Tribological Performance of Biomass-Derived Bio-Alcohol and Bio-Ketone Fuels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fuels
2.2. Fuel Physicochemical Properties
2.3. Analysis of Lubrication Mechanisms
3. Results
3.1. Fuel Physicochemical Properties
3.2. Friction and Wear Resistance
3.3. Wear and Lubrication Mechanisms
3.4. Surface Topography
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
B | Butanol |
B20 | Butanol 20% + Diesel 80% (v/v) |
B40 | Butanol 40% + Diesel 60% (v/v) |
C | Atomic carbon |
CFPP | Cold filter plugging point |
CH3OH | Methanol |
C2H5OH | Ethanol |
C4H9OH | Butanol |
C5H11OH | Pentanol |
CI | Compression ignition |
CP | Cyclopentanol |
CP20 | Cyclopentanol 20% + Diesel 80% (v/v) |
CP40 | Cyclopentanol 40% + Diesel 60% (v/v) |
CPK | Cyclopentanone |
CPK20 | Cyclopentanone 20% + Diesel 80% (v/v) |
CPK40 | Cyclopentanone 40% + Diesel 60% (v/v) |
D | Diesel |
EDS | Energy dispersive spectrometer |
EN | European Standards |
EU | European Union |
G | Gasoline |
G20 | Gasoline 20% + Diesel 80% (v/v) |
G40 | Gasoline 40% + Diesel 60% (v/v) |
G60 | Gasoline 60% + Diesel 40% (v/v) |
G80 | Gasoline 80% + Diesel 20% (v/v) |
GCI | Gasoline compression ignition |
H | Atomic hydrogen |
HCF | Humidity correction factor |
HFRR | High-frequency reciprocating rig |
ISO | International Standard Organization |
O | Atomic oxygen |
O2 | Oxygen |
OH | Hydroxyl radicals |
P | Pentanol |
P20 | Pentanol 20% + Diesel 80% (v/v) |
SEM | Scanning electron microscope |
SI | Spark ignition |
ULSD | Ultralow sulphur diesel |
WSD | Wear scar diameter |
References
- Kalghatgi, G. Is it really the end of internal combustion engines and petroleum in transport? Appl. Energy 2018, 225, 965–974. [Google Scholar] [CrossRef]
- Leach, F.; Kalghatgi, G.; Stone, R.; Miles, P. The scope for improving the efficiency and environmental impact of internal combustion engines. Transp. Eng. 2020, 1, 100005. [Google Scholar] [CrossRef]
- Kalghatgi, G. Development of Fuel/Engine Systems—The Way Forward to Sustainable Transport. Engineering 2019, 5, 510–518. [Google Scholar] [CrossRef]
- Zeraati-Rezaei, S.; Al-Qahtani, Y.; Herreros, J.M.; Ma, X.; Xu, H. Experimental investigation of particle emissions from a Dieseline fuelled compression ignition engine. Fuel 2019, 251, 175–186. [Google Scholar] [CrossRef]
- Abdul-Manan, A.F.N.; Won, H.-W.; Li, Y.; Sarathy, S.M.; Xie, X.; Amer, A.A. Bridging the gap in a resource and climate-constrained world with advanced gasoline compression-ignition hybrids. Appl. Energy 2020, 267, 114936. [Google Scholar] [CrossRef]
- Rajesh Kumar, B.; Saravanan, S. Use of higher alcohol biofuels in diesel engines: A review. Renew. Sustain. Energy Rev. 2016, 60, 84–115. [Google Scholar] [CrossRef]
- Pinzi, S.; Redel-Macías, M.D.; Carmona-Cabello, M.; Cubero, A.; Herreros, J.M.; Dorado, M.P. Influence of 1-butanol and 1-pentanol addition to diesel fuel on exhaust and noise emissions under stationary and transient conditions. Fuel 2021, 301, 121046. [Google Scholar] [CrossRef]
- Sukjit, E.; Herreros, J.M.; Dearn, K.D.; García-Contreras, R.; Tsolakis, A. The effect of the addition of individual methyl esters on the combustion and emissions of ethanol and butanol -diesel blends. Energy 2012, 42, 364–374. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, D.; Lapuerta, M.; German, L. Progress in the Use of Biobutanol Blends in Diesel Engines. Energies 2021, 14, 3215. [Google Scholar] [CrossRef]
- Lapuerta, M.; Rodríguez-Fernández, J.; Fernández-Rodríguez, D.; Patiño-Camino, R. Cold flow and filterability properties of n-butanol and ethanol blends with diesel and biodiesel fuels. Fuel 2018, 224, 552–559. [Google Scholar] [CrossRef]
