Steady-State Control of Fuel Cell Based on Boost Mode of a Dual Winding Motor
Abstract
:1. Introduction
1.1. Background
1.2. Current Variation Principle of Fuel Cell
1.3. LFCR Generation Mechanism
1.4. Dual Winding Motor Control Methods
1.5. Contributions and Organization
2. System Architecture
2.1. Drivetrain Operation Modes
2.2. System Framework
3. Modeling
3.1. PEMFC Model
3.1.1. PEMFC Optimal Current Characteristics
- The DC current control for the PEMFC DC-link should be realized;
- The change rate of the current load should be controllable and as slow as possible (e.g., 10 s);
- Low-frequency current ripple (e.g., below 120 Hz) and large current ripple shall be avoided.
3.1.2. PEMFC Stack Model
3.2. Boost Principle and Model Based on DWM Architecture
4. Control of Circulating Current between Windings
4.1. Control Principle
4.2. Simulation Verification and Analysis
4.2.1. Construction of Simulation Platform
4.2.2. Simulation Results Analysis
5. Results Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thounthong, P.; Chunkag, V.; Sethakul, P. Comparative study of fuel-cell vehicle hybridization with battery or supercapacitor storage device. IEEE Trans. Veh. Technol. 2009, 58, 3892–3904. [Google Scholar] [CrossRef]
- Chen, H.; Pei, P.; Song, M. Lifetime prediction and the economic lifetime of Proton Exchange Membrane fuel cells. Appl. Energy 2015, 142, 154–163. [Google Scholar] [CrossRef]
- Theiler, A.; Karpenko-Jereb, L. Modelling of the mechanical durability of constrained Nafion membrane under humidity cycling. Int. J. Hydrogen Energy 2015, 40, 9773–9782. [Google Scholar] [CrossRef]
- Gemmen, R.S. Analysis for the Effect of Inverter Ripple Current on Fuel Cell Operating Condition. J. Fluids Eng. 2003, 125, 576–585. [Google Scholar] [CrossRef]
- Daud, W.; Rosli, R.; Majlan, E.H.; Hamid, S.; Mohamed, R.; Husaini, T. PEM fuel cell system control: A review. Renew. Energy 2017, 113, 620–638. [Google Scholar] [CrossRef]
- Holmes, D.G.; Lipo, T.A. Pulse Width Modulation for Power Converters; IEEE Press: Piscataway, NJ, USA, 2003. [Google Scholar]
- McGrath, B.P.; Holmes, D.G. A general analytical method for calculating inverter dc-link current harmonics. IEEE Trans. Ind. Appl. 2017, 45, 1851–1859. [Google Scholar] [CrossRef]
- Emadi, A.; Rajashekara, K.; Williamson, S.S.; Lukic, S. Topological Overview of Hybrid Electric and Fuel Cell Vehicular Power System Architectures and Configurations. IEEE Trans. Veh. Technol. 2005, 54, 763–770. [Google Scholar] [CrossRef]
- Alberti, L.; Bianchi, N. Experimental Tests of Dual Three-Phase Induction Motor under Faulty Operating Condition. IEEE Trans. Ind. Electron. 2011, 59, 2041–2048. [Google Scholar] [CrossRef]
- Bojoi, R.; Tenconi, A.; Farina, F. Dual-source fed multiphase induction motor drive for fuel cell vehicles: Topology and control. In Proceedings of the PESC, Recife, Brazil, 12–16 June 2005; pp. 2676–2683. [Google Scholar]
- Jia, Y.F.; Xu, N.; Chu, L. Power flow control strategy based on the voltage vector distribution for a dual power electric vehicle with an open-end winding motor drive system. IEEE Access 2018, 6, 54910–54926. [Google Scholar] [CrossRef]
- Hu, S.; Liang, Z.; Zhang, W.; He, X. Research on the Integration of Hybrid Energy Storage System and Dual Three-Phase PMSM Drive in EV. IEEE Trans. Ind. Electron. 2017, 65, 6602–6611. [Google Scholar] [CrossRef]
- Pieńkowski. Analysis and control of dual stator winding induction motor. Arch. Electr. Eng. 2012, 61, 421–438. [Google Scholar] [CrossRef] [Green Version]
- Kali, Y.; Ayala, M.; Rodas, J.; Saad, M.; Doval-Gandoy, J.; Gregor, R.; Benjelloun, K. Current Control of a Six-Phase Induction Machine Drive Based on Discrete-Time Sliding Mode with Time Delay Estimation. Energies 2019, 12, 170. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Hu, Y.W.; Huang, W.X. Decoupling control of the dual stator-winding induction generator using SVM. In Proceedings of the PESC, Rhodes, Greece, 15–19 June 2008; pp. 3366–3370. [Google Scholar]
- Eswar, K.M.R.; Kumar, K.V.P.; Kumar, T.V. A simplified predictive torque control scheme for open-end winding induction motor drive. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 1162–1172. [Google Scholar] [CrossRef]
