Magnetic Refrigeration Design Technologies: State of the Art and General Perspectives
Abstract
:1. Introduction
2. Working Principle and the Magnetocaloric Phenomenon
2.1. Magnetic Carnot Refrigeration Cycle
2.2. Magnetic Brayton Refrigeration Cycle
2.3. Magnetic Ericsson Refrigeration Cycle
3. Magnetic Refrigeration Performance
4. Magnetocaloric Materials
- Materials with a high adiabatic temperature and a large magnetic entropy change.
- Materials with a high magnetic entropy density, as well as ferromagnets with high effective magnetron numbers, are preferred.
- Materials with a low lattice entropy (i.e., Debye’s high temperature), which may be excellent candidates for use as magnetic refrigerants at room temperature.
- Materials of a Curie temperature in the 10–80 K temperature range or >250 K. In the entire temperature spectrum of the cycle, a major magnetic entropy change can be achieved.
- Near-zero magnetic hysteresis materials, which regulate the magnetic refrigerant material’s working performance.
- Materials with a limited thermal hysteresis are used to control the ability of a magnetic refrigerant material’s MCE to be reversed.
- Materials with high thermal conductivity and low specific heat, which are essential for effective temperature change and fast heat transfer.
- High-electric-resistance materials.
- Materials with a high chemical stability.
5. Magnetic Refrigeration Design
5.1. Rotary Magnetic Refrigeration Design
5.2. Reciprocating Magnetic Refrigeration Design
5.3. C-Shaped Magnetic Refrigeration Design
5.4. Active Magnetic Regenerative Refregeration (AMRR)
6. Cost Analysis
7. Conclusions
- While magnetic refrigeration is a highly effective and environmentally friendly refrigeration system, it still requires development in several areas before it can be used in a broad variety of applications, such as domestic refrigerators and air conditioners, since it has a limited temperature span and cooling capability.
- The cooling potential of magnetic refrigeration is determined by the magnitude of its MCE.
- The cooling effect would be improved if the magnetocaloric material (MCM) volume or the magnet volume were increased.
- The value of ΔSM is a significant factor that contributes to the productivity of the material. Thus, the focus in the material choice is on having a large ΔSM around Tc when it is in a magnetic field, such as in the ferromagnetic materials.
- The most important factors in achieving the best model design are low cost, a high temperature span, and small-scale design.
- It could be argued that there is no optimal design, because no design has achieved all the required targets. The best design’s performance was five times higher than that of the worst design. The magnetic refrigeration was affected by many parameters: (i) the intensity of the magnetic field, as the superconducting magnet can provide a higher magnetic field to the system; (ii) the state of the magnetocaloric materials used in the system (magnetic elements as low as 1 to 20 nm scattered across the material modify the material’s susceptibility to a magnetic field), e.g., through using Gd powder; a permanent magnet provides the required cooling power; (iii) as the purity of the magnetocaloric material increases, smaller quantities are needed to give the required cooling power due to interstitial impurities, especially carbon; (iv) the design of the refrigerator (e.g., the rotary design has greater refrigeration efficiency than other designs); and (v) the magnetocaloric effect of a material will be strongly affected by adjusting the composition of the magnetic alloy.
- The first problem facing this technology is the production of a strong magnetic field at low cost. Therefore, the best choice is a permanent magnet configuration to provide the necessary magnetization region in a smart design inspired by the previous recommendations and tests.
- Improving the design of a magnetic refrigeration system will ensures the best behavior of fluid flow and heat transfer rates. To get the maximum coefficient of performance, the operating conditions, such as frequency, rotation speed (if the rotary design is used), magnetization time, cyclic time and the time to accomplish a steady-state condition, must be taken into account. Noting that when a regenerator is added, the efficiency of magnetic refrigeration will be enhanced.
