Significance and Directions of Energy Development in African Countries
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Quantitative Research According to Hypotetical-Deduction Modelubsection
3.1.1. Pearson Correlation
- denotes the mean of x;
- denotes the mean of y.
3.1.2. Elements of Sustainable Development
3.2. Qualitative Research Carried out according to the Induction Model/Qualitative Research Based According to Induction Model
3.2.1. Overall Observations Related to Electrification in Africa
Observations Research in Analyzed Countries
Guinea
Ethiopia
Egypt
4. Discussion
5. Conclusions
- The energy sector is a sensitive sector of the economy and plays a key role in the exercise of power by those in power. These relations are of a different nature, but one guiding motive can be seen, namely the activities of the authorities in the energy sector are carried out for several terms of government (the power of the president).
- Thanks to the involvement of the authorities in activities related to the energy sector in African countries, power can be maintained for several terms.
- The authorities support new technologies and try to finance the huge energies projects. Such actions by the authorities result from their will to maintain power and fulfill international obligations.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borowski, P.F. Development Strategies for Electric Utilities. Acta Energetica 2016, 4, 16–21. [Google Scholar] [CrossRef]
- Suganthi, L. Sustainability indices for energy utilization using a multi-criteria decision model. Energy Sustain. Soc. 2020, 10, 1–31. [Google Scholar] [CrossRef]
- Chow, J.; Kopp, R.J.; Portney, P.R. Energy Resources and Global Development. Science 2003, 302, 1528–1531. [Google Scholar] [CrossRef] [Green Version]
- Groh, S. The role of energy in development processes—The energy poverty penalty: Case study of Arequipa (Peru). Energy Sustain. Dev. 2014, 18, 83–99. [Google Scholar] [CrossRef]
- Borowiecki, R.; Siuta-Tokarska, B.; Maroń, J.; Suder, M.; Thier, A.; Żmija, K. Developing Digital Economy and Society in the Light of the Issue of Digital Convergence of the Markets in the European Union Countries. Energies 2021, 14, 2717. [Google Scholar] [CrossRef]
- Halsnæs, K.; Garg, A. Assessing the Role of Energy in Development and Climate Policies—Conceptual Approach and Key Indicators. World Dev. 2011, 39, 987–1001. [Google Scholar] [CrossRef]
- Olubiyi, E.A. Energy Consumption, Carbon Emission, and Well-Being in Africa. Rev. Black Political Econ. 2020, 47, 295–318. [Google Scholar] [CrossRef]
- Borowski, P.F.; Patuk, I. Environmental, social and economic factors in sustainable development with food, energy and eco-space aspect security. Present. Environ. Sustain. Dev. 2021, 15, 153–169. [Google Scholar] [CrossRef]
- Hajko, V. The failure of Energy-Economy Nexus: A meta-analysis of 104 studies. Energy 2017, 125, 771–787. [Google Scholar] [CrossRef]
- Ndoricimpa, A. Analysis of asymmetries in the nexus among energy use, pollution emissions and real output in South Africa. Energy 2017, 125, 543–551. [Google Scholar] [CrossRef]
- Baz, K.; Xu, D.; Ampofo, G.M.K.; Ali, I.; Khan, I.; Cheng, J.; Ali, H. Energy consumption and economic growth nexus: New evidence from Pakistan using asymmetric analysis. Energy 2019, 189, 116254. [Google Scholar] [CrossRef]
- Salisu, A.A.; Ogbonna, A. Another look at the energy-growth nexus: New insights from MIDAS regressions. Energy 2019, 174, 69–84. [Google Scholar] [CrossRef]
- Kambowe, K. Electricity a Rare Commodity at Divundu. 2020. Available online: https://energycentral.com/news/electricity-rare-commodity-divundu (accessed on 5 June 2021).
