Analysis of Current Transport Mechanism in AP-MOVPE Grown GaAsN p-i-n Solar Cell
Abstract
:1. Introduction
2. Structure Growth and Device Preparation
3. Experimental Details
4. Results and Discussion
4.1. Electrical and Electro-Optical Characterization
4.2. Structural Characterization
4.3. Temperature-Dependent Current-Voltage Characterization
4.4. Deep Level Transient Fourier Spectroscopy Investigations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bank, S.R.; Bae, H.; Goddard, L.L.; Yuen, H.B.; Wistey, M.A.; Kudrawiec, R.; Harris, J.S. Recent Progress on 1.55-μm Dilute-Nitride Lasers. IEEE J. Quantum Electron. 2007, 43, 773–785. [Google Scholar] [CrossRef]
- Tansu, N.; Yeh, J.Y.; Mawst, L. High-performance 1200-nm InGaAs and 1300-nm InGaAsN quantum-well lasers by metalorganic chemical vapor deposition. IEEE J. Sel. Top. Quantum Electron. 2003, 9, 1220–1227. [Google Scholar] [CrossRef]
- Tomic, S.; O’Reilly, E.; Fehse, R.; Sweeney, S.; Adams, A.; Andreev, A.; Choulis, S.; Hosea, T.; Riechert, H. Theoretical and experimental analysis of 1.3-μm InGaAsN/GaAs lasers. IEEE J. Sel. Top. Quantum Electron. 2003, 9, 1228–1238. [Google Scholar] [CrossRef]
- Polojärvi, V.; Aho, A.; Tukiainen, A.; Raappana, M.; Aho, T.; Schramm, A.; Guina, M. Influence of As/group-III flux ratio on defects formation and photovoltaic performance of GaInNAs solar cells. Sol. Energy Mater. Sol. Cells 2016, 149, 213–220. [Google Scholar] [CrossRef]
- Kosa, A.; Stuchlikova, L.; Harmatha, L.; Mikolasek, M.; Kovac, J.; Sciana, B.; Dawidowski, W.; Radziewicz, D.; Tlaczala, M. Defect distribution in InGaAsN/GaAs multilayer solar cells. Sol. Energy 2016, 132, 587–590. [Google Scholar] [CrossRef]
- Bouzazi, B.; Kojima, N.; Ohshita, Y.; Yamaguchi, M. Analysis of Current Transport Mechanisms in GaAsN Homojunction Solar Cell Grown by Chemical Beam Epitaxy. IEEE J. Photovoltaics 2013, 3, 909–915. [Google Scholar] [CrossRef]
- Dawidowski, W.; Ściana, B.; Zborowska-Lindert, I.; Mikolášek, M.; Kováč, J.; Tłaczała, M. Tunnel junction limited performance of InGaAsN/GaAs tandem solar cell. Sol. Energy 2021, 214, 632–641. [Google Scholar] [CrossRef]
- Jackrel, D.B.; Bank, S.R.; Yuen, H.B.; Wistey, M.A.; Harris, J.S.; Ptak, A.J.; Johnston, S.W.; Friedman, D.J.; Kurtz, S.R. Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy. J. Appl. Phys. 2007, 101, 114916. [Google Scholar] [CrossRef] [Green Version]
- Miyashita, N.; Ahsan, N.; Okada, Y. Generation and collection of photocarriers in dilute nitride GaInNAsSb solar cells. Prog. Photovoltaics Res. Appl. 2016, 24, 28–37. [Google Scholar] [CrossRef]
- Milanova, M.; Donchev, V.; Cheetham, K.J.; Cao, Z.; Sandall, I.; Piana, G.M.; Hutter, O.S.; Durose, K.; Mumtaz, A. Single-junction solar cells based on p-i-n GaAsSbN heterostructures grown by liquid phase epitaxy. Sol. Energy 2020, 208, 659–664. [Google Scholar] [CrossRef]
- Gonzalo, A.; Stanojević, L.; Fuertes Marrón, D.; Guzman, A.; Hierro, A.; Ulloa, J. 1 eV GaAsSbN–based solar cells for efficient multi-junction design: Enhanced solar cell performance upon annealing. Sol. Energy 2021, 221, 307–313. [Google Scholar] [CrossRef]
- Shan, W.; Walukiewicz, W.; Ager, J.W.; Haller, E.E.; Geisz, J.F.; Friedman, D.J.; Olson, J.M.; Kurtz, S.R. Band Anticrossing in GaInNAs Alloys. Phys. Rev. Lett. 1999, 82, 1221–1224. [Google Scholar] [CrossRef]
