Pseudo-Homogeneous and Heterogeneous Kinetic Models of the NaOH-Catalyzed Methanolysis Reaction for Biodiesel Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Transesterification Reactions
2.2. Analytical Methods
3. Kinetic Modelling
3.1. Reaction System
3.2. Kinetic Models Formulation
3.3. Kinetic Parameters Estimation
4. Results and Discussion
4.1. Relevance of the Heterogeneous Character of the Reaction System
4.2. Kinetic Models Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arzamendi, M.C.; Arguiñarena, E.; Campo, I.; Zabala, S.; Gandía, L. Alkaline and alkaline-earth metals compounds as catalysts for the methanolysis of sunflower oil. Catal. Today 2008, 133–135, 305–313. [Google Scholar] [CrossRef]
- Freedman, B.; Pryde, E.H.; Mounts, T.L. Variables affecting the yields of fatty esters from transesterified vegetable oils. J. Am. Oil Chem. Soc. 1984, 61, 1638–1643. [Google Scholar] [CrossRef]
- Boocock, D.G.B.; Konar, S.K.; Mao, V.; Lee, C.; Buligan, S. Fast formation of high-purity methyl esters from vegetable oils. J. Am. Oil Chem. Soc. 1998, 75, 1167–1172. [Google Scholar] [CrossRef]
- Noureddini, H.; Zhu, D. Kinetics of transesterification of soybean oil. J. Am. Oil Chem. Soc. 1997, 74, 1457–1463. [Google Scholar] [CrossRef]
- Vicente, G.; Martínez, M.; Aracil, J. Kinetics of Brassica carinata Oil Methanolysis. Energy Fuels 2006, 20, 1722–1726. [Google Scholar] [CrossRef]
- Talaghat, M.R.; Mokhtari, S.; Saadat, M. Modeling and optimization of biodiesel production from microalgae in a batch reactor. Fuel 2020, 280, 118578. [Google Scholar] [CrossRef]
- Stamenković, O.S.; Todorović, Z.B.; Lazic, M.; Veljković, V.B.; Skala, D.U. Kinetics of sunflower oil methanolysis at low temperatures. Bioresour. Technol. 2008, 99, 1131–1140. [Google Scholar] [CrossRef]
- Darnoko, D.; Cheryan, M. Kinetics of palm oil transesterification in a batch reactor. J. Am. Oil Chem. Soc. 2000, 77, 1263–1267. [Google Scholar] [CrossRef]
- Pauline, J.M.N.; Sivaramakrishnan, R.; Pugazhendhi, A.; Anbarasan, T.; Achary, A. Transesterification kinetics of waste cooking oil and its diesel engine performance. Fuel 2021, 285, 119108. [Google Scholar] [CrossRef]
- Rezayan, A.; Taghizadeh, M. Synthesis of magnetic mesoporous nanocrystalline KOH/ZSM-5-Fe3O4 for biodiesel production: Process optimization and kinetics study. Process. Saf. Environ. Prot. 2018, 117, 711–721. [Google Scholar] [CrossRef]
- Feyzi, M.; Norouzi, L. Preparation and kinetic study of magnetic Ca/Fe3O4@SiO2 nanocatalysts for biodiesel production. Renew. Energy 2016, 94, 579–586. [Google Scholar] [CrossRef]
- Alcantara, A.; Lopez-Gimenez, F.J.; Dorado, M.P. Universal Kinetic Model to Simulate Two-Step Biodiesel Production from Vegetable Oil. Energies 2020, 13, 2994. [Google Scholar] [CrossRef]
- Chhabra, P.; Mosbach, S.; Karimi, I.A.; Kraft, M. Practically Useful Models for Kinetics of Biodiesel Production. ACS Sustain. Chem. Eng. 2019, 7, 4983–4992. [Google Scholar] [CrossRef]
