Experimental Investigation of Micro Cooling Units on Impingement Jet Array Flow Pressure Loss and Heat Transfer Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Impingement Flow Facility
2.2. Test Section and Test Surface
2.3. Impingement Flow Conditions and Parameters Determination
2.4. Discharge Coefficient Determination
2.5. Heat Transfer Coefficient Measurement and Nusselt Number Measurement Approach
2.6. Experimental Uncertainty
3. Results
3.1. Baseline Discharge Coefficient and Nusselt Number Comparisons
3.2. Discharge Coefficient Variations
3.3. Effects of Reynolds Number
3.4. Effects of Micro Cooling Units Height
3.5. Effects of Wetted Area Ratio
3.6. Spatially Averaged Nusselt Number Variations
3.7. Discharge Coefficient Ratio Correlation Determination
4. Conclusions
- (a)
- When Rej =1000, and 2500, discharge coefficient ratio values show about 2~18% and 3~6% reductions in pressure losses for system. This is because the flow is within laminar, laminar-turbulent transition.
- (b)
- When compared at particular values of Rej, it is observed inverse proportional relation between discharge coefficient ratio values and micro cooling units height, which indicates that target plate with a higher micro cooling units height cause greater pressure losses for the system. This is because that the increasing height of the micro cooling units results in the increase in associated generated drag.
- (c)
- The spatially averaged Nusselt number ratio shows an approximate 20–300% heat transfer augmentation and increases as micro cooling units height increases. Such results are due to increased thermal transport and near-wall mixing, as the cooling unit elements are higher. It is believed that the micro cooling units along the wall break the viscous sublayer, which is normally formed within the boundary layer on the smooth target surface.
- (d)
- The addition of the micro cooling units is capable of enhancing heater transfer and reduce pressure losses, and in general, does not cause a discernable increment in pressure loss penalty for the system for all the test configurations examined. This is because of the pitch-to-height ratio designed and arranged for micro cooling units elements distributed on the target plate surface.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | area, |
Al | lower surface area, |
AR | wetted area ratio: ratio of wetted surface area to flat projected area |
Bi | Biot number |
discharge coefficient | |
c | specific heat |
D | impingement jet hole diameter, mm |
micro cooling units height, mm | |
h | |
k | |
l | characteristic length of Biot number |
L | length of micro cooling units, mm |
mass flow rate, kg/s | |
n | number of holes in the impingement plate |
differential pressure, Pa | |
Ps | static pressure, Pa |
stagnation pressure, Pa | |
q | |
qloss | |
R | heater resistance, |
Reynolds number | |
thermocouple recovery temperature, K | |
static temperature, K | |
stagnation temperature, K | |
t | impingement plate thickness, mm |
flow velocity, m/s | |
U | uncertainty |
Nusselt number | |
spatially averaged Nusselt number | |
spatially averaged smooth surface, baseline Nusselt number | |
film heater voltage, volts | |
x | streamwise coordinate |
X | streamwise impingement hole spacing, mm |
y | spanwise coordinate |
Y | spanwise impingement hole spacing, mm |
z | normal coordinate |