- Discovering a novel magnetocaloric material with a large magnetocaloric effect at room temperature and under a mean magnetic flux strength of about 2 T (generated by a permanent magnet) is important.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Variable | Definition | Units |
AMRR | Active magnetic regenerative refrigeration | - |
B | Magnetic field strength | T |
The magnetic field applied | T | |
Variation of the magnetic field | T | |
C | Operating magnet’s refrigerant heat capacity | J·m−3 |
CFC | Chlorofluorocarbons | - |
COP | Coefficient of performance | - |
ExQ | Exergetic cooling power | W |
ƒ | Frequency | Hz |
FEMM | Finite element method magnetic | - |
H | Magnetic field | |
LCA | Lifecycle assessment | - |
Refrigerant’s magnetization | ||
Ma | Magnetic moment | - |
MC | Magnetocaloric material | - |
MCE | Magnetocaloric effect | - |
MCM | Magnetocaloric material | - |
MR | Magnetic regenerator | - |
ɳ | Efficiency | - |
Pfield | Fraction of the AMR cycle when the magnet is in use | - |
Q | Heat transfer rate | W |
Absorbed heat; cooling load | J | |
Rejected heat | J | |
RPMMR | Magnetic refrigeration with a rotating permanent magnet | - |
S | Entropy | kJ·kg−1·K−1 |
SCP | Specific cooling power | W·kg−1 |
ΔSm | Magnetic entropy transition | - |
T | Temperature | K |
Tc | Cold temperature | K |
Curie temperature | K | |
TH | Hot temperature | K |
Adiabatic temperature difference | K | |
μ | Specific exergetic cooling power | W·T−1·L−1 |
VMCM | Total volume of refrigerant used | L |
W | Work input | J |
References
- Pecharsky, V.K.; Gschneidner, K.A., Jr. Magnetocaloric Effect and Magnetic Refrigeration. J. Magn. Magn. Mater. 1999, 200, 44–56. [Google Scholar] [CrossRef]
- Peksoy, O.; Rowe, A. Demagnetizing Effects in Active Magnetic Regenerators. J. Magn. Magn. Mater. 2005, 288, 424–432. [Google Scholar] [CrossRef]
- Kitanovski, A.; Egolf, P.W. Application of Magnetic Refrigeration and Its Assessment. J. Magn. Magn. Mater. 2009, 321, 777–781. [Google Scholar] [CrossRef]
- Kumar, K.S.; Choudhury, A. An Innovative, Energy Efficient and Environment Friendly Room Temperature Magnetic Refrigeration System-An Overview. J. Environ. Res. Dev. 2008, 3, 449–455. [Google Scholar]
- Warburg, E. Magnetische Untersuchungen. Ann. Phys. 1881, 249, 141–164. [Google Scholar] [CrossRef] [Green Version]
- Napoletano, M.; Canepa, F.; Manfrinetti, P.; Merlo, F. Magnetic Properties and the Magnetocaloric Effect in the Intermetallic Compound GdFeSi. J. Mater. Chem. 2000, 10, 1663–1665. [Google Scholar] [CrossRef]
- Giauque, W.F. A Thermodynamic Treatment of Certain Magnetic Effects. A Proposed Method of Producing Temperatures Considerably below 1 Absolute. J. Am. Chem. Soc. 1927, 49, 1864–1870. [Google Scholar] [CrossRef]
- Debye, P. Einige Bemerkungen Zur Magnetisierung Bei Tiefer Temperatur. Ann. Phys. 1926, 386, 1154–1160. [Google Scholar] [CrossRef]
- Yu, B.F.; Gao, Q.; Zhang, B.; Meng, X.Z.; Chen, Z. Review on Research of Room Temperature Magnetic Refrigeration. Int. J. Refrig. 2003, 26, 622–636. [Google Scholar] [CrossRef]
- Weng, Z.; Haque, N.; Mudd, G.M.; Jowitt, S.M. Assessing the Energy Requirements and Global Warming Potential of the Production of Rare Earth Elements. J. Clean. Prod. 2016, 139, 1282–1297. [Google Scholar] [CrossRef]
- Brown, G.V. Magnetic Heat Pumping near Room Temperature. J. Appl. Phys. 1976, 47, 3673–3680. [Google Scholar] [CrossRef] [Green Version]
- Aprea, C.; Greco, A.; Maiorino, A. A Numerical Analysis of an Active Magnetic Regenerative Refrigerant System with a Multi-Layer Regenerator. Energy Convers. Manag. 2011, 52, 97–107. [Google Scholar] [CrossRef]
- Yu, B.; Liu, M.; Egolf, P.W.; Kitanovski, A. A Review of Magnetic Refrigerator and Heat Pump Prototypes Built before the Year 2010. Int. J. Refrig. 2010, 33, 1029–1060. [Google Scholar] [CrossRef]