- GSingh, G.K.; Nam, K.; Lim, S.K. A Simple Indirect Field-Oriented Control Scheme for Multiphase Induction Machine. IEEE Trans. Ind. Electron. 2005, 52, 1177–1184. [Google Scholar] [CrossRef]
- Bojoi, R.; Tenconi, A.; Griva, G. Vector control of dual three phase induction-motor drives using two current sensors. IEEE Trans. Ind. Appl. 2006, 42, 1284–1292. [Google Scholar] [CrossRef]
- Satake, A.; Okamoto, Y.; Kato, S. Design of Coupling Cancellation Control for a Double-winding PMSM. IEEJ J. Ind. Appl. 2017, 6, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Geng, Z.; Hong, T.; Qi, K.; Ambrosio, J.; Gu, D. Modular Regenerative Emulation System for DC–DC Converters in Hybrid Fuel Cell Vehicle Applications. IEEE Trans. Veh. Technol. 2018, 67, 9233–9240. [Google Scholar] [CrossRef]
- Ohto, Y.; Noguchi, T.; Sasaya, T. Space vector modulation of dual inverter with battery and capacitor across DC buses. In Proceedings of the PEDS, Honolulu, HI, USA, 12–15 December 2017; pp. 1172–1177. [Google Scholar]
- Hsu, C.-Y.; Weng, F.-B.; Su, A.; Wang, C.-Y.; Hussaini, I.S.; Feng, T.-L. Transient phenomenon of step switching for current or voltage in PEMFC. Renew. Energy 2009, 34, 1979–1985. [Google Scholar] [CrossRef]
- Yan, X.; Hou, M.; Sun, L.; Cheng, H.; Hong, Y.; Liang, D.; Shen, Q.; Ming, P.; Yi, B. The study on transient characteristic of proton exchange membrane fuel cell stack during dynamic loading. J. Power Sources 2007, 163, 966–970. [Google Scholar] [CrossRef]
- Kim, S.; Shimpalee, S.; Van Zee, J.W. The effect of stoichiometry on dynamic behavior of a proton exchange membrane fuel cell (PEMFC) during load change. J. Power Sources 2004, 135, 110–121. [Google Scholar] [CrossRef]
- Wu, Z.; Hao, Y. Bang Bang fuzzy PI control of wheel cylinder pressure in vehicle EHB system. J. Mach. Des. Manuf. 2021, 1, 188–192. [Google Scholar]
- Zhou, Y.; Huang, L.; Sun, X. Impact of Low Frequency Narrow Pulse Current on the Degradation of Proton Exchange Membrane Fuel Cells. J. Fuel Cells 2019, 19, 561–569. [Google Scholar] [CrossRef]
- Li, H.; Kelly, S.; Guevarra, D.; Wang, Z.; Wang, Y.; Haber, J.A.; Anand, M.; Gunasooriya, G.T.K.K.; Abraham, C.S.; Vijay, S.; et al. Analysis of the limitations in the oxygen reduction activity of transition metal oxide surfaces. Nat. Catal. 2021, 4, 463–468. [Google Scholar] [CrossRef]
Operation Mode | Sub-Mode | PEMFC | Battery | Motor | Vehicle |
---|---|---|---|---|---|
Single-source mode | S1 | Null | O | I | Traction |
S2 | Null | I | O | Braking | |
Dual-source mode | D1 | O | O | I | Boost traction |
Energy transfer mode | R1 | O | I | I | Charging-traction |
R2 | O | I | O | Charging-braking |
Parameter Description and Its Mathematical Notation | Value |
---|---|
Operating voltage of a fuel cell stack, | 350 V |
Normal power of a fuel cell stack, | 14 kW |
Operating voltage of a power battery, | 500 V |
Normal power of a power battery, | 25 kW |
The state of charge (SOC) of the power battery, | 70% |
Inductance value of a phase winding, | 1 mH |
Filter inductance value, | 1 mH |
DC-Link value, | 400 µF |
Reference current of the step-up side winding, | 15 A |
Proportional coefficient of the PI controller, | 0.85 |
Integral coefficient of the PI controller, | 0.3 |
Normal power of DWM, | 48 kW |
Normal power of Inverter 1, | 18 kW |
Normal power of Inverter 2, | 30 kW |
Switching frequency of Q7, K | 10k Hz |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.; Chang, W.; Ma, J.; Zhou, Y. Steady-State Control of Fuel Cell Based on Boost Mode of a Dual Winding Motor. Energies 2021, 14, 4673. https://doi.org/10.3390/en14154673
Chang C, Chang W, Ma J, Zhou Y. Steady-State Control of Fuel Cell Based on Boost Mode of a Dual Winding Motor. Energies. 2021; 14(15):4673. https://doi.org/10.3390/en14154673
Chicago/Turabian StyleChang, Cheng, Weibin Chang, Jiangang Ma, and Yafu Zhou. 2021. "Steady-State Control of Fuel Cell Based on Boost Mode of a Dual Winding Motor" Energies 14, no. 15: 4673. https://doi.org/10.3390/en14154673
APA StyleChang, C., Chang, W., Ma, J., & Zhou, Y. (2021). Steady-State Control of Fuel Cell Based on Boost Mode of a Dual Winding Motor. Energies, 14(15), 4673. https://doi.org/10.3390/en14154673