Sci. 2018, 3, 12. [Google Scholar] [CrossRef]
- Shih, Y.-F.; Chiang, T.-H.; Hsiao, C.K.; Chen, C.-J.; Hung, P.-T.; Lin, L.L.-K. Comparing myopic progression of urban and rural Taiwanese schoolchildren. Jpn. J. Ophthalmol. 2010, 54, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Saw, S.-M.; Zhang, M.-Z.; Hong, R.-Z.; Fu, Z.-F.; Pang, M.-H.; Tan, D.T.H. Near-Work Activity, Night-lights, and Myopia in the Singapore-China Study. Arch. Ophthalmol. 2002, 120, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Vitale, S.; Sperduto, R.D.; Ferris, F.L. Increased Prevalence of Myopia in the United States Between 1971–1972 and 1999–2004. Arch. Ophthalmol. 2009, 127, 1632–1639. [Google Scholar] [CrossRef] [Green Version]
- Walline, J.; Smith, M. Controlling myopia progression in children and adolescents. Adolesc. Health Med. Ther. 2015, 6, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Kurihara, T.; Torii, H.; Tsubota, K. Progress and Control of Myopia by Light Environments. Eye Contact Lens Sci. Clin. Pract. 2018, 44, 273–278. [Google Scholar] [CrossRef]
- Wu, P.-C.; Chen, C.-T.; Lin, K.-K.; Sun, C.-C.; Kuo, C.-N.; Huang, H.-M.; Poon, L.Y.-C.; Yang, M.-L.; Chen, C.-Y.; Huang, J.-C.; et al. Myopia Prevention and Outdoor Light Intensity in a School-Based Cluster Randomized Trial. Ophthalmology 2018, 125, 1239–1250. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, J.; Fricke, T.; Morjaria, P.; Yasmin, S. Myopia: A growing epidemic. Community Eye Health 2019, 32, 9. [Google Scholar] [PubMed]
- Cao, K.; Wan, Y.; Yusufu, M.; Wang, N. Significance of Outdoor Time for Myopia Prevention: A Systematic Review and Meta-Analysis Based on Randomized Controlled Trials. Ophthalmic Res. 2020, 63, 97–105. [Google Scholar] [CrossRef]
- Guggenheim, J.A.; Northstone, K.; McMahon, G.; Ness, A.; Deere, K.; Mattocks, C.; Pourcain, B.S.; Williams, C. Time Outdoors and Physical Activity as Predictors of Incident Myopia in Childhood: A Prospective Cohort Study. Investig. Opthalmol. Vis. Sci. 2012, 53, 2856–2865. [Google Scholar] [CrossRef]
- Pärssinen, O. The increased prevalence of myopia in Finland. Acta Ophthalmol. 2011, 90, 497–502. [Google Scholar] [CrossRef]
- Mutti, D.; Mitchell, G.; Moeschberger, M.L.; Jones, L.A.; Zadnik, K. Parental Myopia, Near Work, School Achievement, andChildren’s Refractive Error. Investig. Ophthalmol. Vis. Sci. 2002, 43, 3633–3640. [Google Scholar]
- Jones, L.A.; Sinnott, L.T.; Mutti, D.O.; Mitchell, G.L.; Moeschberger, M.L.; Zadnik, K. Parental History of Myopia, Sports and Outdoor Activities, and Future Myopia. Investig. Opthalmol. Vis. Sci. 2007, 48, 3524–3532. [Google Scholar] [CrossRef] [Green Version]
- Stone, R.A.; McGlinn, A.M.; Chakraborty, R.; Lee, D.C.; Yang, V.; Elmasri, A.; Landis, E.; Shaffer, J.; Iuvone, P.M.; Zheng, X.; et al. Altered ocular parameters from circadian clock gene disruptions. PLoS ONE 2019, 14, e0217111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, R.; Ostrin, L.A.; Nickla, D.L.; Iuvone, P.M.; Pardue, M.T.; Stone, R.A. Circadian rhythms, refractive development, and myopia. Ophthalmic Physiol. Opt. 2018, 38, 217–245. [Google Scholar] [CrossRef] [PubMed]
