Risks and Safety of CO2 Transport via Pipeline: A Review of Risk Analysis and Modeling Approaches for Accidental Releases
Abstract
:1. Introduction
2. Risk Analysis for CO2 Pipelines
3. Experimental Release Tests for CO2-Rich Mixtures
3.1. Joint Industry Projects and Research Projects
3.2. Experimental Testing
4. Modeling CO2 Accidental Releases
- Outflow calculations
- Expansion to atmospheric pressure (near-field)
- Far-field dispersion
- Simplified models
- CFD models
4.1. Simplified Models
- FRED
- PHAST
- ALOHA
- EFFECTS
4.2. CFD Models
- ANSYS FLUENT
- ANSYS-CFX
- FLACS
- OpenFOAM
- FLUIDYN PANACHE
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- International Energy Agency. Putting CO2 to Use. Energy Rep. 2019. Available online: https://www.iea.org/reports/putting-co2-to-use (accessed on 11 February 2020).
- International Energy Agency (IEA). Energy Technology Perspectives 2020—Special Report on Carbon Capture Utilisation and Storage; IEA: Paris, France, 2020. [Google Scholar] [CrossRef]
- Plaza, M.; Martínez, S.; Rubiera, F. CO2 Capture, Use, and Storage in the Cement Industry: State of the Art and Expectations. Energies 2020, 13, 5692. [Google Scholar] [CrossRef]
- Simpson, A.; Lutz, A. Exergy analysis of hydrogen production via steam methane reforming. Int. J. Hydrogen Energy 2007, 32, 4811–4820. [Google Scholar] [CrossRef]
- Peletiri, S.P.; Rahmanian, N.; Mujtaba, I.M. CO2 Pipeline Design: A Review. Energies 2018, 11, 2184. [Google Scholar] [CrossRef] [Green Version]
- Berghout, N.; Cabal, H.; Gouveia, J.P.; Broek, M.V.D.; Faaij, A. Method for identifying drivers, barriers and synergies related to the deployment of a CO2 pipeline network. Int. J. Greenh. Gas Control. 2015, 41, 82–106. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Caramanna, G.; Maroto-Valer, M.M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef] [Green Version]
- Wei, N.; Li, X.; Wang, Q.; Gao, S. Budget-type techno-economic model for onshore CO2 pipeline transportation in China. Int. J. Greenh. Gas Control. 2016, 51, 176–192. [Google Scholar] [CrossRef]
- Jackson, S. Development of a Model for the Estimation of the Energy Consumption Associated with the Transportation of CO2 in Pipelines. Energies 2020, 13. [Google Scholar] [CrossRef]
- McCoy, S.T.; Rubin, E.S. An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage. Int. J. Greenh. Gas Control. 2008, 2, 219–229. [Google Scholar] [CrossRef]
- Dashti, H.; Underschultz, J.; Garnett, A.; Honari, V.; Sedaghat, M.H.; Rudolph, V. A Review of Recent Advances in Cost-Effective Infrastructure System Design of the CO2 Distribution to CCS Injection Wells. In Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition, Brisbane, Australia, 29–31 October 2018. [Google Scholar] [CrossRef]
- Rusin, A.; Stolecka, K. Environmental Hazards Caused by Carbon Capture and Storage (CCS) Technologies. Polish J. Environ. Stud. 2013, 22, 205–211. [Google Scholar]
- Vianello, C.; Macchietto, S.; Maschio, G. Conceptual Models for CO2 Release and Risk Assessment: A Review. Chem. Eng. 2012, 26, 573–578. [Google Scholar]
- McGillivray, A.; Saw, J.L.; Lisbona, D.; Wardman, M.; Bilio, M. A risk assessment methodology for high pressure CO2 pipelines using integral consequence modelling. Process. Saf. Environ. Prot. 2014, 92, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Koornneef, J.; Spruijt, M.; Molag, M.; Ramirez, A.; Faaij, A.; Turkenburg, W. Uncertainties in risk assessment of CO2 pipelines. Energy Procedia 2009, 1, 1587–1594. [Google Scholar] [CrossRef] [Green Version]
- Duncan, I.J.; Wang, H. Estimating the likelihood of pipeline failure in CO2 transmission pipelines: New insights on risks of carbon capture and storage. Int. J. Greenh. Gas Control. 2014, 21, 49–60. [Google Scholar] [CrossRef]
- Nyborg, M.; Arvidsson, K.; Johansson, J.; Liljemark, S.; Olsson, L. Risk analysis methodology for CO2 transport including quantified risk calculation. Energy Procedia 2011, 4, 2816–2823. [Google Scholar] [CrossRef] [Green Version]
- Sim, S.; Cole, I.; Choi, Y.-S.; Birbilis, N. A review of the protection strategies against internal corrosion for the safe transport of supercritical CO2 via steel pipelines for CCS purposes. Int. J. Greenh. Gas Control. 2014, 29, 185–199. [Google Scholar] [CrossRef]
- U.S. Department of Transportation. PHMSA, Incident Data Access. Pipeline and Hazardous Materials and Safety Administration (PHMSA). 2020. Available online: https://www.phmsa.dot.gov/data-and-statistics/pipeline/data-and-statistics-overview (accessed on 11 February 2020).