Z | jet-to-target surface distance, mm |
Greek symbols | |
α | thermocouple recovery factor |
absolute viscosity, | |
References
- Lee, J.; Ren, Z.; Ligrani, P.M.; Fox, M.D.; Moon, H.-K. Crossflows From Jet Array Impingement Cooling: Hole Spacing, Target Plate Distance, Reynolds Number Effects. Int. J. Therm. Sci. 2015, 88, 7–18. [Google Scholar] [CrossRef]
- Bunker, R.S. Gas turbine heat transfer: 10 remaining hot gas path challenges; Paper number GT2006-90002. In Proceedings of the ASME TURBO EXPO Gas Turbine and Aeroengine Technical Congress, Exposition, and Users Symposium, Barcelona, Spain, 6–11 May 2006. [Google Scholar]
- Kercher, D.M.; Tabakoff, W. Heat Transfer By a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air. Asme Trans. J. Eng. Power 1970, 92, 73–82. [Google Scholar] [CrossRef]
- Chance, J.L. Experimental Investigation of Air Impingement Heat Transfer Under an Array of Round Jets. TAPPI 1974, 57, 108–112. [Google Scholar]
- San, J.Y.; Tsou, Y.M.; Chen, Z.C. Impingement Heat Transfer of Staggered Arrays of Air Jets Confined in a Channel. Int. J. Heat Mass Transf. 2007, 50, 3718–3727. [Google Scholar] [CrossRef]
- Lee, J.; Ren, Z.; Ligrani, P.M.; Lee, D.H.; Fox, M.; Moon, H.-K. Cross-Flow Effects on Impingement Array Heat Transfer With Varying Jet-To-Target Plate Distance and Hole Spacing. Int. J. Heat Mass Transf. 2014, 75, 534–544. [Google Scholar] [CrossRef]
- Florschuetz, L.W.; Truman, C.R.; Metzger, D.E. Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow. Asme Trans. J. Heat Transf. 1981, 103, 337–342. [Google Scholar] [CrossRef]
- Metzger, D.E.; Florschuetz, L.W.; Takeuchi, D.I.; Behee, R.D.; Berry, R.A. Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air. Asme Trans. J. Heat Transf. 1979, 101, 526–531. [Google Scholar] [CrossRef]
- Bailey, J.C.; Bunker, R.S. Local Heat Transfer and Flow Distributions For Impinging Jet Arrays of Dense and Sparse Extent; Paper No. ASME GT-2002-30473; Turbo Expo 2002: Power for Land, Sea, and Air; ASME: Amsterdam, Netherlands, 6 June 2002. [Google Scholar]
- Lee, J.; Ren, Z.; Haegele, J.; Potts, G.; Jin, J.S.; Ligrani, P.M.; Fox, M.; Moon, H.-K. Effects of Jet-To-Target Plate Distance and Reynolds Number on Jet Array Impingement Heat Transfer. ASME Trans. J. Turbomach. 2014, 136, 051013. [Google Scholar] [CrossRef]
- Buzzard, W.C.; Ren, Z.; Ligrani, P.M.; Nakamata, C.; Ueguchi, S. Influences of Target Surface Small-Scale Rectangle Roughness on Impingement Jet Array Heat Transfer. Int. J. Heat Mass Transf. 2017, 110, 805–816. [Google Scholar] [CrossRef]
- Ligrani, P.M.; Ren, Z.; Buzzard, W.C. Impingement Jet Array Heat Transfer With Small-Scale Cylinder Target Surface Roughness Arrays. Int. J. Heat Mass Transf. 2017, 107, 895–905. [Google Scholar] [CrossRef]
- Ren, Z.; Buzzard, W.C.; Ligrani, P.M.; Nakamata, C.; Ueguchi, S. Impingement Jet Array Heat Transfer: Target Surface Roughness Shape, Reynolds Number Effects. AIAA J. Thermophys. Heat Transf. 2017, 31, 346–357. [Google Scholar] [CrossRef]
- Nakamata, C.; Okita, Y.; Yamane, T.; Fukuyama, Y.; Yoshida, T. Effect of Roughened Elements on Target Surface and Cooling Hole Shape on Impingement Cooling Effectiveness. Paper IGTC2011-0003. In Proceedings of the 10th International Gas Turbine Congress, Osaka, Japan, 15–20 November 2011. [Google Scholar]