- Omojolaibi, J.A. Reducing Energy Poverty in Africa: Barriers and the Way Forward. Int. Assoc. Energy Econ. Energy Forum. 2014, 2, 29–30. [Google Scholar]
- Panos, E.; Turton, H.; Densing, M.; Volkart, K. Powering the growth of Sub-Saharan Africa: The Jazz and Symphony scenarios of World Energy Council. Energy Sustain. Dev. 2015, 26, 14–33. [Google Scholar] [CrossRef]
- Stirling, A. Transforming power: Social science and the politics of energy choices. Energy Res. Soc. Sci. 2014, 1, 83–95. [Google Scholar] [CrossRef] [Green Version]
- Appiah-Adu, K.; Bawumia, M. Key Determinants of National Development: Historical Perspectives and Implications for Developing Economies; Routledge: New York, NY, USA, 2016. [Google Scholar]
- Fraune, C.; Knodt, M. Sustainable energy transformations in an age of populism, post-truth politics, and local resistance. Energy Res. Soc. Sci. 2018, 43, 1–7. [Google Scholar] [CrossRef]
- Norris, P.; Inglehart, R. Trump, Brexit, and the rise of populism: Economic have-nots and cultural backlash. In Harvard JFK School of Government Faculty Working Papers Series; Harvard Kennedy School: Cambridge, MA, USA, 2016; pp. 1–52. [Google Scholar]
- Trotter, P.A.; Maconachie, R. Populism, post-truth politics and the failure to deceive the public in Uganda’s energy debate. Energy Res. Soc. Sci. 2018, 43, 61–76. [Google Scholar] [CrossRef]
- Van Veelen, B.; Pinker, A.; Tingey, M.; Aiken, G.T.; Eadson, W. What can energy research bring to social science? Reflections on 5 years of Energy Research & Social Science and beyond. Energy Res. Soc. Sci. 2019, 57. [Google Scholar] [CrossRef]
- Sonetti, G.; Arrobbio, O.; Lombardi, P.; Lami, I.M.; Monaci, S. “Only Social Scientists Laughed”: Reflections on Social Sciences and Humanities Integration in European Energy Projects. Energy Res. Soc. Sci. 2020, 61, 101342. [Google Scholar] [CrossRef]
- Pasqualetti, M.J.; Brown, M.A. Ancient discipline, modern concern: Geographers in the field of energy and society. Energy Res. Soc. Sci. 2014, 1, 122–133. [Google Scholar] [CrossRef]
- Mutahi, B. Egypt-Ethiopia Row: The Trouble Over a Diant Nile Dam. BBC News, 13 January 2020. Available online: https://www.bbc.com/news/world-africa-50328647(accessed on 5 June 2021).
- Hyde, K.F. Recognising deductive processes in qualitative research. Qual. Mark. Res. Int. J. 2000, 3, 82–90. [Google Scholar] [CrossRef]
- Butterfield, K.D.; Reed, R.; Lemak, D.J. An Inductive Model of Collaboration From the Stakeholder’s Perspective. Bus. Soc. 2004, 43, 162–195. [Google Scholar] [CrossRef]
- Mroczko, F. Jakościowe metody badań: Obserwacja naukowa. Prace Naukowe Wałbrzyskiej Wyższej Szkoły Zarządzania i Przedsiębiorczości 2014, 26, 65–78. [Google Scholar]
- Mertens, D.M. Mixed Methods and Wicked Problems. J. Mix. Methods Res. 2014, 9, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Molina-Azorin, J.F.; Fetters, M.D. Building a Better World Through Mixed Methods Research. J. Mix. Methods Res. 2017, 13, 275–281. [Google Scholar] [CrossRef]
- Kawalec, P. Metody mieszane w kontekście procesu badawczego w naukoznawstwie. Zagadnienia Nauk. 2014, 50, 3–22. [Google Scholar]
- Bazeley, P. Mixed methods in management research: Implications for the field. Electron. J. Bus. Res. Methods 2015, 3, 27–35. [Google Scholar]
- Roest van der, J.W.; Spaaij, R.; van Bottenburg, M. Mixed methods in emerging academic subdisciplines: The case of sport management. J. Mix. Method Res. 2015, 9, 70–90. [Google Scholar] [CrossRef]
- Creamer, E.G. An Introduction to Fully Integrated Mixed Methods Research; SAGE Publications: Thousand Oaks, CA, USA, 2018. [Google Scholar] [CrossRef]
- Goldemberg, J.; Human Development Report Office (HDRO); United Nations Development Programme (UNDP). Energy and Human Well Being (No. HDOCPA-2001-02); UNDP: New York, NY, USA, 2001. [Google Scholar]
- Human Development Report 2020. Available online: http://hdr.undp.org/en (accessed on 14 June 2021).