- Zimm, C.; Jastrab, A.; Sternberg, A.; Pecharsky, V.; Gschneidner, K.; Osborne, M.; Anderson, I. Description and Performance of a Near-Room Temperature Magnetic Refrigerator. In Advances in Cryogenic Engineering; Springer: Boston, MA, USA, 1998; pp. 1759–1766. [Google Scholar]
- Aprea, C.; Greco, A.; Maiorino, A. Magnetic Refrigeration: A Promising New Technology for Energy Saving. Int. J. Ambient Energy 2016, 37, 294–313. [Google Scholar] [CrossRef] [Green Version]
- Gschneidner, K.A., Jr.; Pecharsky, V.K. Thirty Years of near Room Temperature Magnetic Cooling: Where We Are Today and Future Prospects. Int. J. Refrig. 2008, 31, 945–961. [Google Scholar] [CrossRef] [Green Version]
- Carpetis, C. An Assessment of the Efficiency and Refrigeration Power of Magnetic Refrigerators with Ferromagnetic Refrigerants. In Advances in Cryogenic Engineering; Springer: Boston, MA, USA, 1994; pp. 1407–1415. [Google Scholar]
- Kitanovski, A.; Egolf, P.W. Innovative Ideas for Future Research on Magnetocaloric Technologies. Int. J. Refrig. 2010, 33, 449–464. [Google Scholar] [CrossRef]
- Rowe, A. Configuration and Performance Analysis of Magnetic Refrigerators. Int. J. Refrig. 2011, 34, 168–177. [Google Scholar] [CrossRef]
- Monfared, B.; Furberg, R.; Palm, B. Magnetic vs. Vapor-Compression Household Refrigerators: A Preliminary Comparative Life Cycle Assessment. Int. J. Refrig. 2014, 42, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Tomc, U.; Tušek, J.; Kitanovski, A.; Poredoš, A. A New Magnetocaloric Refrigeration Principle with Solid-State Thermoelectric Thermal Diodes. Appl. Therm. Eng. 2013, 58, 1–10. [Google Scholar] [CrossRef]
- Tassou, S.A.; Lewis, J.S.; Ge, Y.T.; Hadawey, A.; Chaer, I. A Review of Emerging Technologies for Food Refrigeration Applications. Appl. Therm. Eng. 2010, 30, 263–276. [Google Scholar] [CrossRef] [Green Version]
- Al-Rbaihat, R.; Sakhrieh, A.; Al-Asfar, J.; Alahmer, A.; Ayadi, O.; Al-Salaymeh, A.; Al_hamamre, Z.; Al-bawwab, A.; Hamdan, M. Performance Assessment and Theoretical Simulation of Adsorption Refrigeration System Driven by Flat Plate Solar Collector. Jordan J. Mech. Ind. Eng. 2017, 11, 1–11. [Google Scholar]
- Alahmer, A.; Ajib, S. Solar Cooling Technologies: State of Art and Perspectives. Energy Convers. Manag. 2020, 214, 112896. [Google Scholar] [CrossRef]
- Alahmer, A.; Omar, M.; Al-Zubi, M. Demonstrating of Standing–Wave–Thermoacoustic Refrigerator. Int. J. Therm. Environ. Eng. 2013, 6, 75–81. [Google Scholar]
- Jin, T.; Chen, G.B.; Wang, B.R.; Zhang, S.Y. Application of Thermoacoustic Effect to Refrigeration. Rev. Sci. Instrum. 2003, 74, 677–679. [Google Scholar] [CrossRef]
- Holladay, J.; Teyber, R.; Meinhardt, K.; Polikarpov, E.; Thomsen, E.; Archipley, C.; Cui, J.; Barclay, J. Investigation of Bypass Fluid Flow in an Active Magnetic Regenerative Liquefier. Cryogenics 2018, 93, 34–40. [Google Scholar] [CrossRef]
- Franco, V.; Blázquez, J.S.; Ingale, B.; Conde, A. The Magnetocaloric Effect and Magnetic Refrigeration near Room Temperature: Materials and Models. Annu. Rev. Mater. Res. 2012, 42, 305–342. [Google Scholar] [CrossRef] [Green Version]
- Alahmer, A.; Wang, X.; Alam, K.C. Dynamic and economic investigation of a solar thermal-driven two-bed adsorption chiller under Perth climatic conditions. Energies 2020, 13, 1005. [Google Scholar] [CrossRef] [Green Version]
- Alahmer, A.; Wang, X.; Al-Rbaihat, R.; Alam, K.C.A.; Saha, B.B. Performance evaluation of a solar adsorption chiller under different climatic conditions. Appl. Energy 2016, 175, 293–304. [Google Scholar] [CrossRef]
- Ožbolt, M.; Kitanovski, A.; Tušek, J.; Poredoš, A. Electrocaloric Refrigeration: Thermodynamics, State of the Art and Future Perspectives. Int. J. Refrig. 2014, 40, 174–188. [Google Scholar] [CrossRef]
- He, J.; Chen, J.; Wang, J.T.; Hua, B. Inherent Regenerative Losses of a Ferroelectric Ericsson Refrigeration Cycle. Int. J. Therm. Sci. 2003, 42, 169–175. [Google Scholar] [CrossRef]