- Su, M.; Li, C.; Yuan, P.; Rao, F.; Jia, Y.; Wang, F. Electronic and optical properties of quaternary alloy GaAsBiN lattice-matched to GaAs. Opt. Express 2014, 22, 30633–30640. [Google Scholar] [CrossRef]
- Occena, J.; Jen, T.; Mitchell, J.W.; Linhart, W.M.; Pavelescu, E.M.; Kudrawiec, R.; Wang, Y.Q.; Goldman, R.S. Mapping the composition-dependence of the energy bandgap of GaAsNBi alloys. Appl. Phys. Lett. 2019, 115, 082106. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; Yue, L.; Liang, D.; Chen, X.; Li, Y.; Lu, P.; Shao, J.; Wang, S. Novel Dilute Bismide, Epitaxy, Physical Properties and Device Application. Crystals 2017, 7, 63. [Google Scholar] [CrossRef]
- Ściana, B.; Radziewicz, D.; Dawidowski, W.; Bielak, K.; Szyszka, A.; Kopaczek, J. Impact of gallium concentration in the gas phase on composition of InGaAsN alloys grown by AP-MOVPE correlated with their structural and optical properties. J. Mater. Sci. Mater. Electron. 2021, 30, 16216–16225. [Google Scholar] [CrossRef] [Green Version]
- Bian, L.; Jiang, D.; Tan, P.; Lu, S.; Sun, B.; Li, L.; Harmand, J. Photoluminescence characteristics of GaAsSbN/GaAs epilayers lattice-matched to GaAs substrates. Solid State Commun. 2004, 132, 707–711. [Google Scholar] [CrossRef]
- Richards, R.; Mellor, A.; Harun, F.; Cheong, J.; Hylton, N.; Wilson, T.; Thomas, T.; Roberts, J.; Ekins-Daukes, N.; David, J. Photovoltaic characterisation of GaAsBi/GaAs multiple quantum well devices. Sol. Energy Mater. Sol. Cells 2017, 172, 238–243. [Google Scholar] [CrossRef]
- Gaddy, E.M. Cost trade between multijunction, gallium arsenide and silicon solar cells. Prog. Photovoltaics Res. Appl. 1996, 4, 155–161. [Google Scholar] [CrossRef]
- Aho, A.; Isoaho, R.; Tukiainen, A.; Gori, G.; Campesato, R.; Guina, M. Dilute nitride triple junction solar cells for space applications: Progress towards highest AM0 efficiency. Prog. Photovoltaics Res. Appl. 2018, 26, 740–744. [Google Scholar] [CrossRef]
- Sabnis, V.; Yuen, H.; Wiemer, M. High-efficiency multijunction solar cells employing dilute nitrides. AIP Conf. Proc. 2012, 1477, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Núñez, N.; Vázquez, M.; González, J.R.; Jiménez, F.J.; Bautista, J. Instrumentation for accelerated life tests of concentrator solar cells. Rev. Sci. Instrum. 2011, 82, 024703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herb, J. Commercialization of New Lattice-Matched Multi-Junction Solar Cells Based on Dilute Nitrides: July 8, 2010–March 7, 2012; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2012. [Google Scholar]
- Suarez, F.; Liu, T.; Sukiasyan, A.; Lang, J.; Pickett, E.; Lucow, E.; Bilir, T.; Chary, S.; Roucka, R.; Aeby, I.; et al. Advances in Dilute Nitride Multi-Junction Solar Cells for Space Power Applications. E3S Web Conf. 2017, 16, 03006. [Google Scholar] [CrossRef]
- Volz, K.; Stolz, W.; Teubert, J.; Klar, P.J.; Heimbrodt, W.; Dimroth, F.; Baur, C.; Bett, A.W. Doping, Electrical Properties and Solar Cell Application of GaInNAs. In Dilute III-V Nitride Semiconductors and Material Systems: Physics and Technology; Erol, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 369–404. [Google Scholar] [CrossRef]
- Kim, T.; Wood, A.; Kim, H.; Kim, Y.; Lee, J.; Peterson, M.; Sin, Y.; Moss, S.; Kuech, T.F.; Babcock, S.; et al. Impact of Sb Incorporation on MOVPE-Grown “Bulk” InGaAs(Sb)N Films for Solar Cell Application. IEEE J. Photovoltaics 2016, 6, 1673–1677. [Google Scholar] [CrossRef]