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient. In Noise Reduction in Speech Processing. Springer Topics in Signal Processing; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2. [Google Scholar]
- Cohen, J.; Cohen, P.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 2013. [Google Scholar]
- Zhou, H.; Deng, Z.; Xia, Y.; Fu, M. A new sampling method in particle filter based on Pearson correlation coefficient. Neurocomputing 2016, 216, 208–215. [Google Scholar] [CrossRef]
- Li, K.; Lin, B. Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter? Renew. Sustain. Energy Rev. 2015, 52, 1107–1122. [Google Scholar] [CrossRef]
- Lin, S.; Wang, S.; Marinova, D.; Zhao, D.; Hong, J. Impacts of urbanization and real economic development on CO2 emissions in non-high income countries: Empirical research based on the extended STIRPAT model. J. Clean. Prod. 2017, 166, 952–966. [Google Scholar] [CrossRef]
- Dong, F.; Wang, Y.; Su, B.; Hua, Y.; Zhang, Y. The process of peak CO2 emissions in developed economies: A perspective of industrialization and urbanization. Resour. Conserv. Recycl. 2019, 141, 61–75. [Google Scholar] [CrossRef]
- Borowski, P. Digitization, Digital Twins, Blockchain, and Industry 4.0 as Elements of Management Process in Enterprises in the Energy Sector. Energies 2021, 14, 1885. [Google Scholar] [CrossRef]
- Kupczyk, A.; Mączyńska-Sęczek, J.; Golisz, E.; Borowski, P.F. Renewable Energy Sources in Transport on the Example of Methyl Esters and Bioethanol. Processes 2020, 8, 1610. [Google Scholar] [CrossRef]
- Barbier, E.B. The Role of Natural Resources in Economic Development; University of Adelaide Press: Adelaide, Australia, 2002; pp. 487–516. [Google Scholar] [CrossRef]
- Mittal, I.; Gupta, R.K. Natural Resources Depletion and Economic Growth in Present Era. SOCH Mastnath J. Sci. Technol. (BMU Rohtak) 2015, 10, 24–28. [Google Scholar]
- Riekhof, M.-C.; Regnier, E.; Quaas, M.F. Economic growth, international trade, and the depletion or conservation of renewable natural resources. J. Environ. Econ. Manag. 2019, 97, 116–133. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Secular Stagnation? The Effect of Aging on Economic Growth in the Age of Automation. Am. Econ. Rev. 2017, 107, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Eggertsson, G.B.; Lancastre, M.; Summers, L.H. Aging, Output Per Capita, and Secular Stagnation. Am. Econ. Rev. Insights 2019, 1, 325–342. [Google Scholar] [CrossRef]
- Lee, H.-H.; Shin, K. Nonlinear effects of population aging on economic growth. Jpn. World Econ. 2019, 51, 100963. [Google Scholar] [CrossRef] [Green Version]
- Everett, T.; Ishwaran, M.; Ansaloni, G.P.; Rubin, A. Economic Growth and the Environment. DEFRA. Available online: https://mpra.ub.uni-muenchen.de/23585/ (accessed on 14 June 2021).