- Sebald, G.; Pruvost, S.; Guyomar, D. Energy Harvesting Based on Ericsson Pyroelectric Cycles in a Relaxor Ferroelectric Ceramic. Smart Mater. Struct. 2007, 17, 15012. [Google Scholar] [CrossRef]
- He, J.; Chen, J.; Zhou, Y.; Wang, J.T. Regenerative Characteristics of Electrocaloric Stirling or Ericsson Refrigeration Cycles. Energy Convers. Manag. 2002, 43, 2319–2327. [Google Scholar] [CrossRef]
- Gómez, J.R.; Garcia, R.F.; Catoira, A.D.M.; Gómez, M.R. Magnetocaloric Effect: A Review of the Thermodynamic Cycles in Magnetic Refrigeration. Renew. Sustain. Energy Rev. 2013, 17, 74–82. [Google Scholar] [CrossRef]
- He, J.; Chen, J.; Wu, C. The Performance Characteristics of a Magnetic Brayton Refrigeration Cycle for Different Regeneration Cases. Int. J. Ambient Energy 2006, 27, 141–148. [Google Scholar] [CrossRef]
- Chen, F.C.; Murphy, R.W.; Mei, V.C.; Chen, G.L. Thermodynamic Analysis of Four Magnetic Heat-Pump Cycles. J. Eng. Gas Turbines Power Trans. ASME 1992, 114, 715–720. [Google Scholar] [CrossRef]
- Kurmi, R.S.; Gupta, J.K. A Textbook of Refrigeration and Air Conditioning; Fist Multicolour Revised & Updated Edition; Eurasia Publishing House (P) Ltd.: New Delhi, India, 2006. [Google Scholar]
- Rajput, R.K. Refrigeration and Air-Conditioning; SK Kataria and Sons: New Delhi, India, 2009. [Google Scholar]
- Petersen, T.F.; Pryds, N.; Smith, A.; Hattel, J.; Schmidt, H.; Knudsen, H. Two-dimensional mathematical model of a reciprocating room-temperature active magnetic regenerator. Int. J. Refrig. 2008, 31, 432–443. [Google Scholar] [CrossRef]
- Numazawa, T.; Kimura, H.; Sato, M.; Maeda, H. Carnot Magnetic Refrigerator Operating between 1.4 and 10 K. Cryogenics 1993, 33, 547–554. [Google Scholar] [CrossRef]
- Kamiya, K.; Numazawa, T.; Takahashi, H.; Nozawa, H.; Yanagitani, T. Hydrogen Liquefaction by Magnetic Refrigeration. In Proceedings of the International Cryocooler Conference, Annapolis, Maryland, 14–16 June 2006. [Google Scholar]
- Matsumoto, K.; Kondo, T.; Yoshioka, S.; Kamiya, K.; Numazawa, T. Magnetic Refrigerator for Hydrogen Liquefaction. J. Phys. 2009, 150, 12028. [Google Scholar] [CrossRef]
- Garlatti, E.; Carretta, S.; Schnack, J.; Amoretti, G.; Santini, P. Theoretical Design of Molecular Nanomagnets for Magnetic Refrigeration. Appl. Phys. Lett. 2013, 103, 202410. [Google Scholar] [CrossRef]
- Dilmieva, E.T.; Kamantsev, A.P.; Koledov, V.V.; Mashirov, A.V.; Shavrov, V.G.; Cwik, J.; Tereshina, I.S. Experimental Simulation of a Magnetic Refrigeration Cycle in High Magnetic Fields. Phys. Solid State 2016, 58, 81–85. [Google Scholar] [CrossRef]
- Hirayama, Y.; Okada, H.; Nakagawa, T.; Yamamoto, T.A.; Kusunose, T.; Numazawa, T.; Mastumoto, K.; Irie, T.; Nakamura, E. Experimental Study of Active Magnetic Regenerator (AMR) Composed of Spherical GdN; Georgia Institute of Technology: Atlanta, GA, USA, 2008. [Google Scholar]
- Jeong, S. AMR (Active Magnetic Regenerative) Refrigeration for Low Temperature. Cryogenics 2014, 62, 193–201. [Google Scholar] [CrossRef]
- Tishin, A.M.; Spichkin, Y.I. The Magnetocaloric Effect and Its Applications; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Kitanovski, A.; Egolf, P.W. Thermodynamics of Magnetic Refrigeration. Int. J. Refrig. 2006, 29, 3–21. [Google Scholar] [CrossRef]
- Liu, M.; Yu, B. Porous Media Model for Active Magnetic Regenerator of Room Temperature Magnetic Refrigeration and Its Numerical Simulation. J. Xi’an Jiaotong Univ. 2009, 43, 31–35. [Google Scholar]
- Liu, M.; Yu, F. Theoretical and Numerical Investigations on Refrigeration Performance of Irreversible Regenerative Magnetic Brayton Cycle. J. Xi’an Jiaotong Univ. 2010, 44, 56–60. [Google Scholar]
- Diguet, G.; Lin, G.; Chen, J. Performance Characteristics of Magnetic Brayton Refrigeration Cycles Using Gd, Gd0. 74Tb0. 26 and (Gd3. 5Tb1. 5) Si4 as the Working Substance. Int. J. Refrig. 2012, 35, 1035–1042. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, J.; He, J.; Brück, E. Parametric Optimum Analysis of an Irreversible Regenerative Magnetic Brayton Refrigeration Cycle. Phys. B Condens. Matter 2005, 364, 33–42. [Google Scholar] [CrossRef]
