Numerical Study of Hydrocarbon Charge Reduction Methods in HVAC Heat Exchangers
Abstract
:1. Introduction
2. Tested Systems
2.1. Heat Pump Architectures
2.2. System A—Fin-and-Tube Heat Exchanger
2.3. System B—Brazed Plate Heat Exchangers
3. Simulation Method
3.1. HXSim
3.2. IMST-ART
4. Results and Discussion
4.1. Fin-and-Tube Heat Exchanger Designs
4.2. System Comparison
4.3. Charge
4.4. System Effectiveness
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Greek | |
Spiral angle | |
Percentage of predicted values with less than 30% error | |
Efficiency | |
Fin angle | |
Roman | |
BPHE | Brazed plate heat exchangers [-] |
COP | Coefficient of Performance [-] |
Fin tip diameter for MF tubes, internal diameter for smooth tube [mm] | |
Outer diameter [mm] | |
EER | Energy Efficiency Ratio [-] |
h | Enthalpy [kJ kg] |
HTC | Heat Transfer Coefficient [kWm K] |
Fin height [mm] | |
m | Refrigerant mass [g] |
n | Number of fins [-] |
p | Pressure [Pa] |
Refrigerants side heat exchange perimeter [m] | |
Q | Capacity [kW] |
q | Heat flux [kWm] |
Heat exchange area ratio of a MF tube to a smooth tube [-] | |
SM | Smooth tube [-] |
T | Temperature [°C] |
Wall thickness [mm] | |
Refrigerants overall heat transfer coefficient [kWm K] | |
W | Power [W] |
x | Vapor quality [-] |
z | Length of tube simulated [m] |
Subscripts | |
Saturated condition |
References
- Schulz, M.; Kourkoulas, D. Regulation (EU) No 517/2014 of The European Parliament and of the council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006. Off. J. Eur. Union 2014, 2014, L150. [Google Scholar]
- Straub, M. Alternative Refrigerants For Household Refrigerators Alternative Refrigerants For Household Refrigerators. Int. Refrig. Air Cond. 2018, 2002, 1–10. [Google Scholar]
- Mota-Babiloni, A.; Makhnatch, P. Predictions of European refrigerants place on the market following F-gas regulation restrictions. Int. J. Refrig. 2021, 127, 101–110. [Google Scholar] [CrossRef]
- Tang, W.; He, G.; Zhou, S.; Sun, W.; Cai, D.; Mei, K. The performance and risk assessment of R290 in a 13 kW air source heat pump. Appl. Therm. Eng. 2018, 144, 392–402. [Google Scholar] [CrossRef]
- Palm, B. Hydrocarbons as refrigerants in small heat pump and refrigeration systems—A review. Int. J. Refrig. 2008, 31, 552–563. [Google Scholar] [CrossRef]
- Li, T.; Lu, J.; Chen, L.; He, D.; Qiu, X.; Li, H.; Liu, Z. Measurement of refrigerant mass distribution within a R290 split air conditioner. Int. J. Refrig. 2015, 57, 163–172. [Google Scholar] [CrossRef]
- Andersson, K.; Granryd, E.; Palm, B. Water to water heat pump minimum charge of propane. In Proceedings of the 13th IIR Gustav Lorentzen Conference on Natural Refrigerants (GL2018), Valencia, Spain, 18–20 June 2018. [Google Scholar] [CrossRef]
- Dankwerth, C.; Methler, T.; Oltersdorf, T.; Peter, S.; Marek, M.; Schnabel, L. Entwicklung einer Propan-Wärmepumpe mit einer Kältemittelfüllmenge von 150 Gramm. DKV-Tagungsband 2019, 2019, 60–61. [Google Scholar]
- Dankwerth, C.; Methler, T.; Oltersdorf, T.; Schossig, P.; Schnabel, L. Kältemittelreduktion in Propan-Wärmepumpen—Aktuelle Arbeiten. DKV-Tagungsband 2020, 2020, 70. [Google Scholar]
- Allymehr, E.; Pardiñas, Á.Á.; Eikevik, T.M.; Hafner, A. Characteristics of evaporation of propane (R290) in compact smooth and microfinned tubes. Appl. Therm. Eng. 2020, 181, 115880. [Google Scholar] [CrossRef]
- Allymehr, E.; Pardiñas, Á.Á.; Eikevik, T.M.; Hafner, A. Condensation of Hydrocarbons in Compact Smooth and Microfinned Tubes. Energies 2021, 14, 2647. [Google Scholar] [CrossRef]
- Allymehr, E.; Pardiñas, Á.Á.Á.; Eikevik, T.M.T.; Hafner, A. Comparative analysis of evaporation of Isobutane (R600a) and Propylene (R1270) in compact smooth and microfinned tubes. Appl. Therm. Eng. 2021, 188, 116606. [Google Scholar] [CrossRef]