- Ban, N.C.; Mills, M.; Tam, J.; Hicks, C.; Klain, S.; Stoeckl, N.; Bottrill, M.C.; Levine, J.; Pressey, R.L.; Satterfield, T.; et al. A social–ecological approach to conservation planning: Embedding social considerations. Front. Ecol. Environ. 2013, 11, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Adger, W.N.; Benjaminsen, T.A.; Brown, K.; Svarstad, H. Advancing a Political Ecology of Global Environmental Discourses. Dev. Chang. 2001, 32, 681–715. [Google Scholar] [CrossRef] [Green Version]
- Biresselioglu, M.E.; Yildirim, C.; Demir, M.H.; Tokcaer, S. Establishing an energy security framework for a fast-growing economy: Industry perspectives from Turkey. Energy Res. Soc. Sci. 2017, 27, 151–162. [Google Scholar] [CrossRef]
- Cairney, P.; McHarg, A.; McEwen, N.; Turner, K. How to conceptualise energy law and policy for an interdisciplinary audience: The case of post-Brexit UK. Energy Policy 2019, 129, 459–466. [Google Scholar] [CrossRef]
- Bekun, F.V.; Alola, A.A.; Sarkodie, S.A. Toward a sustainable environment: Nexus between CO2 emissions, resource rent, renewable and nonrenewable energy in 16-EU countries. Sci. Total Environ. 2019, 657, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Athar, M.; Ali, M.M.; Khan, M.A. Gaseous and particulate emissions from thermal power plants operating on different technologies. Environ. Monit. Assess. 2009, 166, 625–639. [Google Scholar] [CrossRef] [PubMed]
- Pudasainee, D.; Kim, J.-H.; Lee, S.-H.; Park, J.-M.; Jang, H.-N.; Song, G.-J.; Seo, Y.-C. Hazardous air pollutants emission from coal and oil-fired power plants. Asia Pac. J. Chem. Eng. 2009, 5, 299–303. [Google Scholar] [CrossRef]
- Krzywonos, M.; Borowski, P.F.; Kupczyk, A.; Zabochnicka-Świątek, M. Abatement of CO2 emissions by using motor biofuels. Przem. Chem. 2014, 93, 1124–1127. [Google Scholar]
- Lisowski, A.; Buliński, J.; Gach, S.; Klonowski, J.; Sypuła, M.; Chlebowski, J.; Kostyra, K.; Nowakowski, T.; Strużyk, A.; Świętochowski, A.; et al. Biomass harvested at two energy plant growth phases for biogas production. Ind. Crops Prod. 2017, 105, 10–23. [Google Scholar] [CrossRef]
- Cansino, J.M.; Sánchez-Braza, A.; Sanz-Díaz, T. Policy Instruments to Promote Electro-Mobility in the EU28: A Comprehensive Review. Sustainability 2018, 10, 2507. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Shen, Z.; Zhang, B.; Sun, J.; Zhang, L.; Zhang, T.; Xu, H.; Bei, N.; Tian, J.; Wang, Q.; et al. Emission reduction effect on PM2.5, SO2 and NOx by using red mud as additive in clean coal briquetting. Atmos. Environ. 2020, 223, 117203. [Google Scholar] [CrossRef]
- Global Carbon Atlas. Available online: http://www.globalcarbonatlas.org/en/CO2-emissions (accessed on 13 May 2021).