- Xia, Z.; Zhang, Y.; Chen, J.; Lin, G. Performance Analysis and Parametric Optimal Criteria of an Irreversible Magnetic Brayton-Refrigerator. Appl. Energy 2008, 85, 159–170. [Google Scholar] [CrossRef]
- Matsumoto, K.; Kondo, T.; Ikeda, M.; Numazawa, T. Numerical Analysis of Active Magnetic Regenerators for Hydrogen Magnetic Refrigeration between 20 and 77 K. Cryogenics 2011, 51, 353–357. [Google Scholar] [CrossRef] [Green Version]
- Diguet, G.; Lin, G.; Chen, J. Performance Characteristics of a Magnetic Ericsson Refrigeration Cycle Using GdxDy1− x as the Working Substance. J. Magn. Magn. Mater. 2014, 350, 50–54. [Google Scholar] [CrossRef]
- Diguet, G.; Lin, G.; Chen, J. Performance Characteristics of a Regeneration Ericsson Refrigeration Cycle Using a Magnetic Composite as the Working Substance. Int. J. Refrig. 2013, 36, 958–964. [Google Scholar] [CrossRef]
- Kitanovski, A.; Plaznik, U.; Tušek, J.; Poredoš, A. New Thermodynamic Cycles for Magnetic Refrigeration. Int. J. Refrig. 2014, 37, 28–35. [Google Scholar] [CrossRef]
- Diguet, G.; Lin, G.; Chen, J. Impact of the Initial Field on the Thermodynamic Performance of Room-Temperature Magnetic Refrigeration Cycle. Int. J. Refrig. 2013, 36, 2395–2402. [Google Scholar] [CrossRef]
- Xu, Z.C.; Lin, G.X.; Chen, J.C. A GdxHo1−X-Based Composite and Its Performance Characteristics in a Regenerative Ericsson Refrigeration Cycle. J. Alloys Compd. 2015, 639, 520–525. [Google Scholar] [CrossRef]
- Plaznik, U.; Tušek, J.; Kitanovski, A.; Poredoš, A. Numerical and Experimental Analyses of Different Magnetic Thermodynamic Cycles with an Active Magnetic Regenerator. Appl. Therm. Eng. 2013, 59, 52–59. [Google Scholar] [CrossRef]
- Tura, A. Active Magnetic Regenerator Experimental Optimization. Master’s Thesis, University of Victoria, Victoria, BC, Canada, 2005. [Google Scholar]
- Tura, A.; Rowe, A. Permanent Magnet Magnetic Refrigerator Design and Experimental Characterization. Int. J. Refrig. 2011, 34, 628–639. [Google Scholar] [CrossRef]
- Monfared, B.; Palm, B. Optimization of Layered Regenerator of a Magnetic Refrigeration Device. Int. J. Refrig. 2015, 57, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Bjørk, R.; Bahl, C.R.H.; Smith, A.; Pryds, N. Review and Comparison of Magnet Designs for Magnetic Refrigeration. Int. J. Refrig. 2010, 33, 437–448. [Google Scholar] [CrossRef] [Green Version]
- Engelbrecht, K.; Bahl, C.R.H.; Nielsen, K.K. Experimental Results for a Magnetic Refrigerator Using Three Different Types of Magnetocaloric Material Regenerators. Int. J. Refrig. 2011, 34, 1132–1140. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.J.; Bordalo, B.D.; Puga, J.; Pereira, A.M.; Ventura, J.; Oliveira, J.; Araújo, J.P. Optimization of the Physical Properties of Magnetocaloric Materials for Solid State Magnetic Refrigeration. Appl. Therm. Eng. 2016, 99, 514–517. [Google Scholar] [CrossRef]
- Gschneidner, K.A.; Pecharsky, V.K. Magnetocaloric Materials. Annu. Rev. Mater. Sci. 2000, 30, 387–429. [Google Scholar] [CrossRef] [Green Version]
- Zarkevich, N.A.; Zverev, V.I. Viable Materials with a Giant Magnetocaloric Effect. Crystals 2020, 10, 815. [Google Scholar] [CrossRef]
- Ram, N.R.; Prakash, M.; Naresh, U.; Kumar, N.S.; Sarmash, T.S.; Subbarao, T.; Kumar, R.J.; Kumar, G.R.; Naidu, K.C.B. Review on Magnetocaloric Effect and Materials. J. Supercond. Nov. Magn. 2018, 31, 1971–1979. [Google Scholar] [CrossRef]
- Smith, A.; Bahl, C.R.H.; Bjørk, R.; Engelbrecht, K.; Nielsen, K.K.; Pryds, N. Materials Challenges for High Performance Magnetocaloric Refrigeration Devices. Adv. Energy Mater. 2012, 2, 1288–1318. [Google Scholar] [CrossRef]
- Phan, M.-H.; Yu, S.-C. Review of the Magnetocaloric Effect in Manganite Materials. J. Magn. Magn. Mater. 2007, 308, 325–340. [Google Scholar] [CrossRef]
