The Current State of the Art in Research on Predictive Maintenance in Smart Grid Distribution Network: Fault’s Types, Causes, and Prediction Methods—A Systematic Review
Abstract
:1. Introduction
2. Systematic Review Protocol
3. Taxonomy
3.1. Importance of Fault Management—Predictive Maintenance
3.1.1. Power Failures
3.1.2. Common Faults—Open Circuits
3.1.3. Short-Circuit Fault
3.2. Statistics Faults—Power Failure
3.2.1. Grid Statistical Analysis of Fault
11.39%—Single-Phase Grounding (SPG) Fault, Large-Scale Blackouts, Fault Resistance, and Isolation
5.7%—Disconnection of High-Voltage Power and Power Failure in the Distribution Line
5.06%—Power Accidents, Line Trip Faults, Failure in Medium or High Voltage
3.16%—Symmetrical and Unsymmetrical Faults, LG, LL, LLLG, and Leakage Fault
2.53%—Power Supply Unreliability and Weak Insulation
1.9%—Congestion of the Distribution Lines and Circuit Breakers
1.27%—Power System Fault
4. Prediction Methods
4.1. Conventional Methods
4.1.1. Infrared Thermography-Based Technique with Multilayered Perceptron (MLP)
4.1.2. Traveling Wave Fault Location
4.1.3. Impedance-Based Method
4.1.4. Current Measurement and Synchronize Voltage
4.1.5. Relay Protection System
4.1.6. Monitoring and Sensors Infrastructure
4.2. Machine Learning (ML) Methods
4.2.1. Support Vector Machine (SVM)
4.2.2. Artificial Neural Network (ANN)
4.2.3. Random Forest
4.2.4. Recurrent Neural Networks (RNN)
4.3. Statistical Faults and Techniques—Formatting
5. Discussion
5.1. Challenges
5.1.1. Cyber Security
5.1.2. Grid Straightening
5.1.3. Communications
5.1.4. Cost
5.1.5. Universal Popularity of Sensing System
5.1.6. Real-Time Estimation
5.2. Motivations
5.2.1. Improve Use Experience
5.2.2. Expanded Efficiency
5.2.3. Improved Usage
5.2.4. Greenhouse
5.3. Opportunities
- Network operation sustainability.
- Optimize the grid operation and maximize the productivity.
- Smarter network operation and maintenance.
- Avoid/minimize sudden/unexpected fault and outage.
- Smarter and proactive maintenance strategies.
- Better asset performance management and planning.
- Predict faults and critical events.
- Automatic fault and outage management systems.
- Speed-up the fault location, reconfiguration, and restoration processes.
- Proactive and efficient maintenance.
- Reduce total maintenance costs.
- Proactive Maintenance scheduling methodology.
- Evaluating predictive maintenance options for optimal response.
- Fault prediction and location tool.
- Self-healing smart grid.