- Watmough, S.A.; Eimers, C.; Baker, S. Impediments to recovery from acid deposition. Atmos. Environ. 2016, 146, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Sun, Y.; Wu, X.; Zhang, Y.; Zheng, C.; Gao, X.; Cen, K. Unit-based emission inventory and uncertainty assessment of coal-fired power plants. Atmos. Environ. 2014, 99, 527–535. [Google Scholar] [CrossRef]
- Miller, S.F.; Miller, B. Advanced flue gas cleaning systems for sulfur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants. Woodhead Publ. Ser. Energy 2010, 187–216. [Google Scholar] [CrossRef]
- Senior, C.L. Oxidation of Mercury across Selective Catalytic Reduction Catalysts in Coal–Fired Power Plants. J. Air Waste Manag. Assoc. 2006, 56, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, J.; Ma, Z.; Wang, S.; Duan, L. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China. Atmos. Environ. 2015, 120, 227–233. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M. A review on the utilization of fly ash. Prog. Energy Combust. Sci. 2010, 36, 327–363. [Google Scholar] [CrossRef]
- Jayaranjan, M.L.D.; van Hullebusch, E.D.; Annachhatre, A.P. Reuse options for coal fired power plant bottom ash and fly ash. Rev. Environ. Sci. BioTechnol. 2014, 13, 467–486. [Google Scholar] [CrossRef] [Green Version]
- Perdan, S.; Azapagic, A. Carbon trading: Current schemes and future developments. Energy Policy 2011, 39, 6040–6054. [Google Scholar] [CrossRef]
- Villoria-Sáez, P.; Tam, V.W.; Merino, M.D.R.; Arrebola, C.V.; Wang, X. Effectiveness of greenhouse-gas Emission Trading Schemes implementation: A review on legislations. J. Clean. Prod. 2016, 127, 49–58. [Google Scholar] [CrossRef]
- Baldwin, R.; Cave, M.; Lodge, M. Understanding Regulations—Theory, Strategies and Practice; Oxford University Press: Oxford, UK, 2012; pp. 205–206. [Google Scholar]
- PwC. The World in 2050 will the Shift in Global Economic Power Continue? Available online: https://www.pwc.co.uk/economics (accessed on 13 May 2021).
- IEA. World Energy Outlook 2019; IEA: Paris, France, 2019; Available online: https://www.iea.org/reports/world-energy-outlook-2019 (accessed on 13 May 2021).
- Berrada, A.; Loudiyi, K.; Zorkani, I. Valuation of energy storage in energy and regulation markets. Energy 2016, 115, 1109–1118. [Google Scholar] [CrossRef]
- Guinée, À. Quelques Jours des Élections, L’éternelle Promesse de L’électrification. Available online: https://www.ouest-france.fr/monde/guinee/guinee-a-quelques-jours-des-elections-l-eternelle-promesse-de-l-electrification-7012549 (accessed on 14 June 2021).
- Chidebell-Emordi, C. The African electricity deficit: Computing the minimum energy poverty line using field research in urban Nigeria. Energy Res. Soc. Sci. 2015, 5, 9–19. [Google Scholar] [CrossRef]
- Ouedraogo, N.S. Africa energy future: Alternative scenarios and their implications for sustainable development strategies. Energy Policy 2017, 106, 457–471. [Google Scholar] [CrossRef]
- Africa Energy Outlook 2019. Available online: https://www.iea.org/reports/africa-energy-outlook-2019 (accessed on 14 July 2021).
- Nussbaumer, P.; Bazilian, M.; Modi, V. Measuring energy poverty: Focusing on what matters. Renew. Sustain. Energy Rev. 2012, 16, 231–243. [Google Scholar] [CrossRef] [Green Version]
- Kaygusuz, K. Energy services and energy poverty for sustainable rural development. Renew. Sustain. Energy Rev. 2011, 15, 936–947. [Google Scholar] [CrossRef]
- Republic of Guinea: Country Profile. Available online: https://www.hydropower-dams.com/news/republic-of-guinea-country-profile/ (accessed on 14 July 2021).
- Borowski, P.F. Environmental pollution as a threats to the ecology and development in Guinea Conakry. Ochr. Sr. I Zasobów Nat. 2017, 28, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Akese, G.; Little, P. Centering the Korle Lagoon: Exploring blue political ecologies of E-Waste in Ghana. J. Politi Ecol. 2019, 26. [Google Scholar] [CrossRef] [Green Version]
- La Guinée, «château d’eau » de l’Afrique de l’Ouest, Peineà faire sa Révolution Hydroélectrique. Available online: https://www.lemonde.fr/afrique/article/2020/11/09/la-guinee-chateau-d-eau-de-l-afrique-de-l-ouest-peine-a-faire-sa-revolution-hydroelectrique_6059127_3212.html (accessed on 5 June 2021).