- Lapuerta, M.; García-Contreras, R.; Campos-Fernández, J.; Dorado, M.P. Stability, Lubricity, Viscosity, and Cold-Flow Properties of Alcohol−Diesel Blends. Energy Fuels 2010, 24, 4497–4502. [Google Scholar] [CrossRef]
- Zhou, X.; Feng, Z.; Guo, W.; Liu, J.; Li, R.; Chen, R.; Huang, J. Hydrogenation and Hydrolysis of Furfural to Furfuryl Alcohol, Cyclopentanone, and Cyclopentanol with a Heterogeneous Copper Catalyst in Water. Ind. Eng. Chem. Res. 2019, 58, 3988–3993. [Google Scholar] [CrossRef]
- Yan, K.; Wu, G.; Lafleur, T.; Jarvis, C. Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renew. Sustain. Energy Rev. 2014, 38, 663–676. [Google Scholar] [CrossRef]
- Chen, H.; Su, X.; He, J.; Zhang, P.; Xu, H.; Zhou, C. Investigation on combustion characteristics of cyclopentanol/diesel fuel blends in an optical engine. Renew. Energy 2020, 167, 811–829. [Google Scholar] [CrossRef]
- Kuszewski, H.; Jakubowski, M.; Jaworski, A.; Lubas, J.; Balawender, K. Effect of temperature on tribological properties of 1-butanol–diesel fuel blends–Preliminary experimental study using the HFRR method. Fuel 2021, 296, 120700. [Google Scholar] [CrossRef]
- Hellier, P.; Talibi, M.; Eveleigh, A.; Ladommatos, N. An overview of the effects of fuel molecular structure on the combustion and emissions characteristics of compression ignition engines. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2018, 232, 90–105. [Google Scholar] [CrossRef] [Green Version]
- Sukjit, E.; Tongroon, M.; Chollacoop, N.; Yoshimura, Y.; Poapongsakorn, P.; Lapuerta, M.; Dearn, K.D. Improvement of the tribological behaviour of palm biodiesel via partial hydrogenation of unsaturated fatty acid methyl esters. Wear 2019, 426, 813–818. [Google Scholar] [CrossRef]
- Dearn, K.D.; Moorcroft, H.; Sukjit, E.; Poapongsakorn, P.; Hu, E.Z.; Xu, Y.F.; Hu, X.G. The tribology of fructose derived biofuels for DISI gasoline engines. Fuel 2018, 224, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Sukjit, E.; Poapongsakorn, P.; Dearn, K.D.; Lapuerta, M.; Sánchez-Valdepeñas, J. Investigation of the lubrication properties and tribological mechanisms of oxygenated compounds. Wear 2017, 376, 836–842. [Google Scholar] [CrossRef]
- Lapuerta, M.; Sánchez-Valdepeñas, J.; Sukjit, E. Effect of ambient humidity and hygroscopy on the lubricity of diesel fuels. Wear 2014, 309, 200–207. [Google Scholar] [CrossRef]
- Lapuerta, M.; Garcia-Contreras, R.; Agudelo, J.R. Lubricity of Ethanol-Biodiesel-Diesel Fuel Blends. Energy Fuels 2009, 24, 6. [Google Scholar] [CrossRef]
- Uchôa, I.M.A.; Deus, M.S.; Barros Neto, E.L. Formulation and tribological behavior of ultra-low sulfur diesel fuels microemulsified with glycerin. Fuel 2021, 292, 120257. [Google Scholar] [CrossRef]
- Hong, F.T.; Alghamdi, N.M.; Bailey, A.S.; Khawajah, A.; Sarathy, S.M. Chemical and kinetic insights into fuel lubricity loss of low-sulfur diesel upon the addition of multiple oxygenated compounds. Tribol. Int. 2020, 152, 106559. [Google Scholar] [CrossRef]
- Bao, X.; Jiang, Y.; Xu, H.; Wang, C.; Lattimore, T.; Tang, L. Laminar flame characteristics of cyclopentanone at elevated temperatures. Appl. Energy 2017, 195, 671–680. [Google Scholar] [CrossRef]
- Publication, B.S. Diesel Fuel—Assessment of Lubricity Using the High-Frequency Reciprocating Rig (HFRR); BS EN ISO 12156-1:2016; The British Standards Institution: London, UK, 2016. [Google Scholar]
- Lapuerta, M.; Sánchez-Valdepeñas, J.; Bolonio, D.; Sukjit, E. Effect of fatty acid composition of methyl and ethyl esters on the lubricity at different humidities. Fuel 2016, 184, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Yanowitz, J.; Ratcliff, M.A.; McCormick, R.L.; Taylor, J.D.; Murphy, M.J. Compendium of Experimental Cetane Numbers; NREL/TP-5400-67585 United States 10.2172/1345058 NREL English; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2017; 78p.