- CEN. Air Conditioners, Liquid Chilling Packages and Heat Pumps for Space Heating and Cooling and Process Chillers Using Electrically Driven Compressors—Part 1: Terms and Definitions; DIN EN 14511-1:2015-12; DIN Standards Committee Refrigeration Technology: Berlin, Germany, 2015. [Google Scholar]
- CEN. Air Conditioners, Liquid Chilling Packages and Heat Pumps, with Electrically Driven Compressors, for Space Heating and Cooling–Testing and Rating at Part Load Conditions and Calculation of Seasonal Performance; DIN EN 14825:2016-10; DIN Standards Committee Refrigeration Technology: Berlin, Germany, 2016. [Google Scholar]
- Thulukkanam, K. Heat Exchanger Design Handbook; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Dović, D.; Palm, B.; Švaić, S. Generalized correlations for predicting heat transfer and pressure drop in plate heat exchanger channels of arbitrary geometry. Int. J. Heat Mass Transf. 2009, 52, 4553–4563. [Google Scholar] [CrossRef]
- Piper, M.; Olenberg, A.; Tran, J.M.; Kenig, E.Y. Determination of the geometric design parameters of pillow-plate heat exchangers. Appl. Therm. Eng. 2015, 91, 1168–1175. [Google Scholar] [CrossRef]
- VDI Verein Deutscher Ingenieure, e.V. VDI-Wärmeatlas; Springer GmbH: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Skaugen, G. Simulation of extended surface heat exchangers using CO2 as refrigerant. In Proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids, West Lafayette, IN, USA, 25 –28 July 2000; pp. 306–314. [Google Scholar]
- Pettersen, J.; Hafner, A.; Skaugen, G.; Rekstad, H. Development of compact heat exchangers for CO2 air-conditioning systems. Int. J. Refrig. 1998, 21, 180–193. [Google Scholar] [CrossRef]
- Liu, Z.; Winterton, R.H. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation. Int. J. Heat Mass Transf. 1991, 34, 2759–2766. [Google Scholar] [CrossRef]
- Dorao, C.A.; Fernandino, M. Simple and general correlation for heat transfer during flow condensation inside plain pipes. Int. J. Heat Mass Transf. 2018, 122, 290–305. [Google Scholar] [CrossRef]
- Rollmann, P.; Spindler, K. A new flow pattern map for flow boiling in microfin tubes. Int. J. Multiph. Flow 2015, 72, 181–187. [Google Scholar] [CrossRef]
- Cavallini, A.; Del Col, D.; Mancin, S.; Rossetto, L. Condensation of pure and near-azeotropic refrigerants in microfin tubes: A new computational procedure. Int. J. Refrig. 2009, 32, 162–174. [Google Scholar] [CrossRef]
- Xu, Y.; Fang, X. A new correlation of two-phase frictional pressure drop for evaporating flow in pipes. Int. J. Refrig. 2012, 5, 2039–2050. [Google Scholar] [CrossRef]
- Diani, A.; Mancin, S.; Rossetto, L. R1234ze(E) flow boiling inside a 3.4 mm ID microfin tube. Int. J. Refrig. 2014, 47, 105–119. [Google Scholar] [CrossRef]
- Granryd, E. Forced Convection Heat Transfer and Pressure Drop in Tube- in-Fin Heat Exchangers. Licentiate Thesis, Kungliga Tekniska Högskolan, Stockholm, Sweden, 1964. [Google Scholar]
- Verma, P.; Bullard, C.W.; Hrnjak, P.S. Design Tool for Display Case Heat Exchanger Frosting and Defrosting; Technical Report TR-201; Air Conditioning and Refrigeration Center, College of Engineering, University of Illinois at Urbana-Champaign: Urbana, IL, USA, 2002. [Google Scholar]
- Lindqvist, K.; Skaugen, G.; Meyer, O.H.H. Plate fin-and-tube heat exchanger computational fluid dynamics model. Appl. Therm. Eng. 2021, 189, 116669. [Google Scholar] [CrossRef]
- Shah, M.M.; Siddiqui, M.A. A General Correlation for Heat Transfer During Dispersed-Flow Film Boiling in Tubes. Heat Transf. Eng. 2000, 21, 18–32. [Google Scholar] [CrossRef]