- The Benefits of Big Hydro in Ethiopia. Available online: https://www.stantec.com/en/ideas/the-benefits-of-big-hydro-in-ethiopia (accessed on 14 July 2021).
- Ethiopia Energy Outlook. Available online: https://www.iea.org/articles/ethiopia-energy-outlook (accessed on 3 May 2021).
- Ethiopian Energy Development Strategy. Available online: https://www.ifpri.org/project/ethiopian-energy-development-strategy (accessed on 3 May 2021).
- Borowski, P.F. Strategy of adaptation in the management system at the Egyptian Universities after Arab Spring Uprising—Revolution and aftermath. Management 2014, 18, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Lough, J. Russia’s Energy Diplomacy; Chatham House: London, UK, 2011. [Google Scholar]
- Yousri, D.M. The Egyptian Electricity Market, Designing a Prudent Peak Load Pricing System; Working Paper Series; Faculty of Management Technology, German Universities in Cairo: Cairo, Egypt, 2011; Volume 29. [Google Scholar]
- Ibrahiem, D.M. Investigating the causal relationship between electricity consumption and sectoral outputs: Evidence from Egypt. Energy Transit. 2018, 2, 31–48. [Google Scholar] [CrossRef]
- Sharaf, M.F. Energy consumption and economic growth in Egypt: A disaggregated causality analysis with structural breaks. Top. Middle East. Afr. Econ. 2016, 18, 61–86. [Google Scholar]
- Shafiei, E. Model for development of energy technologies in technology-follower countries. Energy Syst. 2011, 2, 377–406. [Google Scholar] [CrossRef]
- Zamasz, K. Energy company in a competitive energy market. Polityka Energetyczna Energy Policy J. 2018, 21, 35–48. [Google Scholar] [CrossRef]
- Jedynak, M.; Czakon, W.; Kuźniarska, A.; Mania, K. Digital transformation of organizations: What do we know and where to go next? J. Organ. Chang. Manag. 2021, 34, 629–652. [Google Scholar] [CrossRef]
- Bilan, Y.; Hussain, H.I.; Haseeb, M.; Kot, S. Sustainability and economic performance: Role of organizational learning and innovation. Eng. Econ. 2020, 31, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Otola, I.; Grabowska, M. (Eds.) Business Models: Innovation, Digital Transformation, and Analytics; Auerbach Publications CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Labelle, M. A state of fracking: Building Poland’s national innovation capacity for shale gas. Energy Res. Soc. Sci. 2017, 23, 26–35. [Google Scholar] [CrossRef]
- Niemczyk, M.; Kaliszewski, A.; Jewiarz, M.; Wróbel, M.; Mudryk, K. Productivity and biomass characteristics of selected poplar (Populus spp.) cultivars under the climatic conditions of northern Poland. Biomass Bioenergy 2018, 111, 46–51. [Google Scholar] [CrossRef]
- Verhoeven, H. The politics of African energy development: Ethiopia’s hydro-agricultural state-building strategy and clashing paradigms of water security. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120411. [Google Scholar] [CrossRef] [PubMed]
- Muad, J. Can DR Congo’s Inga Dam Project Power Africa? Available online: https://www.bbc.com/news/world-africa-24856000 (accessed on 14 June 2021).
- Ebhota, W.S.; Inambao, F. Design basics of a small hydro turbine plant for capacity building in sub-Saharan Africa. Afr. J. Sci. Technol. Innov. Dev. 2016, 8, 111–120. [Google Scholar] [CrossRef]
- Czerep, J.; Kugiel, P. Afryka w Polityce UE—Stare Wyzwania dla Nowego Partnerstwa. Available online: https://www.pism.pl/publikacje/Afryka_w_polityce_UE___stare_wyzwania_dla_nowego_partnerstwa (accessed on 14 June 2021).