- Komers, K.; Skopal, F.; Stloukal, R.; Machek, J. Kinetics and mechanism of the KOH—Catalyzed methanolysis of rapeseed oil for biodiesel production. Eur. J. Lipid Sci. Technol. 2002, 104, 728–737. [Google Scholar] [CrossRef]
- Berchmans, H.J.; Morishita, K.; Takarada, T. Kinetic study of hydroxide-catalyzed methanolysis of Jatropha curcas—Waste food oil mixture for biodiesel production. Fuel 2013, 104, 46–52. [Google Scholar] [CrossRef]
- Reyero, I.; Arzamendi, G.; Zabala, S.; Gandía, L.M. Kinetics of the NaOH-catalyzed transesterification of sunflower oil with ethanol to produce biodiesel. Fuel Process. Technol. 2015, 129, 147–155. [Google Scholar] [CrossRef]
- Zhou, W.; Boocock, D.G.B. Phase behavior of the base-catalyzed transesterification of soybean oil. J. Am. Oil Chem. Soc. 2006, 83, 1041–1045. [Google Scholar] [CrossRef]
- Rocha, J.G., Jr.; Mendonça, A.; De Campos, D.; Mapele, R.; Barra, C.; Bauerfeldt, G.; Tubino, M. Biodiesel Synthesis: Influence of Alkaline Catalysts in Methanol-Oil Dispersion. J. Braz. Chem. Soc. 2018, 30, 342–349. [Google Scholar] [CrossRef]
- Silva, S.P.; Sales, D.C.S.; De Abreu, C.A.P.; Schuler, A.R.P.; De Abreu, C.A.M. Kinetics of the biphasic liquid–liquid transesterification of vegetable oils into biodiesel. React. Kinet. Mech. Catal. 2017, 123, 529–542. [Google Scholar] [CrossRef]
- Pisarello, M.L.; Maquirriain, M.; Olalla, P.S.; Rossi, V.; Querini, C.A. Biodiesel production by transesterification in two steps: Kinetic effect or shift in the equilibrium conversion? Fuel Process. Technol. 2018, 181, 244–251. [Google Scholar] [CrossRef]
- Pinzi, S.; Garcia, I.L.; Giménez, F.J.L.; De Castro, M.D.L.; Dorado, G.; Dorado, M.P. The Ideal Vegetable Oil-based Biodiesel Composition: A Review of Social, Economical and Technical Implications. Energy Fuels 2009, 23, 2325–2341. [Google Scholar] [CrossRef]
- Zhou, H.; Lu, A.H.; Liang, B. Solubility of Multicomponent Systems in the Biodiesel Production by Transesterification of Jatropha curcas L. Oil with Methanol. J. Chem. Eng. Data 2006, 51, 1130–1135. [Google Scholar] [CrossRef]
- Arzamendi, G.; Arguiñarena, E.; Campo, I.; Gandia, L.M.; Arzamendi, M.C. Monitoring of biodiesel production: Simultaneous analysis of the transesterification products using size-exclusion chromatography. Chem. Eng. J. 2006, 122, 31–40. [Google Scholar] [CrossRef]
- Liu, X.; Piao, X.; Wang, Y.; Zhu, S. Liquid–Liquid Equilibrium for Systems of (Fatty Acid Ethyl Esters + Ethanol + Soybean Oil and Fatty Acid Ethyl Esters + Ethanol + Glycerol). J. Chem. Eng. Data 2008, 53, 359–362. [Google Scholar] [CrossRef]
- Freedman, B.; Butterfield, R.O.; Pryde, E.H. Transesterification kinetics of soybean oil 1. J. Am. Oil Chem. Soc. 1986, 63, 1375–1380. [Google Scholar] [CrossRef]
- Zhou, W.; Boocock, D.G.B. Phase distributions of alcohol, glycerol, and catalyst in the transesterification of soybean oil. J. Am. Oil Chem. Soc. 2006, 83, 1047–1052. [Google Scholar] [CrossRef]