- Kim, T.; Forghani, K.; Mawst, L.; Kuech, T.; LaLumondiere, S.; Sin, Y.; Lotshaw, W.; Moss, S. Properties of ‘bulk’ GaAsSbN/GaAs for multi-junction solar cell application: Reduction of carbon background concentration. J. Cryst. Growth 2014, 393, 70–74. [Google Scholar] [CrossRef]
- Li, W.; Pessa, M.; Likonen, J. Lattice parameter in GaNAs epilayers on GaAs: Deviation from Vegard’s law. Appl. Phys. Lett. 2001, 78, 2864–2866. [Google Scholar] [CrossRef]
- Uesugi, K.; Morooka, N.; Suemune, I. Reexamination of N composition dependence of coherently grown GaNAs band gap energy with high-resolution x-ray diffraction mapping measurements. Appl. Phys. Lett. 1999, 74, 1254–1256. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Tan, H.; Jagadish, C.; Sun, B.; Gal, M.; Ouyang, L.; Zou, J. Metalorganic chemical vapor deposition of GaAsN epilayers: Microstructures and optical properties. J. Cryst. Growth 2004, 264, 92–97. [Google Scholar] [CrossRef]
- Gelczuk, L.; Stokowski, H.; Dąbrowska-Szata, M.; Kudrawiec, R. Origin and annealing of deep-level defects in GaNAs grown by metalorganic vapor phase epitaxy. J. Appl. Phys. 2016, 119, 185706. [Google Scholar] [CrossRef]
- Zhang, S.B.; Wei, S.H. Nitrogen Solubility and Induced Defect Complexes in Epitaxial GaAs:N. Phys. Rev. Lett. 2001, 86, 1789–1792. [Google Scholar] [CrossRef] [PubMed]
- Shafi, M.; Mari, R.; Henini, M.; Taylor, D.; Hopkinson, M. Electrical properties of nitrogen-related defects in n-type GaAsN grown by molecular-beam epitaxy. Phys. Status Solidi C 2009, 6, 2652–2654. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Ohshita, Y.; Kojima, N.; Suzuki, H.; Bouzazi, B. Analysis of defects and impurities in new (In)GaAsN materials for concentrator multi-junction solar cells. In Proceedings of the 2009 34th IEEE Photovoltaic Specialists Conference (PVSC), Philadelphia, PA, USA, 7–12 June 2009; pp. 2332–2335. [Google Scholar] [CrossRef]
- Dhar, S.; Halder, N.; Mondal, A.; Bansal, B.; Arora, B.M. Detailed studies on the origin of nitrogen-related electron traps in dilute GaAsN layers grown by liquid phase epitaxy. Semicond. Sci. Technol. 2005, 20, 1168–1172. [Google Scholar] [CrossRef]
- García, I.; Ochoa, M.; Lombardero, I.; Cifuentes, L.; Hinojosa, M.; Caño, P.; Rey-Stolle, I.; Algora, C.; Johnson, A.; Davies, I.; et al. Degradation of subcells and tunnel junctions during growth of GaInP/Ga(In)As/GaNAsSb/Ge 4-junction solar cells. Prog. Photovoltaics Res. Appl. 2017, 25, 887–895. [Google Scholar] [CrossRef] [Green Version]
- Rey-Stolle, I.; García, I.; Barrigón, E.; Olea, J.; Pastor, D.; Ochoa, M.; Barrutia, L.; Algora, C.; Walukiewicz, W. On the thermal degradation of tunnel diodes in multijunction solar cells. AIP Conf. Proc. 2017, 1881, 040005. [Google Scholar] [CrossRef] [Green Version]
- Filali, W.; Sengouga, N.; Oussalah, S.; Mari, R.H.; Jameel, D.; Al Saqri, N.A.; Aziz, M.; Taylor, D.; Henini, M. Characterisation of temperature dependent parameters of multi-quantum well (MQW) Ti/Au/n-AlGaAs/n-GaAs/n-AlGaAs Schottky diodes. Superlattices Microstruct. 2017, 111, 1010–1021. [Google Scholar] [CrossRef]
- Schulze, T.F.; Korte, L.; Conrad, E.; Schmidt, M.; Rech, B. Electrical transport mechanisms in a-Si:H/c-Si heterojunction solar cells. J. Appl. Phys. 2010, 107, 023711. [Google Scholar] [CrossRef]