- Auto tracking network maintenance system.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bhattacharya, B.; Sinha, A. Intelligent Fault Analysis in Electrical Power Grids. In Proceedings of the 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), Boston, MA, USA, 6–8 November 2017; pp. 985–990. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Mahela, O.P.; Agarwal, S. Detection of Power System Faults in Distribution System Using Stockwell Transform. In Proceedings of the 2018 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, 24–25 February 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Thomas, P.; Reji, A.G.; Mathew, A.; Aswin, D. Stand Alone Distribution Feeder Inter Area fault Location Identification System for Indian Utility. In Proceedings of the 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, UP, India, 30–31 October 2020; pp. 258–262. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, L.; Liu, J.-S.; Ji, X. Prediction of electrical equipment failure rate based on improved drosophila optimization algorithm. In Proceedings of the 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Guilin, China, 29–31 July 2017; pp. 1915–1921. [Google Scholar] [CrossRef]
- Chaitanya, B.K.; Yadav, A. An intelligent fault detection and classification scheme for distribution lines integrated with distributed generators. Comput. Electr. Eng. 2018, 69, 28–40. [Google Scholar] [CrossRef]
- Marquez, J.J.; Zafra-Cabeza, A.; Bordons, C. Diagnosis and Fault Mitigation in a Microgrid Using Model Predictive Control. In Proceedings of the 2018 International Conference on Smart Energy Systems and Technologies (SEST), Sevilla, Spain, 10–12 September 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Feng, D.; Lin, S.; He, Z.; Sun, X.; Lee, W.-J. Optimization Method With Prediction-Based Maintenance Strategy for Traction Power Supply Equipment Based on Risk Quantification. IEEE Trans. Transp. Electrif. 2018, 4, 961–970. [Google Scholar] [CrossRef]
- Wang, B.; Geng, J.; Dong, X. High-Impedance Fault Detection Based on Nonlinear Voltage–Current Characteristic Profile Identification. IEEE Trans. Smart Grid 2016, 9, 3783–3791. [Google Scholar] [CrossRef]
- Mousa, M.; Abdelwahed, S.; Kluss, J. Review of Fault Types, Impacts, and Management Solutions in Smart Grid Systems. Smart Grid Renew. Energy 2019, 10, 98–117. [Google Scholar] [CrossRef] [Green Version]
- Alotaibi, I.; Abido, M.A.; Khalid, M.; Savkin, A.V. A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources. Energies 2020, 13, 6269. [Google Scholar] [CrossRef]
- Mar, A.; Pereira, P.; Martins, J.F. A Survey on Power Grid Faults and Their Origins: A Contribution to Improving Power Grid Resilience. Energies 2019, 12, 4667. [Google Scholar] [CrossRef] [Green Version]
- Hlalele, T.; Sun, Y.; Wang, Z. Faults Classification and Identification on Smart Grid: Part-A Status Review. Procedia Manuf. 2019, 35, 601–606. [Google Scholar] [CrossRef]
- Hajjaji, Y.; Boulila, W.; Farah, I.R.; Romdhani, I.; Hussain, A. Big data and IoT-based applications in smart environments: A systematic review. Comput. Sci. Rev. 2021, 39, 100318. [Google Scholar] [CrossRef]
- Denyer, D.; Tranfield, D. Producing a Systematic Review. In The SAGE Handbook of Organizational Research Methods; Sage Publications Ltd.: Los Angeles, CA, USA, 2009; pp. 671–689. [Google Scholar]
- Hossain, E.; Hossain, J.; Un-Noor, F. Utility Grid: Present Challenges and Their Potential Solutions. IEEE Access 2018, 6, 60294–60317. [Google Scholar] [CrossRef]
- Baimel, D.; Tapuchi, S.; Baimel, N. Smart Grid Communication Technologies. J. Power Energy Eng. 2016, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pech, M.; Vrchota, J.; Bednář, J. Predictive maintenance and intelligent sensors in smart factory: Review. Sensors 2021, 21, 1470. [Google Scholar] [CrossRef]
- Rajaei, N.; Ahmed, M.H.; Salama, M.M.A.; Varma, R.K. Fault current management using inverter-based distributed generators in smart grids. IEEE Trans. Smart Grid 2014, 5, 2183–2193. [Google Scholar] [CrossRef]