- Gale, J.; Davison, J. Transmission of CO2—Safety and economic considerations. Energy 2004, 29, 1319–1328. [Google Scholar] [CrossRef]
- Aspelund, A.; Mølnvik, M.J.; De Koeijer, G. Ship transport of CO2: Technical solutions and analysis of costs, energy utilization, exergy efficiency and CO2 emissions. Chem. Eng. Res. Des. 2006, 84, 847–855. [Google Scholar] [CrossRef]
- Kruse, H.; Tekiela, M. Calculating the consequences of a CO2-pipeline rupture. Energy Convers. Manag. 1996, 37, 1013–1018. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, G.; Massarotto, P.; Rudolph, V. Optimization of pipeline transport for CO2 sequestration. Energy Convers. Manag. 2006, 47, 702–715. [Google Scholar] [CrossRef]
- Lemontzoglou, A.; Pantoleontos, G.; Asimakopoulou, A.G.; Tsongidis, N.I.; Konstandopoulos, A.G. Analysis of CO2 transport including impurities for the optimization of point-to-point pipeline networks for integration into future solar fuel plants. Int. J. Greenh. Gas Control. 2017, 66, 10–24. [Google Scholar] [CrossRef]
- Jensen, M.D.; Schlasner, S.M.; Sorensen, J.A.; Hamling, J.A. Subtask 2.19—Operational Flexibility of CO2 Transport and Storage; University of North Dakota: Grand Forks, ND, USA, 2014. [Google Scholar]
- Kling, G.W.; Clark, M.A.; Wagner, G.N.; Compton, H.R.; Humphrey, A.M.; Devine, J.D.; Evans, W.C.; Lockwood, J.P.; Tuttle, M.L.; Koenigsberg, E.J. The 1986 Lake Nyos Gas Disaster in Cameroon, West Africa. Science 1987, 236, 169–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baxter, P.J.; Kapila, M.; Mfonfu, D. Lake Nyos disaster, Cameroon, 1986: The medical effects of large scale emission of carbon dioxide? Br. Med. J. 1989, 298, 1437–1441. [Google Scholar] [CrossRef] [Green Version]
- Cooper, R.; Barnett, J. Pipelines for transporting CO2 in the UK. Energy Procedia 2014, 63, 2412–2431. [Google Scholar] [CrossRef] [Green Version]
- Cleaver, P.; Warhurst, K. Routeing of Dense Phase CO2 Pipelines in the UK, 2016. IChemE Symposium Series (No. 161). Available online: https://www.icheme.org/media/11823/hazards-26-poster-18-routeing-of-dense-phase-co2-pipelines-in-the-uk.pdf (accessed on 3 June 2021).