- Wilhelm, H.; Schock, H.W.; Scheer, R. Interface recombination in heterojunction solar cells: Influence of buffer layer thickness. J. Appl. Phys. 2011, 109, 084514. [Google Scholar] [CrossRef]
- Uslu, H.; Bengi, A.; Çetin, S.; Aydemir, U.; Altındal, S.; Aghaliyeva, S.; Özçelik, S. Temperature and voltage dependent current-transport mechanisms in GaAs/AlGaAs single-quantum-well lasers. J. Alloy. Compd. 2010, 507, 190–195. [Google Scholar] [CrossRef]
- Marsal, L.F.; Martin, I.; Pallares, J.; Orpella, A.; Alcubilla, R. Annealing effects on the conduction mechanisms of p+-amorphous- Si0.8C0.2:H/n-crystalline-Si diodes. J. Appl. Phys. 2003, 94, 2622–2626. [Google Scholar] [CrossRef]
- Mikolášek, M.; Nemec, M.; Vojs, M.; Jakabovič, J.; Řeháček, V.; Zhang, D.; Zeman, M.; Harmatha, L. Electrical transport mechanisms in amorphous/crystalline silicon heterojunction: Impact of passivation layer thickness. Thin Solid Film. 2014, 558, 315–319. [Google Scholar] [CrossRef]
- Płaczek-Popko, E.; Paradowska, K.; Pietrzyk, M.; Kozanecki, A. Carrier transport mechanisms in the ZnO based heterojunctions grown by MBE. Opto Electron. Rev. 2017, 25, 181–187. [Google Scholar] [CrossRef]
- Kosa, A.; Stuchlikova, L.; Harmatha, L.; Kovac, J.; Sciana, B.; Dawidowski, W.; Tlaczala, M. DLTS study of InGaAs and GaAsN structures with different indium and nitrogen compositions. Mater. Sci. Semicond. Process. 2018, 74, 313–318. [Google Scholar] [CrossRef]
- Dawidowski, W.; Ściana, B.; Zborowska-Lindert, I.; Mikolášek, M.; Bielak, K.; Badura, M.; Pucicki, D.; Radziewicz, D.; Kováč, J.; Tłaczała, M. The influence of top electrode of InGaAsN/GaAs solar cell on their electrical parameters extracted from illuminated I–V characteristics. Solid State Electron. 2016, 120, 13–18. [Google Scholar] [CrossRef]
- Tommila, J.; Aho, A.; Tukiainen, A.; Polojarvi, V.; Salmi, J.; Niemi, T.; Guina, M. Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell. Prog. Photovoltaics Res. Appl. 2013, 21, 1158–1162. [Google Scholar] [CrossRef]
- Chavanapranee, T.; Horikoshi, Y. Heavily Sn-doped GaAs with abrupt doping profiles grown by migration-enhanced epitaxy at low temperatures. J. Appl. Phys. 2006, 100, 054505. [Google Scholar] [CrossRef]
- Ladugin, M.A.; Yarotskaya, I.V.; Bagaev, T.A.; Telegin, K.Y.; Andreev, A.Y.; Zasavitskii, I.I.; Padalitsa, A.A.; Marmalyuk, A.A. Advanced AlGaAs/GaAs Heterostructures Grown by MOVPE. Crystals 2019, 9, 305. [Google Scholar] [CrossRef] [Green Version]
- McKay, H.A.; Feenstra, R.M.; Schmidtling, T.; Pohl, U.W.; Geisz, J.F. Distribution of nitrogen atoms in dilute GaAsN and InGaAsN alloys studied by scanning tunneling microscopy. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2001, 19, 1644–1649. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, N.; Braza, V.; Gonzalo, A.; Fernández, D.; Ben, T.; Flores, S.; Ulloa, J.M.; González, D. Control of Nitrogen Inhomogeneities in Type-I and Type-II GaAsSbN Superlattices for Solar Cell Devices. Nanomaterials 2019, 9, 623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Elleuch, O.; Shirahata, Y.; Kojima, N.; Ohshita, Y.; Yamaguchi, M. Inhomogeneous nitrogen incorporation effects on the transport properties of GaAsN grown by CBE. J. Cryst. Growth 2016, 437, 6–9. [Google Scholar] [CrossRef]
- Kudrawiec, R.; Sek, G.; Misiewicz, J.; Li, L.H.; Harmand, J.C. Influence of carrier localization on modulation mechanism in photoreflectance of GaAsN and GaInAsN. Appl. Phys. Lett. 2003, 83, 1379–1381. [Google Scholar] [CrossRef]