- Lanca, C.; Teo, A.; Vivagandan, A.; Htoon, H.M.; Najjar, R.; Spiegel, D.P.; Pu, S.-H.; Saw, S.-M. The Effects of Different Outdoor Environments, Sunglasses and Hats on Light Levels: Implications for Myopia Prevention. Transl. Vis. Sci. Technol. 2019, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-M.; Chang, D.S.-T.; Wu, P.-C. The Association between Near Work Activities and Myopia in Children—A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0140419. [Google Scholar] [CrossRef] [Green Version]
- Mountjoy, E.; Davies, N.; Plotnikov, D.; Smith, G.D.; Rodriguez, S.; Williams, C.; Guggenheim, J.; Atan, D. Education and myopia: Assessing the direction of causality by mendelian randomisation. BMJ 2018, 361, k2022. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Gao, T.Y.; Vasudevan, B.; Ciuffreda, K.J.; Liang, Y.B.; Jhanji, V.; Fan, S.J.; Han, W.; Wang, N.L. Near work, outdoor activity, and myopia in children in rural China: The Handan offspring myopia study. BMC Ophthalmol. 2017, 17, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Koh, V.; Yang, A.; Saw, S.M.; Chan, Y.H.; Lin, S.T.; Tan, M.M.H.; Tey, F.; Nah, G.; Ikram, M.K. Differences in Prevalence of Refractive Errors in Young Asian Males in Singapore between 1996–1997 and 2009–2010. Ophthalmic Epidemiol. 2014, 21, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.C.; Morgan, I.G.; Kakizaki, H.; Kang, S.; Jee, D. Prevalence and Risk Factors for Refractive Errors: Korean National Health and Nutrition Examination Survey 2008–2011. PLoS ONE 2013, 8, e80361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norton, T.T.; Siegwart, J.T. Light levels, refractive development, and myopia—A speculative review. Exp. Eye Res. 2013, 114, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Gooley, J.J.; Rajaratnam, S.; Brainard, G.C.; Kronauer, R.E.; Czeisler, C.A.; Lockley, S.W. Spectral Responses of the Human Circadian System Depend on the Irradiance and Duration of Exposure to Light. Sci. Transl. Med. 2010, 2, 31ra33. [Google Scholar] [CrossRef] [Green Version]
- Lucas, R.J.; Peirson, S.N.; Berson, D.M.; Brown, T.M.; Cooper, H.M.; Czeisler, C.A.; Figueiro, M.G.; Gamlin, P.D.; Lockley, S.W.; O’Hagan, J.B.; et al. Measuring and using light in the melanopsin age. Trends Neurosci. 2014, 37, 1–9. [Google Scholar] [CrossRef]
- Khademagha, P.; Aries, M.; Rosemann, A.; van Loenen, E. Implementing non-image-forming effects of light in the built environment: A review on what we need. Build. Environ. 2016, 108, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Stevens, R.G. Light-at-night, circadian disruption and breast cancer: Assessment of existing evidence. Int. J. Epidemiol. 2009, 38, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Bellia, L.; Pedace, A.; Barbato, G. Lighting in educational environments: An example of a complete analysis of the effects of daylight and electric light on occupants. Build. Environ. 2013, 68, 50–65. [Google Scholar] [CrossRef]
- Figueiro, M.G. An Overview of the Effects of Light on Human Circadian Rhythms: Implications for New Light Sources and Lighting Systems Design. J. Light Vis. Environ. 2013, 37, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Moyano, D.B.; Lezcano, R.A.G. The importance of light in our lives. towards new lighting in schools. In Advancements in Sustainable Architecture and Energy Efficiency; IGI Global: Hershey, PA, USA, 2021; ISBN 9781799870234. [Google Scholar] [CrossRef]