- Belo, J.H.; Pires, A.L.; Araújo, J.P.; Pereira, A.M. Magnetocaloric Materials: From Micro- to Nanoscale. J. Mater. Res. 2019, 34, 134–157. [Google Scholar] [CrossRef] [Green Version]
- Balli, M.; Jandl, S.; Fournier, P.; Kedous-Lebouc, A. Advanced materials for magnetic cooling: Fundamentals and practical aspects. Appl. Phys. Rev. 2017, 4, 21305. [Google Scholar] [CrossRef]
- Arrott, A. Criterion for Ferromagnetism from Observations of Magnetic Isotherms. Phys. Rev. 1957, 108, 1394–1396. [Google Scholar] [CrossRef]
- Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C. The Energy Performances of a Rotary Permanent Magnet Magnetic Refrigerator. Int. J. Refrig. 2016, 61, 1–11. [Google Scholar] [CrossRef]
- Tušek, J.; Zupan, S.; Šarlah, A.; Prebil, I.; Poredoš, A. Development of a Rotary Magnetic Refrigerator. Int. J. Refrig. 2010, 33, 294–300. [Google Scholar] [CrossRef]
- Engelbrecht, K.; Eriksen, D.; Bahl, C.R.H.; Bjørk, R.; Geyti, J.; Lozano, J.A.; Nielsen, K.K.; Saxild, F.; Smith, A.; Pryds, N. Experimental Results for a Novel Rotary Active Magnetic Regenerator. Int. J. Refrig. 2012, 35, 1498–1505. [Google Scholar] [CrossRef]
- Bohigas, X.; Molins, E.; Roig, A.; Tejada, J.; Zhang, X.X. Room-Temperature Magnetic Refrigerator Using Permanent Magnets. IEEE Trans. Magn. 2000, 36, 538–544. [Google Scholar] [CrossRef]
- Lozano, J.A.; Engelbrecht, K.; Bahl, C.R.H.; Nielsen, K.K.; Eriksen, D.; Olsen, U.L.; Barbosa Jr, J.R.; Smith, A.; Prata, A.T.; Pryds, N. Performance Analysis of a Rotary Active Magnetic Refrigerator. Appl. Energy 2013, 111, 669–680. [Google Scholar] [CrossRef]
- Tura, A.; Rowe, A. Design and Testing of a Permanent Magnet Magnetic Refrigerator. In Proceedings of the 2nd International Conference of Magnetic Refrigeration at Room Temperature, Portoroz, Slovenia, 11–13 April 2007; pp. 363–370. [Google Scholar]
- Bouchekara, H.R.E.-H.; Nahas, M. Magnetic refrigeration technology at room temperature. In Trends in Electromagnetism-From Fundamentals to Applications; InTech: London, UK, 2012. [Google Scholar]
- Lozano, J.A.; Engelbrecht, K.; Bahl, C.R.H.; Nielsen, K.K.; Barbosa, J.R., Jr.; Prata, A.T.; Pryds, N. Experimental and Numerical Results of a High Frequency Rotating Active Magnetic Refrigerator. Int. J. Refrig. 2014, 37, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Zimm, C. Design and Initial Performance of a Magnetic Refrigerator with a Rotating Permanent Magnet. In Proceedings of the 2nd International Conference on Magnetic Refrigeration at Room Temperature, Portoroz, Slovenia, 11–13 April 2007; pp. 341–347. [Google Scholar]
- Kirol, L.D.; Dacus, M.W. Rotary Recuperative Magnetic Heat Pump. In Advances in Cryogenic Engineering; Springer: Boston, MA, USA, 1988; pp. 757–765. [Google Scholar]
- Okamura, T. Im-Provement of 100 w Class Room Temperature Magnetic Refrigerator. In Proceedings of the 2nd International Conference on Magnetic Refrigeration at Room Temperature, Portoroz, Slovenia, 11–13 April 2007; pp. 377–382. [Google Scholar]
- Jacobs, S.; Auringer, J.; Boeder, A.; Chell, J.; Komorowski, L.; Leonard, J.; Russek, S.; Zimm, C. The Performance of a Large-Scale Rotary Magnetic Refrigerator. Int. J. Refrig. 2014, 37, 84–91. [Google Scholar] [CrossRef]
- Aprea, C.; Cardillo, G.; Greco, A.; Maiorino, A.; Masselli, C. A Rotary Permanent Magnet Magnetic Refrigerator Based on AMR Cycle. Appl. Therm. Eng. 2016, 101, 699–703. [Google Scholar] [CrossRef]
- Gómez, J.R.; Garcia, R.F.; Carril, J.C.; Gómez, M.R. Experimental Analysis of a Reciprocating Magnetic Refrigeration Prototype. Int. J. Refrig. 2013, 36, 1388–1398. [Google Scholar] [CrossRef]
- Engelbrecht, K.; Jensen, J.B.; Bahl, C.R.H. Experiments on a Modular Magnetic Refrigeration Device. Stroj. Vestn. J. Mech. Eng. 2012, 58, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.G.; Yu, H.Y.; Zhong, X.C.; Zeng, D.C.; Liu, Z.W. Design and Performance Study of the Active Magnetic Refrigerator for Room-Temperature Application. Int. J. Refrig. 2009, 32, 78–86. [Google Scholar] [CrossRef]