- Fewster, P.F. X-ray diffraction from low-dimensional structures. Semicond. Sci. Technol. 1993, 8, 1915–1934. [Google Scholar] [CrossRef]
- Fewster, P.F. X-ray analysis of thin films and multilayers. Rep. Prog. Phys. 1996, 59, 1339–1407. [Google Scholar] [CrossRef]
- Gutowski, P.; Sankowska, I.; Słupiński, T.; Pierścińska, D.; Pierściński, K.; Kuźmicz, A.; Gołaszewska-Malec, K.; Bugajski, M. Optimization of MBE Growth Conditions of In0.52Al0.48As Waveguide Layers for InGaAs/InAlAs/InP Quantum Cascade Lasers. Materials 2019, 12, 1621. [Google Scholar] [CrossRef] [Green Version]
- Bąk-Misiuk, J.; Domagała, J.; Paszkowicz, W.; Trela, J.; Żytkiewicz, Z.; Leszczyński, M.; Regiński, K.; Muszalski, J.; Hartwig, J.; Ohler, M. Effect of Doping on Ga1-xAlxAs Structural Properties. Acta Phys. Pol. A 1997, 91, 911–915. [Google Scholar] [CrossRef]
- Matthews, J.; Blakeslee, A. Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 1974, 27, 118–125. [Google Scholar] [CrossRef]
- Jain, S.C.; Harker, A.H.; Cowley, R.A. Misfit strain and misfit dislocations in lattice mismatched epitaxial layers and other systems. Philos. Mag. A 1997, 75, 1461–1515. [Google Scholar] [CrossRef]
- Jain, S.C.; Willander, M.; Maes, H. Stresses and strains in epilayers, stripes and quantum structures of III–V compound semiconductors. Semicond. Sci. Technol. 1996, 11, 641–671. [Google Scholar] [CrossRef]
- Bayhan, H.; Kavasoğlu, A.S. Tunnelling enhanced recombination in polycrystalline CdS/CdTe and CdS/Cu(In,Ga)Se2 heterojunction solar cells. Solid State Electron. 2005, 49, 991–996. [Google Scholar] [CrossRef]
- Kachare, R.; Anspaugh, B.; Garlick, G. Tunneling effects in the current-voltage characteristics of high-efficiency GaAs solar cells. Solid State Electron. 1988, 31, 159–166. [Google Scholar] [CrossRef]
- Perl, E.E.; Kuciauskas, D.; Simon, J.; Friedman, D.J.; Steiner, M.A. Identification of the limiting factors for high-temperature GaAs, GaInP, and AlGaInP solar cells from device and carrier lifetime analysis. J. Appl. Phys. 2017, 122, 233102. [Google Scholar] [CrossRef] [Green Version]
- Courel, M.; Andrade-Arvizu, J.; Vigil-Galán, O. Loss mechanisms influence on Cu2ZnSnS4/CdS-based thin film solar cell performance. Solid State Electron. 2015, 111, 243–250. [Google Scholar] [CrossRef]
- Kim, H.; Park, M.H.; Park, S.J.; Kim, H.S.; Song, J.D.; Kim, S.H.; Kim, H.; Choi, W.J.; Kim, D.W. Influence of InAs quantum dots on the transport properties of GaAs-based solar cell devices. Curr. Appl. Phys. 2014, 14, 192–195. [Google Scholar] [CrossRef]
- Guzel, A.; Duman, S.; Yildirim, N.; Turut, A. Electronic Transport of an Ni/n-GaAs Diode Analysed Over a Wide Temperature Range. J. Electron. Mater. 2016, 45, 2808–2814. [Google Scholar] [CrossRef]
- Mamor, M.; Bouziane, K.; Tirbiyine, A.; Alhamrashdi, H. On the electrical characteristics of Au/n-type GaAs Schottky diode. Superlattices Microstruct. 2014, 72, 344–351. [Google Scholar] [CrossRef]
- Tecimer, H.; Türüt, A.; Uslu, H.; Altındal, S.; Uslu, I. Temperature dependent current-transport mechanism in Au/(Zn-doped)PVA/n-GaAs Schottky barrier diodes (SBDs). Sens. Actuators Phys. 2013, 199, 194–201. [Google Scholar] [CrossRef]