- López-Chao, V.; Lorenzo, A.A.; Saorín, J.L.; De La Torre-Cantero, J.; Melián-Díaz, D. Classroom Indoor Environment Assessment through Architectural Analysis for the Design of Efficient Schools. Sustainability 2020, 12, 2020. [Google Scholar] [CrossRef] [Green Version]
- Nocera, F.; Faro, A.L.; Costanzo, V.; Raciti, C. Daylight Performance of Classrooms in a Mediterranean School Heritage Building. Sustainability 2018, 10, 3705. [Google Scholar] [CrossRef] [Green Version]
- Moreno, M.B.P.; Labarca, C.Y. Methodology for Assessing Daylighting Design Strategies in Classroom with a Climate-Based Method. Sustainability 2015, 7, 880–897. [Google Scholar] [CrossRef] [Green Version]
- Winterbottom, M.; Wilkins, A. Lighting and discomfort in the classroom. J. Environ. Psychol. 2009, 29, 63–75. [Google Scholar] [CrossRef]
- Ho, M.-C.; Chiang, C.-M.; Chou, P.-C.; Chang, K.-F.; Lee, C.-Y. Optimal sun-shading design for enhanced daylight illumination of subtropical classrooms. Energy Build. 2008, 40, 1844–1855. [Google Scholar] [CrossRef]
- Rose, K.A.; Morgan, I.G.; Ip, J.; Kifley, A.; Huynh, S.; Smith, W.; Mitchell, P. Outdoor Activity Reduces the Prevalence of Myopia in Children. Ophthalmology 2008, 115, 1279–1285. [Google Scholar] [CrossRef]
- Deng, L.; Gwiazda, J.; Thorn, F. Children’s Refractions and Visual Activities in the School Year and Summer. Optom. Vis. Sci. 2010, 87, 406–413. [Google Scholar] [CrossRef] [Green Version]
- Donovan, L.; Sankaridurg, P.; Ho, A.; Chen, X.; Lin, Z.; Thomas, V.; Smith, E.L.; Ge, J.; Holden, B. Myopia Progression in Chinese Children is Slower in Summer Than in Winter. Optom. Vis. Sci. 2012, 89, 1196–1202. [Google Scholar] [CrossRef]
- He, M.; Xiang, F.; Zeng, Y.; Mai, J.; Chen, Q.; Zhang, J.; Smith, W.W.; Rose, K.; Morgan, I.G. Effect of Time Spent Outdoors at School on the Development of Myopia Among Children in China. JAMA 2015, 314, 1142–1148. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.-C.; Tsai, C.-L.; Wu, H.-L.; Yang, Y.-H.; Kuo, H.-K. Outdoor Activity during Class Recess Reduces Myopia Onset and Progression in School Children. Ophthalmology 2013, 120, 1080–1085. [Google Scholar] [CrossRef]
- Torii, H.; Kurihara, T.; Seko, Y.; Negishi, K.; Ohnuma, K.; Inaba, T.; Kawashima, M.; Jiang, X.; Kondo, S.; Miyauchi, M.; et al. Violet Light Exposure Can Be a Preventive Strategy Against Myopia Progression. EBioMedicine 2017, 15, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Xiong, S.; Sankaridurg, P.; Naduvilath, T.; Zang, J.; Zou, H.; Zhu, J.; Lv, M.; He, X.; Xu, X. Time spent in outdoor activities in relation to myopia prevention and control: A meta-analysis and systematic review. Acta Ophthalmol. 2017, 95, 551–566. [Google Scholar] [CrossRef] [Green Version]
- Figueiro, M.; Steverson, B.; Heerwagen, J.; Yucel, R.; Roohan, C.; Sahin, L.; Kampschroer, K.; Rea, M. Light, entrainment and alertness: A case study in offices. Light. Res. Technol. 2019, 52, 736–750. [Google Scholar] [CrossRef]
- Konis, K. A novel circadian daylight metric for building design and evaluation. Build. Environ. 2017, 113, 22–38. [Google Scholar] [CrossRef]
- Andersen, M.; Mardaljevic, J.; Lockley, S.W. A framework for predicting the non-visual effects of daylight—Part I: Photobiology—Based model. Light. Res. Technol. 2012, 44, 37–53. [Google Scholar] [CrossRef] [Green Version]