- Knothe, G.; Steidley, K.R. Lubricity of Components of Biodiesel and Petrodiesel. The Origin of Biodiesel Lubricity. Energy Fuel Am. Chem. Soc. 2005, 19, 1192–1200. [Google Scholar] [CrossRef]
- Kumar, N.; Varun; Chauhan, S. Analysis of tribological performance of biodiesel. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2014, 228, 797–807. [Google Scholar] [CrossRef]
- Xu, Y.; Peng, Y.; Dearn, K.D.; Zheng, X.; Yao, L.; Hu, X. Synergistic lubricating behaviors of graphene and MoS2 dispersed in esterified bio-oil for steel/steel contact. Wear 2015, 342, 297–309. [Google Scholar] [CrossRef]
- Sukjit, E.; Dearn, K.D. Enhancing the lubricity of an environmentally friendly Swedish diesel fuel MK1. Wear 2011, 271, 1772–1777. [Google Scholar] [CrossRef]
- Arkoudeas, P.; Karonis, D.; Zannikos, F.; Lois, E. Lubricity assessment of gasoline fuels. Fuel Process. Technol. 2014, 122, 107–119. [Google Scholar] [CrossRef]
- Maru, M.M.; Trommer, R.M.; Cavalcanti, K.F.; Figueiredo, E.S.; Silva, R.F.; Achete, C.A. The Stribeck curve as a suitable characterization method of the lubricity of biodiesel and diesel blends. Energy 2014, 69, 673–681. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Q.; Hu, X.; Li, C.; Zhu, X. Characterization of the lubricity of bio-oil/diesel fuel blends by high frequency reciprocating test rig. Energy 2010, 35, 283–287. [Google Scholar] [CrossRef]
- Habibullah, M.; Masjuki, H.H.; Kalam, M.A.; Zulkifli, N.W.M.; Masum, B.M.; Arslan, A.; Gulzar, M. Friction and wear characteristics of Calophyllum inophyllum biodiesel. Ind. Crops Prod. 2015, 76, 188–197. [Google Scholar] [CrossRef]
Property | Method | Diesel | Gasoline | Butanol | Pentanol | Cyclopentanol | Cyclopentanone |
---|---|---|---|---|---|---|---|
Molecular formula | C12H22 | ~C5.88H11.06 | C4H9OH | C5H11OH | C5H9OH | C5H8O | |
Molecular weight (kg·kmol−1) | 166.30 | 81.78 | 74.11 | 88.15 | 86.13 | 84.12 | |
Density, 15 °C (kg·m−3) a | EN ISO 3675 | 834.8 | 746.6 | 811.5 | 814.8 | 949.0 | 948.7 |
Kinematic viscosity, 40 °C (cSt) b | EN ISO 3104 | 2.627 ± 0.05 | 0.80 ± 0.05 | 2.17 ± 0.05 | 2.74 ± 0.05 | 2.84 ± 0.05 | 1.30 ± 0.05 |
Lower heating value (MJ·kg−1) c | ASTM D240-02 | 45.97 ± 0.5 | 41.66 ± 0.5 | 33.81 ± 0.5 | 34.65 ± 0.5 | 35.96 ± 0.5 | 36.43 ± 0.5 |
Heat of evaporation (kJ·kg−1) d | 270–350 | 373 | 581.4 | 308.05 | - | 433 | |
Lubricity at 60 °C (µm) e | EN ISO 12156-1 | 462.5 ± 5.5 | 676 ± 10.0 | 628 ± 6.0 | 579 ± 3.0 | 452 ± 5.0 | 521 ± 3.0 |
Surface Tension, 25 °C (mN·m−1) f | ASTM D971 | 26.07 ± 0.2 | 18.92 ± 0.5 | 23.05 ± 0.6 | 24.02 ± 0.4 | 31.35 ± 0.4 | 30.45 ± 0.4 |
Cetane number g | ASTM D6890 | 53 | - | 15.92 | 18.2 | 9.8 | 9 |
Carbon (wt%) | 86.44 | 83.12 | 64.86 | 68.13 | 69.82 | 70.28 | |
Hydrogen (wt%) | 13.56 | 13.4 | 13.51 | 13.72 | 11.61 | 10.70 | |