- Eggoh, J.C.; Bangake, C.; Rault, C. Energy consumption and economic growth revisited in African countries. Energy Policy 2011, 39, 7408–7421. [Google Scholar] [CrossRef] [Green Version]
- Di Nardo, M.; Murino, T. The System Dynamics in the Human Reliability Analysis Through Cognitive Reliability and Error Analysis Method: A Case Study of an LPG Company. Int. Rev. Civ. Eng. 2021, 12, 56–68. [Google Scholar]
HDI Rank | Country | Old-Age Dependency Ratio | Natural Resource Depletion | Renewable Energy Consumption | Carbon Dioxide Emissions |
---|---|---|---|---|---|
36 | Poland | 36.3 | 0.7 | 11.1 | 9.1 |
71 | Turkey | 18.0 | 0.3 | 12.8 | 5.2 |
111 | Egipt | 10.5 | 6.4 | 5.5 | 2.4 |
174 | Ethiopia | 6.6 | 11.2 | 93.5 | 0.1 |
183 | Guinea | 6.1 | 19.2 | 76.3 | 0.3 |
Dependent Variables | |||||
---|---|---|---|---|---|
Old-Age Dependency Ratio | Natural Resource Depletion | Renewable Energy Consumption | Carbon Dioxide Emissions | ||
Independent Variable | HDI Rank (level of country development) | −0.90 | 0.93 | 0.87 | −0.96 |
[MtCO2] | Dynamics | |||
---|---|---|---|---|
1998 | 2008 | 2018 | 2018/1998 | |
Guinea | 1.4 | 2.0 | 3.2 | 2.28 |
Egypt | 122 | 195 | 239 | 1.95 |
Ethiopia | 3.1 | 6.4 | 15 | 4.84 |
Turkey | 212 | 309 | 428 | 2.01 |
Poland | 339 | 329 | 344 | 1.01 |
World total | 24,150 | 31,994 | 36,573 | 1.51 |
[tCO2/Person] | Dynamics | |||
---|---|---|---|---|
1998 | 2008 | 2018 | 2018/1998 | |
Guinea | 0.2 | 0.2 | 0.3 | 1.5 |
Egypt | 1.8 | 2.5 | 2.4 | 1.33 |
Ethiopia | 0.1 | 0.1 | 0.1 | 1.00 |
Turkey | 3.5 | 4.4 | 5.2 | 1.49 |
Poland | 8.8 | 8.6 | 9.1 | 1.03 |
World average | 4.0 | 4.7 | 4.8 | 1.20 |
Intensity of Energy Poverty | Electrification [%] | |
Guinea | 0.85 (high energy powerty) | 20.9 (low) |
Ethiopia | 0.93 (acute energy poverty) | 12.2 (notably low) |
Egypt | 0.48 (moderate energy poerty) | 99.4 (high) |
2000 | 2018 | 2030 | 2040 | |
---|---|---|---|---|
Population (mln) | 67 | 108 | 143 | 173 |
With electricity access (%) | 5 | 45 | 100 | 100 |
With access to clean cooking (%) | 1 | 7 | 34 | 56 |
CO2 emission (MtCO2) | 3 | 14 | 29 | 46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borowski, P.F. Significance and Directions of Energy Development in African Countries. Energies 2021, 14, 4479. https://doi.org/10.3390/en14154479
Borowski PF. Significance and Directions of Energy Development in African Countries. Energies. 2021; 14(15):4479. https://doi.org/10.3390/en14154479
Chicago/Turabian StyleBorowski, Piotr F. 2021. "Significance and Directions of Energy Development in African Countries" Energies 14, no. 15: 4479. https://doi.org/10.3390/en14154479
APA StyleBorowski, P. F. (2021). Significance and Directions of Energy Development in African Countries. Energies, 14(15), 4479. https://doi.org/10.3390/en14154479