- Vianello, C.; Macchietto, S.; Maschio, G. Risk Assessment of CO2 Pipeline Network for CCS—A UK Case Study. In Proceedings of the 14th EFCE International Conference on Loss Prevention and Safety, Florence, Italy, 12–15 December 2013. [Google Scholar]
- Mazzoldi, A.; Hill, T.; Colls, J.J. Assessing the risk for CO2 transportation within CCS projects, CFD modelling. Int. J. Greenh. Gas Control. 2011, 5, 816–825. [Google Scholar] [CrossRef]
- DNV GL. Design and Operation of Carbon Dioxide Pipelines; DNVGL-RP-F104; DNV GL: Bærum, Norway, 2017; Volume 76. [Google Scholar]
- ISO. ISO 13623:2017—Petroleum and Natural Gas Industries—Pipeline Transportation Systems; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Pursell, M. Esperimental investigation of high-pressure liquid CO2 release behaviour. Hazards Symp. Ser. 2012, 158, 164–171. [Google Scholar]
- Guo, X.; Yan, X.; Zheng, Y.; Yu, J.; Zhang, Y.; Chen, S.; Chen, L.; Mahgerefteh, H.; Martynov, S.; Collard, A.; et al. Under-expanded jets and dispersion in high pressure CO2 releases from an industrial scale pipeline. Energy 2017, 119, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Yan, X.; Yu, J.; Zhang, Y.; Chen, S.; Mahgerefteh, H.; Martynov, S.; Collard, A.; Proust, C. Under-expanded jets and dispersion in supercritical CO2 releases from a large-scale pipeline. Appl. Energy 2016, 183, 1279–1291. [Google Scholar] [CrossRef]
- Fan, X.; Wang, Y.; Zhou, Y.; Chen, J.; Huang, Y.; Wang, J. Experimental study of supercritical CO2 leakage behavior from pressurized vessels. Energy 2018, 150, 342–350. [Google Scholar] [CrossRef]
- Teng, L.; Li, Y.; Zhang, D.; Ye, X.; Gu, S.; Wang, C.; Wang, J. Evolution and Size Distribution of Solid CO2 Particles in Supercritical CO2 Releases. Ind. Eng. Chem. Res. 2018, 57, 7655–7663. [Google Scholar] [CrossRef]
- Li, K.; Zhou, X.; Tu, R.; Xie, Q.; Yi, J.; Jiang, X. A study of small-scale CO2 accidental release in near-field from a pressurized pipeline. Energy Procedia 2017, 142, 3234–3239. [Google Scholar] [CrossRef]
- Ahmad, M.; Lowesmith, B.; De Koeijer, G.; Nilsen, S.; Tonda, H.; Spinelli, C.; Cooper, R.; Clausen, S.; Mendes, R.; Florisson, O. COSHER joint industry project: Large scale pipeline rupture tests to study CO2 release and dispersion. Int. J. Greenh. Gas Control. 2015, 37, 340–353. [Google Scholar] [CrossRef]
- Godbole, A.; Liu, X.; Michal, G.; Davis, B.; Lu, C.; Armstrong, K.; Huescar Medina, C. Atmospheric Dispersion of CO2 following full-scale burst tests. SSRN Electron. J. 2018. [Google Scholar] [CrossRef]
- Liu, X.; Godbole, A.; Lu, C.; Michal, G.; Linton, V. Investigation of the consequence of high-pressure CO2 pipeline failure through experimental and numerical studies. Appl. Energy 2019, 250, 32–47. [Google Scholar] [CrossRef]
- Allason, D.; Armstrong, K.; Barnett, J.; Cleaver, P.; Halford, A. Experimental Studies of the Behaviour of Pressurised Releases of Carbon Dioxide. IChemE Symposium Series. 2012, Volume 158, pp. 42–52. Available online: https://www.icheme.org/media/9161/paper20-hazards-23.pdf (accessed on 3 June 2021).
- Yan, X.; Guo, X.; Yu, J.; Chen, S.; Zhang, Y.; Mahgerefteh, H.; Martynov, S.; Brown, S. Flow characteristics and dispersion during the vertical anthropogenic venting of supercritical CO2 from an industrial scale pipeline. Energy Procedia 2018, 154, 66–72. [Google Scholar] [CrossRef]
- Woolley, R.M.; Fairweather, M.; Wareing, C.; Falle, S.A.; Mahgerefteh, H.; Martynov, S.; Brown, S.; Narasimhamurthy, V.D.; Storvik, I.E.; Sælen, L.; et al. CO2PipeHaz: Quantitative Hazard Assessment for Next Generation CO2 Pipelines. Energy Procedia 2014, 63, 2510–2529. [Google Scholar] [CrossRef] [Green Version]
- Dixon, C.M.; Gant, S.E.; Obiorah, C.; Bilio, M. Validation of Dispersion Models for High Pressure Carbon Dioxide Releases. IChemE Symposium Series (No. 158). pp. 153–163. Available online: https://www.icheme.org/media/9162/paper21-hazards-23.pdf (accessed on 3 June 2021).