- IMST-ART. Simulation Tool to Assist the Selection, Design and Optimization Of Refrigerator Equipment and Components; Institute for Energy Engineering, Universitat Politècnica de València: Valencia, Spain, 2010. [Google Scholar]
- Cooper, A.; Dennis Usher, J. 3.7 Plate Heat Exchangers: 3.7.5 Heat Transfer Correlations. In Heat Exchanger Design Handbook; VDI Verein Deutscher Ingenieure e.V., Ed.; Hemisphere Publishing Corporation: London, UK, 1983. [Google Scholar]
- Crisholm, D. A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow. Int. J. Heat Mass Transf. 1972, 10, 1767–1778. [Google Scholar] [CrossRef]
Thermal Capacity [kW] | Ambient Dry-Bulb Temperature (Wet-Bulb Temperature) [°C] | Inside Dry-Bulb Temperature (Wet-Bulb Temperature) (System A) [°C] | Water Temperature (System B) [°C] | |
---|---|---|---|---|
Summer | 5 | 35 (24) | 27 (19) | 23/18 |
Winter | 8 | −7 (−8) | 20 (max. 15) | 30/35 |
Unit | Smooth Tube | MF1 | MF2 | |
---|---|---|---|---|
Outer diameter () | 5 | 5 | 5 | |
Internal diameter () | 4.1 | 4.32 | 4.26 | |
Wall thickness () | 0.45 | 0.22 | 0.22 | |
Actual cross sectional area | 13.2 | 15.7 | 14.8 | |
Effective diameter | - | 4.47 | 4.34 | |
Fin height () | - | 0.12 | 0.15 | |
Fin number (n) | [-] | - | 35 | 56 |
Fin angle () | - | 35 | 15 | |
Spiral angle () | - | 15 | 37 | |
Heat exchange area ratio () | [-] | 1 | 1.51 | 2.63 |
Air Side Fin Pitch [mm] | Vertical Tube Pitch [mm] | Fin Thickness [mm] | Air Face Velocity [m s] | |
---|---|---|---|---|
Inside Unit | 2 | 50 | 0.075 | 2 |
Outside Unit | 3.2 | 50 | 0.09 | 5 |
Unit | BPHE1 | BPHE2 | BPHE3 | |
---|---|---|---|---|
Number of Plates | - | 40 | 36 | 40 |
Height | mm | 471 | 324 | 328 |
Width | mm | 81 | 94 | 90 |
Depth per plate | mm | 2.3 | 1.46 | 0.95 |
Inner volume (Refrigrant) | L | 1.0 | 0.53 | 0.33 |
Inner Volume (Secondary Fluid) | L | 1.1 | 0.54 | 0.34 |
Heat transfer area | 1.50 | 0.95 | 0.78 | |
Port Diameter | 20 | 27 | 25 |
Evaporation ( 30%) | Condensation ( 30%) | ||
---|---|---|---|
HTC | Smooth | Liu and Winterton [21] (100) | Dorao and Fernandino [22] (100) |
MF | Rollmann and Spindler [23] (MF1 = 100, MF2 = 66.7) | Cavallini et al. [24] (MF1 = 100, MF2 = 5.4) | |
P | Smooth | Xu and Fang [25] (100) | Xu and Fang [25] (100) |
MF | Diani et al. [26] (100) | Diani et al. [26] (MF1 = 98, MF2 = 100) |
Tube Type | Unit Location | Parallel Circuits (Rows) | Passes in Each Circuit | Total Heat Exchanger Tube Length [m] |
---|---|---|---|---|
Smooth (SM) | Inside unit | 8 | 4 | 33.6 |
Outside Unit | 18 | 4 | 46.8 | |
MF | Inside unit | 9 | 2 | 17.1 |
Outside Unit | 19 | 2 | 22.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allymehr, E.; Skaugen, G.; Will, T.; Pardiñas, Á.Á.; Eikevik, T.M.; Hafner, A.; Schnabel, L. Numerical Study of Hydrocarbon Charge Reduction Methods in HVAC Heat Exchangers. Energies 2021, 14, 4480. https://doi.org/10.3390/en14154480
Allymehr E, Skaugen G, Will T, Pardiñas ÁÁ, Eikevik TM, Hafner A, Schnabel L. Numerical Study of Hydrocarbon Charge Reduction Methods in HVAC Heat Exchangers. Energies. 2021; 14(15):4480. https://doi.org/10.3390/en14154480
Chicago/Turabian StyleAllymehr, Ehsan, Geir Skaugen, Torsten Will, Ángel Álvarez Pardiñas, Trygve Magne Eikevik, Armin Hafner, and Lena Schnabel. 2021. "Numerical Study of Hydrocarbon Charge Reduction Methods in HVAC Heat Exchangers" Energies 14, no. 15: 4480. https://doi.org/10.3390/en14154480
APA StyleAllymehr, E., Skaugen, G., Will, T., Pardiñas, Á. Á., Eikevik, T. M., Hafner, A., & Schnabel, L. (2021). Numerical Study of Hydrocarbon Charge Reduction Methods in HVAC Heat Exchangers. Energies, 14(15), 4480. https://doi.org/10.3390/en14154480