- Singh, P.; Ekkad, S.V. Effects of Spent Air Removal Scheme on Internal-Side Heat Transfer in an Impingement-Effusion System at Low Jet-To-Target Plate Spacing. Int. J. Heat Mass Transf. 2017, 108, 998–1010. [Google Scholar] [CrossRef]
- Spring, S.; Xing, Y.; Weigand, B. An experimental and numerical study of heat transfer from arrays of impinging jets with surface ribs, ASME Trans. J. Heat Transf. 2012, 134, 082201–01–082201–09. [Google Scholar] [CrossRef]
- Brakmann, R.; Chen, L.; Weigand, B.; Crawford, M. Experimental and numerical heat transfer investigation of an impinging jet array on a target plate roughened by cubic micro pin fins. J. Turbomach. 2016, 138, 11. [Google Scholar] [CrossRef]
- Sutherland’s Formula. McGraw-Hill Dictionary of Scientific & Technical Terms, 6E. 2003; The McGraw-Hill Companies, Inc.: New York, NY, USA, 2021. [Google Scholar]
- Lu, X.; Li, W.; Li, X.; Ren, J.; Jiang, H.; Ligrani, P. Flow and Heat Transfer Characteristics of Micro Pin-Fins under Jet Impingement Arrays. Int. J. Heat Mass Transf. 2019, 143, 118416. [Google Scholar] [CrossRef]
- Moffat, R.J. Contributions to the Theory of Single-Sample Uncertainty Analysis. Asme Trans. J. Fluids Eng. 1982, 104, 250–260. [Google Scholar] [CrossRef] [Green Version]
- Florschuetz, L.W.; Berry, C.R.; Metzger, D.E. Streamwise Flow and Heat Transfer Coefficients for Inline and Staggered Arrays of Circular Jets with Crossflow of Spent Air. Asme Trans. J. Heat Transf. 1981, 102, 132–137. [Google Scholar] [CrossRef]
- Ligrani, P.M.; Mclnturff, P.; Suzuki, M.; Nakamata, C. Winglet-pair target surface roughness influences on impingement jet array heat transfer. J. Enhanc. Heat Transf. 2018, 25, 1–21. [Google Scholar] [CrossRef]
Cases | Description | Pitch to Height Ratio | Wetted Area Ratio |
---|---|---|---|
1 | Baseline-Smooth | 1.000 | |
2 | 0.01D | 100.0 | 1.075 |
3 | 0.02D | 50.0 | 1.150 |
4 | 0.05D | 20.0 | 1.375 |
5 | 0.20D | 5.0 | 1.500 |
6 | 0.40D | 2.5 | 2.000 |
(Micro cooling units height) |
Quantity | Values | Error | htc | Copper Bar Number | Uncertainty |
---|---|---|---|---|---|
h (W/m²K) | 767 | 1 | 8.20% | ||
Vt (V) | 200 | 2.4 | 22.3 | 2 | 7.20% |
Rt (Ω) | 310 | 2.5 | 14.9 | 3 | 6.70% |
Ri (Ω) | 38 | 0.307 | 7.4 | 4 | 6.60% |
qloss (W/m²) | 155 | 9.3 | 0.8 | 5 | 6.50% |
Tw (°C) | 55 | 0.12 | 9.49 | 6 | 6.50% |
Tf (°C) | 44 | 0.1 | 7.9 | 7 | 6.50% |
Uncertainty (%) | 8.2 | 8 | 6.60% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Z.; Yang, X.; Lu, X.; Li, X.; Ren, J. Experimental Investigation of Micro Cooling Units on Impingement Jet Array Flow Pressure Loss and Heat Transfer Characteristics. Energies 2021, 14, 4757. https://doi.org/10.3390/en14164757
Ren Z, Yang X, Lu X, Li X, Ren J. Experimental Investigation of Micro Cooling Units on Impingement Jet Array Flow Pressure Loss and Heat Transfer Characteristics. Energies. 2021; 14(16):4757. https://doi.org/10.3390/en14164757
Chicago/Turabian StyleRen, Zhong, Xiaoyu Yang, Xunfeng Lu, Xueying Li, and Jing Ren. 2021. "Experimental Investigation of Micro Cooling Units on Impingement Jet Array Flow Pressure Loss and Heat Transfer Characteristics" Energies 14, no. 16: 4757. https://doi.org/10.3390/en14164757
APA StyleRen, Z., Yang, X., Lu, X., Li, X., & Ren, J. (2021). Experimental Investigation of Micro Cooling Units on Impingement Jet Array Flow Pressure Loss and Heat Transfer Characteristics. Energies, 14(16), 4757. https://doi.org/10.3390/en14164757