- Moyano, D.B.; Lezcano, R.A.G. Indoor lighting worplaces. Towards new indoor lighting. Health Well Being. 2021. [Google Scholar] [CrossRef]
- Landis, E.G.; Yang, V.; Brown, D.; Pardue, M.T.; Read, S.A. Dim Light Exposure and Myopia in Children. Investig. Opthalmol. Vis. Sci. 2018, 59, 4804–4811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, F.; Zhi, Z.; Pan, M.; Xie, R.; Qin, X.; Lu, R.; Mao, X.; Chen, J.-F.; Willcox, M.D.P.; Zhou, X. Inhibition of experimental myopia by a dopamine agonist: Different effectiveness between form deprivation and hyperopic defocus in guinea pigs. Mol. Vis. 2011, 17, 2824–2834. [Google Scholar]
- Zielinska-Dabkowska, K.M.; Xavia, K. Protect our right to light. Nat. Cell Biol. 2019, 568, 451–453. [Google Scholar] [CrossRef]
- Zielinska-Dabkowska, K.M. Make lighting healthier. Nature 2018, 553, 274–276. [Google Scholar] [CrossRef]
- ISO 8995-1. Lighting of Indoor Workplaces (CIE S008/2001); ISO: Geneva, Switzerland, 2002. [Google Scholar]
- European Committee for Standardization. Light and Lighting—Lighting of Work Places—Part 1: Indoor Work Places; CEN: Brussels, Belgium, 2019; prEN 12464-1. [Google Scholar]
- DiLaura, D.L.; Harrold, R.M.; Houser, K.; Mistrick, R.G.; Steffy, G.R. A Procedure for Determining Target Illuminances. J. Illum. Eng. Soc. 2011, 7, 145–158. [Google Scholar] [CrossRef]
- Commission Delegated Regulation (EU) No 874/2012 of 12 July 2012 Supplementing Directive 2010/30/EU of the European Parliament and of the Council with Regard to Energy Labelling of Electrical Lamps and Luminaires Text with EEA Relevance. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012R0874 (accessed on 15 April 2021).
- European Committee for Standardization. Light and Lighting—Measurement and Presentation of Photometric Data of Lamps and Luminaires—Part 4: LED Lamps, Modules and Luminaires; CEN: Brussels, Belgium, 2016; EN 13032-4. [Google Scholar]
- European Committee for Standardization. Photobiological Safety of Lamps and Lamp Systems; CEN: Brussels, Belgium, 2009; EN 62471. [Google Scholar]
- Moyano, D.B.; Moyano, S.B.; López, M.G.; Aznal, A.S.; Lezcano, R.A.G. Nominal risk analysis of the blue light from LED luminaires in indoor lighting design. Optik 2020, 223, 165599. [Google Scholar] [CrossRef]
- Moyano, D.B.; Moyano, S.B.; López, M.G.; Aznal, A.S. Photometric and colorimetric analysis of light emitting diode luminaires for interior lighting design. Color. Res. Appl. 2021, 46, 791–807. [Google Scholar] [CrossRef]
- Nie, J.; Zhou, T.; Chen, Z.; Dang, W.; Jiao, F.; Zhan, J.; Chen, Y.; Chen, Y.; Pan, Z.; Kang, X.; et al. Investigation on entraining and enhancing human circadian rhythm in closed environments using daylight-like LED mixed lighting. Sci. Total. Environ. 2020, 732, 139334. [Google Scholar] [CrossRef]
- Wu, T.; Lin, Y.; Zhu, H.; Guo, Z.; Zheng, L.; Lu, Y.; Shih, T.-M.; Chen, Z. Multi-function indoor light sources based on light-emitting diodes–a solution for healthy lighting. Opt. Express 2016, 24, 24401–24412. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Wang, Q.; Dang, W.; Dong, W.; Zhou, S.; Yu, X.; Zhang, G.; Shen, B.; Chen, Z.; Jiao, F.; et al. Tunable LED Lighting with Five Channels of RGCWW for High Circadian and Visual Performances. IEEE Photon. J. 2019, 11, 1–12. [Google Scholar] [CrossRef]