- Lee, M.; Ahn, C.W.; Vu, T.K.O.; Lee, H.U.; Jeong, Y.; Hahm, M.G.; Kim, E.K.; Park, S. Current Transport Mechanism in Palladium Schottky Contact on Si-Based Freestanding GaN. Nanomaterials 2020, 10, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.; Vu, T.K.O.; Lee, K.S.; Kim, E.K.; Park, S. Electronic Transport Mechanism for Schottky Diodes Formed by Au/HVPE a-Plane GaN Templates Grown via In Situ GaN Nanodot Formation. Nanomaterials 2018, 8, 397. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Choi, S.; Choi, B.J. Forward Current Transport Properties of AlGaN/GaN Schottky Diodes Prepared by Atomic Layer Deposition. Coatings 2020, 10, 194. [Google Scholar] [CrossRef] [Green Version]
- Donchev, V.; Bourgoin, J.; Bois, P. Dark current in electron irradiated GaAs/AlGaAs multiple quantum wells. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 517, 94–100. [Google Scholar] [CrossRef]
- Donchev, V.; Bourgoin, J.C.; Bois, P. Dark current through GaAs/AlGaAs multiple quantum wells. Semicond. Sci. Technol. 2002, 17, 621–624. [Google Scholar] [CrossRef]
- Uslu, H.; Şemsettin, A.; İsmail, P.; Bayrak, H.; Bacaksız, E. On the mechanism of current-transport in Cu/CdS/SnO2/In–Ga structures. J. Alloy. Compd. 2011, 509, 5555–5561. [Google Scholar] [CrossRef]
- Lee, M.; Lee, H.; Song, K.M.; Kim, J. Investigation of Forward Tunneling Characteristics of InGaN/GaN Blue Light-Emitting Diodes on Freestanding GaN Detached from a Si Substrate. Nanomaterials 2018, 8, 543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czerwinski, A.; Simoen, E.; Poyai, A.; Claeys, C. Activation energy analysis as a tool for extraction and investigation of p–n junction leakage current components. J. Appl. Phys. 2003, 94, 1218–1221. [Google Scholar] [CrossRef]
- Chand, S.; Kumar, J. Effects of barrier height distribution on the behavior of a Schottky diode. J. Appl. Phys. 1997, 82, 5005–5010. [Google Scholar] [CrossRef] [Green Version]
- Alburaih, H.A.; Albalawi, H.; Henini, M. Effect of rapid thermal annealing on the electrical properties of dilute GaAsPN based diodes. Semicond. Sci. Technol. 2019, 34, 105009. [Google Scholar] [CrossRef]
- Han, I.S.; Kim, J.S.; Noh, S.K.; Lee, S.J. Structural Optimization and Temperature-Dependent Electrical Characterization of GaAs Single-Junction Solar Cells. J. Korean Phys. Soc. 2020, 76, 1096–1102. [Google Scholar] [CrossRef]
- Fiat, S.; Merdan, Z.; Memmedli, T. Current-conduction mechanisms in Au/n-CdTe Schottky solar cells in the wide temperature range. Phys. B Condens. Matter 2012, 407, 2560–2565. [Google Scholar] [CrossRef]
- Özavcı, E.; Demirezen, S.; Aydemir, U.; Altındal, S. A detailed study on current–voltage characteristics of Au/n-GaAs in wide temperature range. Sens. Actuators Phys. 2013, 194, 259–268. [Google Scholar] [CrossRef]
- Hudait, M.; Venkateswarlu, P.; Krupanidhi, S. Electrical transport characteristics of Au/n-GaAs Schottky diodes on n-Ge at low temperatures. Solid State Electron. 2001, 45, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Arslan, E.; Altındal, S.; Özçelik, S.; Ozbay, E. Dislocation-governed current-transport mechanism in (Ni/Au)–AlGaN/AlN/GaN heterostructures. J. Appl. Phys. 2009, 105, 023705. [Google Scholar] [CrossRef]
- Lang, D.V. Deep-level transient spectroscopy: A new method to characterize traps in semiconductors. J. Appl. Phys. 1974, 45, 3023–3032. [Google Scholar] [CrossRef]