Oxygen (wt%) | 0 | 3.48 | 21.62 | 18.15 | 18.57 | 19.02 | |
H/C ratio | 1.83 | 1.88 | 2.50 | 2.40 | 2.00 | 1.80 | |
Boiling point (°C) h | 180–360 | 35–200 | 117.4 | 137.9 | 140.4 | 131 | |
CFPP (°C) h | EN 116 | −20 | - | −41.7 | −47.02 | −47.09 | −46.47 |
Property | Method | B20 | B40 | P20 | P40 | CP20 | CP40 | CPK20 | CPK40 | G20 | G40 | G60 | G80 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Density at 15 °C (kg·m−3) a | EN ISO 3675 | 830.14 | 830.80 | 857.64 | 857.84 | 825.48 | 826.80 | 880.48 | 880.88 | 817.2 | 799.5 | 781.9 | 764.2 |
Kinematic viscosity, 40 °C (cSt) b | EN ISO 3104 | 2.27 ± 0.05 | 2.60 ± 0.05 | 2.75 ± 0.05 | 2.35 ± 0.05 | 2.16 ± 0.05 | 2.65 ± 0.05 | 2.78 ± 0.05 | 2.11 ± 0.05 | 2.15 ± 0.05 | 2.10 ± 0.05 | 2.00 ± 0.05 | 1.80 ± 0.05 |
Lower heating value (MJ·kg−1) c | ASTM D240-02 | 43.54 ± 0.5 | 43.99 ± 0.5 | 43.97 ± 0.5 | 43.86 ± 0.5 | 41.11 ± 0.5 | 42.01 ± 0.5 | 41.97 ± 0.5 | 41.76 ± 0.5 | 45.11 ± 0.5 | 44.25 ± 0.5 | 43.38 ± 0.5 | 42.52 ± 0.5 |
Lubricity (µm) d | EN ISO 12156-1 | 570 ± 10.0 | 562 ± 2.0 | 480 ± 6.0 | 425 ± 5.0 | 592 ± 4.0 | 576 ± 1.0 | 465 ± 5.0 | 441.5 ± 1.0 | 469.5 ± 3.5 | 474 ± 3.0 | 484 ± 6.0 | 497 ± 5.0 |
Surface Tension, 25 °C (mN·m−1) e | 25.48 ± 0.4 | 24.78 ± 0.4 | 26.30 ± 0.3 | 26.30 ± 0.3 | 24.48 ± 0.3 | 24.51 ± 0.3 | 26.85 ± 0.4 | 26.55 ± 0.4 | 24.90 ± 0.5 | 24.00 ± 0.4 | 22.00 ± 0.4 | 20.50 ± 0.4 | |
Carbon (wt%) | 82.39 | 83.03 | 82.92 | 83.28 | 77.93 | 79.25 | 79.89 | 80.56 | - | - | - | - | |
Hydrogen (wt%) | 13.39 | 13.41 | 12.97 | 12.51 | 13.44 | 13.49 | 12.68 | 11.84 | - | - | - | - | |
Oxygen (wt%) | 4.22 | 3.56 | 4.11 | 4.21 | 8.63 | 7.26 | 7.43 | 7.60 | - | - | - | - | |
CFPP (°C) f | EN 116 | −19.99 | −20.06 | −20.07 | −20.03 | −20.01 | −20.86 | −20.92 | −20.56 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doustdar, O.; Zeraati-Rezaei, S.; Herreros, J.M.; Tsolakis, A.; Dearn, K.D.; Wyszynski, M.L. Tribological Performance of Biomass-Derived Bio-Alcohol and Bio-Ketone Fuels. Energies 2021, 14, 5331. https://doi.org/10.3390/en14175331
Doustdar O, Zeraati-Rezaei S, Herreros JM, Tsolakis A, Dearn KD, Wyszynski ML. Tribological Performance of Biomass-Derived Bio-Alcohol and Bio-Ketone Fuels. Energies. 2021; 14(17):5331. https://doi.org/10.3390/en14175331
Chicago/Turabian StyleDoustdar, Omid, Soheil Zeraati-Rezaei, Jose Martin Herreros, Athanasios Tsolakis, Karl D. Dearn, and Miroslaw Lech Wyszynski. 2021. "Tribological Performance of Biomass-Derived Bio-Alcohol and Bio-Ketone Fuels" Energies 14, no. 17: 5331. https://doi.org/10.3390/en14175331
APA StyleDoustdar, O., Zeraati-Rezaei, S., Herreros, J. M., Tsolakis, A., Dearn, K. D., & Wyszynski, M. L. (2021). Tribological Performance of Biomass-Derived Bio-Alcohol and Bio-Ketone Fuels. Energies, 14(17), 5331. https://doi.org/10.3390/en14175331