- Liu, J.G.; Tang, W.; Shen, C.; Ke, Y.; Sun, G. Advances in higher color quality and healthier white LEDs. In Proceedings of the 14th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors, Beijing, China, 1–3 November 2017; pp. 13–16. [Google Scholar]
- Carter, E.C.; Schanda, J.D.; Hirschler, R.; Jost, S.; Luo, M.R.; Melgosa, M.; Ohno, Y.; Pointer, M.R.; Rich, D.C.; Viénot, F.; et al. Colorimetry, 4th ed.; CIE Central Bureau: Vienna, Austria, 2018; ISBN 9783902842138. [Google Scholar]
- Manuel Melgosa Latorre. Revisión de algunos conceptos de ciencias del color relacionados con la luminación. Luces CEI 2020, 70, 16–21. [Google Scholar]
- Dai, Q.; Huang, Y.; Hao, L.; Lin, Y.; Chen, K. Spatial and spectral illumination design for energy-efficient circadian lighting. Build. Environ. 2018, 146, 216–225. [Google Scholar] [CrossRef]
- Oh, J.H.; Yang, S.J.; Do, Y.R. Healthy, natural, efficient and tunable lighting: Four-package white LEDs for optimizing the circadian effect, color quality and vision performance. Light. Sci. Appl. 2014, 3, e141. [Google Scholar] [CrossRef]
- Cajochen, C.; Freyburger, M.; Basishvili, T.; Garbazza, C.; Rudzik, F.; Renz, C.; Kobayashi, K.; Shirakawa, Y.; Stefani, O.; Weibel, J. Effect of daylight LED on visual comfort, melatonin, mood, waking performance and sleep. Light. Res. Technol. 2018, 51, 1044–1062. [Google Scholar] [CrossRef]
- Wende, B.; Fischer, J. 2.1 Definition and measurement of radiometric quantities. In Subvolume A; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2005; pp. 45–51. [Google Scholar]
- Rea, M.; Figueiro, M. Light as a circadian stimulus for architectural lighting. Light. Res. Technol. 2018, 50, 497–510. [Google Scholar] [CrossRef]
- Brown, T.; Brainard, G.; Cajochen, C.; Czeisler, C.; Hanifin, J.; Lockley, S.; Lucas, R.; Munch, M.; O’Hagan, J.; Peirson, S.; et al. Recommendations for Healthy Daytime, Evening, and Night-Time Indoor Light Exposure. Preprints 2020. [Google Scholar] [CrossRef]
- CIE. Commission Internationale de l’Eclairage Proceedings; Cambridge University Press: Cambridge, UK, 1931. [Google Scholar]
- Münch, M.; Wirz-Justice, A.; Brown, S.A.; Kantermann, T.; Martiny, K.; Stefani, O.; Vetter, C.; Wright, J.K.P.; Wulff, K.; Skene, D.J. The Role of Daylight for Humans: Gaps in Current Knowledge. Clocks Sleep 2020, 2, 61–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
<25 Years Old | 25 to 65 Years Old | >65 Years Old |
---|---|---|
200 lx | 400 lx | 800 lx |
250 lx | 500 lx | 1000 lx |
375 lx | 750 lx | 1500 lx |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baeza Moyano, D.; González-Lezcano, R.A. Pandemic of Childhood Myopia. Could New Indoor LED Lighting Be Part of the Solution? Energies 2021, 14, 3827. https://doi.org/10.3390/en14133827
Baeza Moyano D, González-Lezcano RA. Pandemic of Childhood Myopia. Could New Indoor LED Lighting Be Part of the Solution? Energies. 2021; 14(13):3827. https://doi.org/10.3390/en14133827
Chicago/Turabian StyleBaeza Moyano, David, and Roberto Alonso González-Lezcano. 2021. "Pandemic of Childhood Myopia. Could New Indoor LED Lighting Be Part of the Solution?" Energies 14, no. 13: 3827. https://doi.org/10.3390/en14133827
APA StyleBaeza Moyano, D., & González-Lezcano, R. A. (2021). Pandemic of Childhood Myopia. Could New Indoor LED Lighting Be Part of the Solution? Energies, 14(13), 3827. https://doi.org/10.3390/en14133827