- Phillips, L. Shell FRED Technical Guide; Updated for FRED 5.1; GEXCON: Moscow, Russia, 2007. [Google Scholar]
- HGSYSTEM. The Heavy Gas Dispersion Model Hegadas; Technical Reference Manual. Cap. 7; OSTI.GOV: Oak Ridge, TN, USA, 1990. [Google Scholar]
- Gant, S.; Kelsey, A.; McNally, K.; Witlox, H.; Bilio, M. Methodology for global sensitivity analysis of consequence models. J. Loss Prev. Process. Ind. 2013, 26, 792–802. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration; Office of Response and Restoration Emergency Response Division. The CAMEO® Software System ALOHA® User’s Manual 2007; Office of Response and Restoration Emergency Response Division: Seattle, WA, USA; Washington, DC, USA, 2007. [Google Scholar]
- Scpicer, T.; Havens, J. User’s Guide for The DEGADIS 2.1; National Service Center for Environmental Publications (NSCEP): Cincinatti, OH, USA, 1989; Volume 419. [Google Scholar]
- Van den Bosch, C.J.H.; Weterings, R.A.P.M. Methods for the Calculation of Physical Effects: Due to Releases of Hazardous Materials (Liquids and Gases). In Yellow Book; VROM: The Hague, Belgium, 2005. [Google Scholar]
- TNO. TNO Safety Software EFFECTS; TNO: The Hague, Belgium, 2016. [Google Scholar]
- Mazzoldi, A.; Hill, T.; Colls, J.J. CFD and Gaussian atmospheric dispersion models: A comparison for leak from carbon dioxide transportation and storage facilities. Atmos. Environ. 2008, 42, 8046–8054. [Google Scholar] [CrossRef]
- Hanna, S.R.; Chang, J.C. Use of the Kit Fox field data to analyze dense gas dispersion modeling issues. Atmos. Environ. 2001, 35, 2231–2242. [Google Scholar] [CrossRef]
- Gant, S.; Pursell, M.; McGillivray, A.; Wilday, J.; Wardman, M.N.A. Overview of Carbon Capture and Storage (CCS) Projects at HSE’s Buxton Laboratory; Health and Safety Executive (HSE): Dublin, Ireland, 2017. [Google Scholar]
- Gant, S.; Narasimhamurthy, V.; Skjold, T.; Jamois, D.; Proust, C. Evaluation of multi-phase atmospheric dispersion models for application to Carbon Capture and Storage. J. Loss Prev. Process. Ind. 2014, 32, 286–298. [Google Scholar] [CrossRef] [Green Version]
- Witlox, H.W.; Harper, M.; Oke, A.; Stene, J. Phast validation of discharge and atmospheric dispersion for pressurised carbon dioxide releases. J. Loss Prev. Process. Ind. 2014, 30, 243–255. [Google Scholar] [CrossRef]
- Knoope, M.; Raben, I.; Ramirez, A.; Spruijt, M.; Faaij, A. The influence of risk mitigation measures on the risks, costs and routing of CO2 pipelines. Int. J. Greenh. Gas Control. 2014, 29, 104–124. [Google Scholar] [CrossRef]
- Fiates, J.; Santos, R.R.C.; Neto, F.F.; Francesconi, A.Z.; Simoes, V.; Vianna, S. An alternative CFD tool for gas dispersion modelling of heavy gas. J. Loss Prev. Process. Ind. 2016, 44, 583–593. [Google Scholar] [CrossRef]
- Witlox, H.; Holt, H.; Brown, J.; Helle, K. Data Review—Shell CO2 Experiments 1 CO2 Discharge and Dispersion. Data Review & Phast Analysis for Shell Experiments CO2PIPETRANS, Phase 2 (WP1). 2015. Available online: https://www.dnv.com/oilgas/joint-industry-projects/ongoing-jips/co2pipetrans.html (accessed on 20 December 2020).