- Chiu, C.-W.; Goff, M.J.; Suppes, G.J. Distribution of methanol and catalysts between biodiesel and glycerin phases. AIChE J. 2005, 51, 1274–1278. [Google Scholar] [CrossRef]
- Di Felice, R.; De Faveri, D.; De Andreis, P.; Ottonello, P. Component Distribution between Light and Heavy Phases in Biodiesel Processes. Ind. Eng. Chem. Res. 2008, 47, 7862–7867. [Google Scholar] [CrossRef]
- Negi, D.S.; Sobotka, F.; Kimmel, T.; Wozny, G.; Schomäcker, R.; Schomaecker, R. Liquid−Liquid Phase Equilibrium in Glycerol−Methanol−Methyl Oleate and Glycerol−Monoolein−Methyl Oleate Ternary Systems. Ind. Eng. Chem. Res. 2006, 45, 3693–3696. [Google Scholar] [CrossRef]
- Omi, S.; Kushibiki, K.; Iso, M. The computer modeling of multicomponent, semibatch emulsion copolymerization. Polym. Eng. Sci. 1987, 27, 470–482. [Google Scholar] [CrossRef]
- Andreatta, A.E.; Casás, L.; Hegel, P.; Bottini, S.B.; Brignole, E.A. Phase Equilibria in Ternary Mixtures of Methyl Oleate, Glycerol, and Methanol. Ind. Eng. Chem. Res. 2008, 47, 5157–5164. [Google Scholar] [CrossRef]
- Rondón-González, M.; Sadtler, V.; Choplin, L.; Salager, J.-L. Emulsion inversion from abnormal to normal morphology by continuous stirring without internal phase addition. Colloids Surf. A Physicochem. Eng. Asp. 2006, 288, 151–157. [Google Scholar] [CrossRef]
- Feuge, R.O. Interfacial tension of oil-water systems containing technical mono- and diglycerides. J. Am. Oil Chem. Soc. 1947, 24, 49–52. [Google Scholar] [CrossRef]
- Vicente, G.; Martinez, M.; Aracil, J.; Esteban, A. Kinetics of Sunflower Oil Methanolysis. Ind. Eng. Chem. Res. 2005, 44, 5447–5454. [Google Scholar] [CrossRef]
- Feuge, R.O.; Gros, A.T. Modification of vegetable oils. VII. Alkali catalyzed interesterification of peanut oil with ethanol. J. Am. Oil Chem. Soc. 1949, 26, 97–102. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zabala, S.; Reyero, I.; Campo, I.; Arzamendi, G.; Gandía, L.M. Pseudo-Homogeneous and Heterogeneous Kinetic Models of the NaOH-Catalyzed Methanolysis Reaction for Biodiesel Production. Energies 2021, 14, 4192. https://doi.org/10.3390/en14144192
Zabala S, Reyero I, Campo I, Arzamendi G, Gandía LM. Pseudo-Homogeneous and Heterogeneous Kinetic Models of the NaOH-Catalyzed Methanolysis Reaction for Biodiesel Production. Energies. 2021; 14(14):4192. https://doi.org/10.3390/en14144192
Chicago/Turabian StyleZabala, Silvia, Inés Reyero, Idoia Campo, Gurutze Arzamendi, and Luis M. Gandía. 2021. "Pseudo-Homogeneous and Heterogeneous Kinetic Models of the NaOH-Catalyzed Methanolysis Reaction for Biodiesel Production" Energies 14, no. 14: 4192. https://doi.org/10.3390/en14144192
APA StyleZabala, S., Reyero, I., Campo, I., Arzamendi, G., & Gandía, L. M. (2021). Pseudo-Homogeneous and Heterogeneous Kinetic Models of the NaOH-Catalyzed Methanolysis Reaction for Biodiesel Production. Energies, 14(14), 4192. https://doi.org/10.3390/en14144192