- Zhao, X.; Lu, H.; Zhao, M.; Zhang, Y.; Zhang, Y. The Study of Deep Level Traps and Their Influence on Current Characteristics of InP/InGaAs Heterostructures. Nanomaterials 2019, 9, 1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceponis, T.; Lastovskii, S.; Makarenko, L.; Pavlov, J.; Pukas, K.; Gaubas, E. Study of Radiation-Induced Defects in p-Type SiGe Diodes before and after Annealing. Materials 2020, 13, 5684. [Google Scholar] [CrossRef] [PubMed]
- Gelczuk, L.; Kamyczek, P.; Płaczek-Popko, E.; Dąbrowska-Szata, M. Correlation between barrier inhomogeneities of 4H-SiC 1A/600V Schottky rectifiers and deep-level defects revealed by DLTS and Laplace DLTS. Solid State Electron. 2014, 99, 1–6. [Google Scholar] [CrossRef]
- Gelczuk, L.; Dąbrowska-Szata, M.; Sochacki, M.; Szmidt, J. Characterization of deep electron traps in 4H-SiC Junction Barrier Schottky rectifiers. Solid State Electron. 2014, 94, 56–60. [Google Scholar] [CrossRef]
- Kósa, A.; Mikolášek, M.; Stuchlíková, L.; Harmatha, L.; Dawidowski, W.; Ściana, B.; Tłaczała, M. Electrophysical Properties of GaAs P–I–N Structures for Concentrator Solar Cell Applications. J. Electr. Eng. 2016, 67, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Kósa, A.; Stuchlíková, L.; Dawidowski, W.; Jakuš, J.; Sciana, B.; Radziewicz, D.; Pucicki, D.; Harmatha, L.; Kováč, J.; Tłaczala, M. DLTFS Investigation of Ingaasn/Gaas Tandem Solar Cell. J. Electr. Eng. 2014, 65, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Madhu, K.; Kulkarni, S.; Ravindra, M.; Damle, R. DLTS study of deep level defects in Li-ion irradiated bipolar junction transistor. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2007, 254, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.P.; Rowland, L.B.; Kaminsky, E.B.; Tilak, V.; Grande, J.C.; Teetsov, J.; Vertiatchikh, A.; Eastman, L.F. Correlation of device performance and defects in AlGaN/GaN high-electron mobility transistors. J. Electron. Mater. 2003, 32, 388–394. [Google Scholar] [CrossRef]
- Zdansky, K.; Gorodynskyy, V.; Kosíková, J.; Rudra, A.; Kapon, E.; Fekete, D. Deep level transient spectroscopy of AlxGa1 xAs/GaAs single-quantum-well lasers. Semicond. Sci. Technol. 2004, 19, 897–901. [Google Scholar] [CrossRef]
- Yastrubchak, O.; Wosiński, T.; Mąkosa, A.; Figielski, T.; Porowski, S.; Grzegory, I.; Czernecki, R.; Perlin, P. Capture kinetics at deep-level electron traps in GaN-based laser diode. Phys. Status Solidi C 2007, 4, 2878–2882. [Google Scholar] [CrossRef]
- Kosa, A.; Ściana, B.; Stuchlikova, L. Reliability improvement of electrically active defect investigations by analytical and experimental deep level transient: Fourier spectroscopy investigations. J. Electr. Eng. 2019, 70, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Kosa, A.; Drobny, J.; Dawidowski, W.; Mikolasek, M.; Sciana, B.; Stuchlikova, L. The Influence of the Rapid Thermal Annealing Process on Defect Distribution in GaAsN p-i-n Structures for Solar Cells. In Proceedings of the 2020 13th International Conference on Advanced Semiconductor Devices And Microsystems (ASDAM), Smolenice, Slovakia, 11–14 October 2020; pp. 157–160. [Google Scholar] [CrossRef]
- Martin, G. Electron traps in bulk and epitaxial GaAs crystals. Electron. Lett. 1977, 13, 191–193. [Google Scholar] [CrossRef]
- Lang, D.V.; Cho, A.Y.; Gossard, A.C.; Ilegems, M.; Wiegmann, W. Study of electron traps in n-GaAs grown by molecular beam epitaxy. J. Appl. Phys. 1976, 47, 2558–2564. [Google Scholar] [CrossRef]