- Wen, J.; Heidari, A.; Xu, B.; Jie, H. Dispersion of carbon dioxide from vertical vent and horizontal releases—A numerical study. Proc. Inst. Mech. Eng. Part E 2013, 227, 125–139. [Google Scholar] [CrossRef]
- Mack, A.; Spruijt, M. CFD Dispersion Investigation of CO2 Worst Case Scenarios Including Terrain and Release Effects. Energy Procedia 2014, 51, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Liu, X.; Lu, C.; Godbole, A.; Michal, G.; Tieu, A.K. Computational fluid dynamics simulation of carbon dioxide dispersion in a complex environment. J. Loss Prev. Process. Ind. 2016, 40, 419–432. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Godbole, A.; Lu, C.; Michal, G. Investigation of terrain effects on the consequence distance of CO2 released from high-pressure pipelines. Int. J. Greenh. Gas Control. 2017, 66, 264–275. [Google Scholar] [CrossRef] [Green Version]
- Mazzoldi, A.; Picard, D.; Sriram, P.G.; Oldenburg, C.M. Simulation-based estimates of safety distances for pipeline transportation of carbon dioxide. Greenh. Gases Sci. Technol. 2013, 3, 66–83. [Google Scholar] [CrossRef]
- Liu, X.; Godbole, A.; Lu, C.; Michal, G.; Venton, P. Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state. Appl. Energy 2014, 126, 56–68. [Google Scholar] [CrossRef] [Green Version]
- Woolley, R.; Fairweather, M.; Wareing, C.; Proust, C.; Hebrard, J.; Jamois, D.; Narasimhamurthy, V.; Storvik, I.; Skjold, T.; Falle, S.; et al. An integrated, multi-scale modelling approach for the simulation of multiphase dispersion from accidental CO2 pipeline releases in realistic terrain. Int. J. Greenh. Gas Control. 2014, 27, 221–238. [Google Scholar] [CrossRef]
JIP/RP Name | Years/Period | Scale | Objectives and Scope |
---|---|---|---|
CO2SAFEARREST | 2016–2019 | Full-scale | Burst tests research program. Two full-scale tests with buried pipeline (CO2-N2 mixture), 24 inches. |
COSHER | 2011–2015 | Large-Scale | Obtain data to support the development of models to determine safety zones/consequence distances. |
CO2PIPETRANS | 2009–2015 | Medium-Scale Large-Scale | Fill the knowledge gap identified in the DNV-RP-J202. Results of the project were included in DNVGL-RP-F104 (2017). |
COOLTRANS | 2011–2015 | Large-Scale | Identify and propose solutions to key issues relating to the safe routing, design, construction and operation of onshore CO2 pipelines in the UK. |
CO2PIPEHAZ | 2009–2013 | Small Scale Large-Scale | Improve the understanding of the hazards represented by CO2 releases. |
CO2QUEST | 2013–2016 | Small Scale Medium-Scale | Study the impact of the quality of CO2 on storage and transport. |
CATO | 2004–2008 2010–2014 2015-ongoing | N/A | A national program, which includes complete studies in all aspects of CCS. |
CO2EUROPIPE | 2009–2011 | N/A | Outline guidance to elements of the European plan to develop large-scale EU CO2 infrastructure. |
CO2RISKMAN | 2010–2013 | N/A | Development of industry guideline to assist the designer and projects on the emerging CCS industry. Potential hazards associated with handling CCS CO2 streams are discussed. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitali, M.; Zuliani, C.; Corvaro, F.; Marchetti, B.; Terenzi, A.; Tallone, F. Risks and Safety of CO2 Transport via Pipeline: A Review of Risk Analysis and Modeling Approaches for Accidental Releases. Energies 2021, 14, 4601. https://doi.org/10.3390/en14154601
Vitali M, Zuliani C, Corvaro F, Marchetti B, Terenzi A, Tallone F. Risks and Safety of CO2 Transport via Pipeline: A Review of Risk Analysis and Modeling Approaches for Accidental Releases. Energies. 2021; 14(15):4601. https://doi.org/10.3390/en14154601
Chicago/Turabian StyleVitali, Matteo, Cristina Zuliani, Francesco Corvaro, Barbara Marchetti, Alessandro Terenzi, and Fabrizio Tallone. 2021. "Risks and Safety of CO2 Transport via Pipeline: A Review of Risk Analysis and Modeling Approaches for Accidental Releases" Energies 14, no. 15: 4601. https://doi.org/10.3390/en14154601
APA StyleVitali, M., Zuliani, C., Corvaro, F., Marchetti, B., Terenzi, A., & Tallone, F. (2021). Risks and Safety of CO2 Transport via Pipeline: A Review of Risk Analysis and Modeling Approaches for Accidental Releases. Energies, 14(15), 4601. https://doi.org/10.3390/en14154601