- Kim, Y.; Jeong, S. Investigation on the Room Temperature Active Magnetic Regenerative Refrigerator with Permanent Magnet Array. AIP Conf. Proc. 2010, 1218, 87–94. [Google Scholar]
- Trevizoli, P.V.; Barbosa, J.R., Jr.; Ferreira, R.T.S. Experimental Evaluation of a Gd-Based Linear Reciprocating Active Magnetic Regenerator Test Apparatus. Int. J. Refrig. 2011, 34, 1518–1526. [Google Scholar] [CrossRef]
- Tagliafico, L.A.; Scarpa, F.; Tagliafico, G.; Valsuani, F.; Canepa, F.; Cirafici, S.; Napoletano, M.; Belfortini, C. Design and Assembly of a Linear Reciprocating Magnetic Refrigerator. In Proceedings of the 3rd International Conference on Magnetic Refrigeration at Room Temperature, Des Moines, IA, USA, 11–15 May 2009; pp. 425–430. [Google Scholar]
- Balli, M.; Sari, O.; Mahmed, C.; Besson, C.; Bonhote, P.; Duc, D.; Forchelet, J. A Pre-Industrial Magnetic Cooling System for Room Temperature Application. Appl. Energy 2012, 98, 556–561. [Google Scholar] [CrossRef]
- Lu, D.W.; Xu, X.N.; Wu, H.B.; Jin, X. A Permanent Magnet Magneto-Refrigerator Study on Using Gd/Gd-Si-Ge/Gd-Si-Ge-Ga Alloys. In Proceedings of the 1st International Conference on Magnetic Refrigeration at Room Temperature, Montreux, Switzerland, 27–30 September 2005; pp. 1–6. [Google Scholar]
- Bour, S.; Hamm, J.L.; Michot, H.; Muller, C. Experimental and Numerical Analysis of a Reciprocating Room Temperature Active Magnetic Regenerator. In Proceedings of the 3rd International Conference on Magnetic Refrigeration at Room Temperature, Des Moines, IA, USA, 11–15 May 2009; pp. 415–424. [Google Scholar]
- Lei, T.; Navickaitė, K.; Engelbrecht, K.; Barcza, A.; Vieyra, H.; Nielsen, K.K.; Bahl, C.R.H. Passive Characterization and Active Testing of Epoxy Bonded Regenerators for Room Temperature Magnetic Refrigeration. Appl. Therm. Eng. 2018, 128, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Numazawa, T.; Nakagome, H.; Matsumoto, K. Numerical Modeling on a Reciprocating Active Magnetic Regenerator Refrigeration in Room Temperature. Cryogenics 2011, 51, 347–352. [Google Scholar] [CrossRef]
- Lee, S.J.; Kenkel, J.M.; Pecharsky, V.K.; Jiles, D.C. Permanent Magnet Array for the Magnetic Refrigerator. J. Appl. Phys. 2002, 91, 8894–8896. [Google Scholar] [CrossRef] [Green Version]
- Vasile, C.; Muller, C. Innovative Design of a Magnetocaloric System. Int. J. Refrig. 2006, 29, 1318–1326. [Google Scholar] [CrossRef]
- Alahmer, A. Demonstrate for Rotating C-Shape Magnetic Refrigeration near Room Temperature. Appl. Mech. Mater. 2015, 704, 154–158. [Google Scholar] [CrossRef]
- Tušek, J.; Kitanovski, A.; Zupan, S.; Prebil, I.; Poredoš, A. A Comprehensive Experimental Analysis of Gadolinium Active Magnetic Regenerators. Appl. Therm. Eng. 2013, 53, 57–66. [Google Scholar] [CrossRef]
- Trevizoli, P.V.; Nakashima, A.T.; Barbosa, J.R., Jr. Performance Evaluation of an Active Magnetic Regenerator for Cooling Applications–Part II: Mathematical Modeling and Thermal Losses. Int. J. Refrig. 2016, 72, 206–217. [Google Scholar] [CrossRef]
- Trevizoli, P.V.; Nakashima, A.T.; Peixer, G.F.; Barbosa, J.R., Jr. Performance Evaluation of an Active Magnetic Regenerator for Cooling Applications–Part I: Experimental Analysis and Thermodynamic Performance. Int. J. Refrig. 2016, 72, 192–205. [Google Scholar] [CrossRef]
- Trevizoli, P.V.; Nakashima, A.T.; Peixer, G.F.; Barbosa, J.R., Jr. Performance Assessment of Different Porous Matrix Geometries for Active Magnetic Regenerators. Appl. Energy 2017, 187, 847–861. [Google Scholar] [CrossRef]
- Legait, U.; Guillou, F.; Kedous-Lebouc, A.; Hardy, V.; Almanza, M. An experimental comparison of four magnetocaloric regenerators using three different materials. Int. J. Refrig. 2014, 37, 147–155. [Google Scholar] [CrossRef]