- Krispin, P.; Gambin, V.; Harris, J.S.; Ploog, K.H. Nitrogen-related electron traps in Ga(As,N) layers (≤3%N). J. Appl. Phys. 2003, 93, 6095–6099. [Google Scholar] [CrossRef]
- Jin, Y.; Jock, R.M.; Cheng, H.; He, Y.; Mintarov, A.M.; Wang, Y.; Kurdak, C.; Merz, J.L.; Goldman, R.S. Influence of N interstitials on the electronic properties of GaAsN alloys. Appl. Phys. Lett. 2009, 95, 062109. [Google Scholar] [CrossRef]
- Ahlgren, T.; Vainonen-Ahlgren, E.; Likonen, J.; Li, W.; Pessa, M. Concentration of interstitial and substitutional nitrogen in GaNAs. Appl. Phys. Lett. 2002, 80, 2314–2316. [Google Scholar] [CrossRef]
- Sentosa, D.; Xiaohong, T.; Jin, C.S. Luminescence from the deep level N–N interstitials in GaAsN grown by metal organic chemical vapour deposition. CrystEngComm 2010, 12, 2153–2156. [Google Scholar] [CrossRef]
- Arola, E.; Ojanen, J.; Komsa, H.P.; Rantala, T.T. Atomic and electronic structures of N interstitials in GaAs. Phys. Rev. B 2005, 72, 045222. [Google Scholar] [CrossRef]
SC Technology | Silicon | Gallium Arsenide | Multijunction |
---|---|---|---|
Efficiency (%) | 14.8 | 18.5 | 24 |
Total weight (kg) | 192 | 141 | 131 |
Total area of SC panels (m) | 26.2 | 18 | 13.4 |
Power/weight ratio () | 13.93 | 18.94 | 20.41 |
Total cost of power supply system (USD) | 3,329,600 | 4,655,000 | 3,998,833 |
Carrier Transport Mechanism | n | ||
---|---|---|---|
Diffusion | |||
Recombination | |||
Thermionic emission | |||
Tunnelling |
Trap Number | Trap Energy (eV) | Cross Section (cm) | Probable Origin | Reference |
---|---|---|---|---|
AT1 | 0.425 | 1.11 × 10 | EL5 (0.42 eV) | [97] |
AT2 | 0.538 | 1.25 × 10 | EL4 (0.51 eV), M4 (0.52 eV) | [97,98] |
AT3 | 0.626 | 4.72 × 10 | M6 (0.62 eV) | [98] |
AT4 | 0.670 | 8.11 × 10 | (N-N) (0.6 eV ÷ 0.8 eV) | [32,33,34,35,45,99] |
AT5 | 0.663 | 2.29 × 10 | EL3 (0.575 eV), M5 (0.58 eV) | [97,98] |
AT6 | 0.821 | 4.20 × 10 | EL2 (0.825 eV), M7 (0.81 eV) | [97,98] |
AT7 | 0.996 | 8.84 × 10 | EB3 (0.90 eV) | [97] |
AT8 | 0.856 | 1.18 × 10 | ET1 (0.85 eV), M8 (0.85 eV) | [97,98] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dawidowski, W.; Ściana, B.; Bielak, K.; Mikolášek, M.; Drobný, J.; Serafińczuk, J.; Lombardero, I.; Radziewicz, D.; Kijaszek, W.; Kósa, A.; et al. Analysis of Current Transport Mechanism in AP-MOVPE Grown GaAsN p-i-n Solar Cell. Energies 2021, 14, 4651. https://doi.org/10.3390/en14154651
Dawidowski W, Ściana B, Bielak K, Mikolášek M, Drobný J, Serafińczuk J, Lombardero I, Radziewicz D, Kijaszek W, Kósa A, et al. Analysis of Current Transport Mechanism in AP-MOVPE Grown GaAsN p-i-n Solar Cell. Energies. 2021; 14(15):4651. https://doi.org/10.3390/en14154651
Chicago/Turabian StyleDawidowski, Wojciech, Beata Ściana, Katarzyna Bielak, Miroslav Mikolášek, Jakub Drobný, Jarosław Serafińczuk, Iván Lombardero, Damian Radziewicz, Wojciech Kijaszek, Arpád Kósa, and et al. 2021. "Analysis of Current Transport Mechanism in AP-MOVPE Grown GaAsN p-i-n Solar Cell" Energies 14, no. 15: 4651. https://doi.org/10.3390/en14154651
APA StyleDawidowski, W., Ściana, B., Bielak, K., Mikolášek, M., Drobný, J., Serafińczuk, J., Lombardero, I., Radziewicz, D., Kijaszek, W., Kósa, A., Florovič, M., Kováč, J., Jr., Algora, C., & Stuchlíková, L. (2021). Analysis of Current Transport Mechanism in AP-MOVPE Grown GaAsN p-i-n Solar Cell. Energies, 14(15), 4651. https://doi.org/10.3390/en14154651