- Lei, T.; Engelbrecht, K.; Nielsen, K.K.; Veje, C.T. Study of Geometries of Active Magnetic Regenerators for Room Temperature Magnetocaloric Refrigeration. Appl. Therm. Eng. 2017, 111, 1232–1243. [Google Scholar] [CrossRef] [Green Version]
- Allab, F.; Kedous-Lebouc, A.; Fournier, J.-M.; Yonnet, J.-P. Numerical modeling for active magnetic regenerative refrigeration. IEEE Trans. Magn. 2005, 41, 3757–3759. [Google Scholar] [CrossRef]
- Roudaut, J.; Kedous-Lebouc, A.; Yonnet, J.-P.; Muller, C. Numerical analysis of an active magnetic regenerator. Int. J. Refrig. 2011, 34, 1797–1804. [Google Scholar] [CrossRef]
- Aprea, C.; Cardillo, G.; Greco, A.; Maiorino, A.; Masselli, C. A Comparison between Experimental and 2D Numerical Results of a Packed-Bed Active Magnetic Regenerator. Appl. Therm. Eng. 2015, 90, 376–383. [Google Scholar] [CrossRef]
- Scarpa, F.; Tagliafico, G.; Tagliafico, L.A. Classification Proposal for Room Temperature Magnetic Refrigerators. Int. J. Refrig. 2012, 35, 453–458. [Google Scholar] [CrossRef]
- Bejan, A.; Tsatsaronis, G.; Moran, M.J. Thermal Design and Optimization; John Wiley & Sons: Hoboken, NJ, USA, 1995. [Google Scholar]
- Egolf, P.W.; Gendre, F.; Kitanovski, A. Magnetic Heat Pumps-an Approximate Energy Efficiency and Cost Study: Part II. In Proceedings of the Second International Conference on Magnetic Refrigeration at Room Tempertaure of the International Institute of Refrigeration IIF-IIR, Portoroz, Slovenia, 11–13 April 2007; pp. 11–13. [Google Scholar]
- Russek, S.L.; Zimm, C.B. Potential for Cost Effective Magnetocaloric Air Conditioning Systems. Int. J. Refrig. 2006, 29, 1366–1373. [Google Scholar] [CrossRef]
- Bjørk, R.; Smith, A.; Bahl, C.R.H.; Pryds, N. Determining the Minimum Mass and Cost of a Magnetic Refrigerator. Int. J. Refrig. 2011, 34, 1805–1816. [Google Scholar] [CrossRef] [Green Version]
- Kitanovski, A.; Egolf, P.W.; Poredos, A. Rotary Magnetic Chillers with Permanent Magnets. Int. J. Refrig. 2012, 35, 1055–1066. [Google Scholar] [CrossRef]
Solar Adsorption | Magnetic Refrigeration | Acoustic Refrigeration | |
---|---|---|---|
Principles | To generate cooling, use low-temperature heat that is powered by solar energy. | To achieve a cooling effect, some materials have a unique property called the magnetocaloric effect (MCE). | Acoustic or sound waves are used to generate cooling. |
Advantages |
|
|
|
Disadvantages | Adsorption chillers have a low COP and high manufacturing expenses |
| In comparison with traditional refrigerator technologies, it has a lower thermal efficiency |
Obstacles | The adsorption chiller’s low efficiency of COP and specific cooling power (SCP) prevent its commercialization |
|
|
Applications | Food processing, cold storage, retail, and refrigerated transport |
| Domestic and commercial refrigerators, freezers, natural gas liquefaction, chip cooling, and cooling of electronic devices |
COP | 0.4–0.7 | 1.8 at room temperature | Up to 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alahmer, A.; Al-Amayreh, M.; Mostafa, A.O.; Al-Dabbas, M.; Rezk, H. Magnetic Refrigeration Design Technologies: State of the Art and General Perspectives. Energies 2021, 14, 4662. https://doi.org/10.3390/en14154662
Alahmer A, Al-Amayreh M, Mostafa AO, Al-Dabbas M, Rezk H. Magnetic Refrigeration Design Technologies: State of the Art and General Perspectives. Energies. 2021; 14(15):4662. https://doi.org/10.3390/en14154662
Chicago/Turabian StyleAlahmer, Ali, Malik Al-Amayreh, Ahmad O. Mostafa, Mohammad Al-Dabbas, and Hegazy Rezk. 2021. "Magnetic Refrigeration Design Technologies: State of the Art and General Perspectives" Energies 14, no. 15: 4662. https://doi.org/10.3390/en14154662
APA StyleAlahmer, A., Al-Amayreh, M., Mostafa, A. O., Al-Dabbas, M., & Rezk, H. (2021). Magnetic Refrigeration Design Technologies: State of the Art and General Perspectives. Energies, 14(15), 4662. https://doi.org/10.3390/en14154662