- Samanta, S.; Bera, J.; Sarkar, G. An approach for power system fault diagnosis using current samples towards smart grid operation. In Proceedings of the 2014 International Conference on Control, Instrumentation, Energy and Communication (CIEC), Calcutta, India, 31 January–2 February 2014; pp. 743–746. [Google Scholar]
- Dhend, M.H.; Chile, R.H. Efficient fault diagnosis in smart grid using non conventional mother wavelet function. In Proceedings of the 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Xi’an, China, 25–28 October 2016; pp. 342–347. [Google Scholar] [CrossRef]
- Ntalampiras, S. Fault Diagnosis for Smart Grids in Pragmatic Conditions. IEEE Trans. Smart Grid 2016, 9, 1964–1971. [Google Scholar] [CrossRef]
- Korada, P.; Devidas, A.R. Studying the impact of AC-microgrid on the main grid and it’s fault analysis. 2016-Bienn. In Proceedings of the 2016 Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy (PESTSE), Bengaluru, India, 21–23 January 2016. [Google Scholar]
- Skydt, M.R.; Bang, M.; Shaker, H.R. A probabilistic sequence classification approach for early fault prediction in distribution grids using long short-term memory neural networks. Meas. J. Int. Meas. Confed. 2020, 170, 108691. [Google Scholar] [CrossRef]
- Sabir, R.; Hartmann, S.; Guhmann, C. Open and Short Circuit Fault detection in Alternators using the rectified DC output voltage. In Proceedings of the 2018 IEEE 4th Southern Power Electronics Conference (SPEC), Singapore, 10–13 December 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Lau, S.K.; Ho, S.K. Open-circuit fault detection in distribution overhead power supply network. J. Int. Counc. Electr. Eng. 2017, 7, 269–275. [Google Scholar] [CrossRef]
- Yu, J.J.Q.; Hou, Y.; Lam, A.Y.S.; Li, V.O.K. Intelligent Fault Detection Scheme for Microgrids With Wavelet-Based Deep Neural Networks. IEEE Trans. Smart Grid 2017, 10, 1694–1703. [Google Scholar] [CrossRef]
- Robson, S.; Haddad, A.; Griffiths, H. Fault Location on Branched Networks Using a Multiended Approach. IEEE Trans. Power Deliv. 2014, 29, 1955–1963. [Google Scholar] [CrossRef]
- Velimirovic, L.Z.; Janjic, A.; Velimirovic, J.D. Fault Location and Isolation in Power Distribution Network Using Markov Decision Process. In Proceedings of the 2019 14th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), Nis, Serbia, 23–25 October 2019; pp. 408–411. [Google Scholar] [CrossRef]
- Correa-Tapasco, E.; Mora-Flórez, J.; Perez-Londoño, S. Performance analysis of a learning structured fault locator for distribution systems in the case of polluted inputs. Electr. Power Syst. Res. 2018, 166, 1–8. [Google Scholar] [CrossRef]
- Saleh, K.; Hooshyar, A.; El-Saadany, E.F. Hybrid Passive-Overcurrent Relay for Detection of Faults in Low-Voltage DC Grids. IEEE Trans. Smart Grid 2015, 8, 1129–1138. [Google Scholar] [CrossRef]
- Sapountzoglou, N.; Lago, J.; Raison, B. Fault diagnosis in low voltage smart distribution grids using gradient boosting trees. Electr. Power Syst. Res. 2020, 182, 106254. [Google Scholar] [CrossRef]
- Kitamura, S.; Takano, T.; Izui, Y.; Itaya, N. Disconnection detection method for power distribution lines using smart meters. In Proceedings of the 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 18–20 February 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, F.; Deng, C.; Li, S.; Li, M.; Liu, H.; Zhu, L.; Guo, F. Application of a modified flux-coupling type superconducting fault current limiter to transient performance enhancement of micro-grid. Phys. C Supercond. 2015, 518, 144–148. [Google Scholar] [CrossRef]
- Sapountzoglou, N.; Lago, J.; De Schutter, B.; Raison, B. A generalizable and sensor-independent deep learning method for fault detection and location in low-voltage distribution grids. Appl. Energy 2020, 276, 115299. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Ribeiro, M.H.D.M.; Nied, A.; Mariani, V.C.; Coelho, L.D.S.; da Rocha, D.F.M.; Grebogi, R.B.; Ruano, A.E.D.B. Wavelet group method of data handling for fault prediction in electrical power insulators. Int. J. Electr. Power Energy Syst. 2020, 123, 106269. [Google Scholar] [CrossRef]
- England, B.S.; Alouani, A.T. Real time voltage stability prediction of smart grid areas using smart meters data and improved Thevenin estimates. Int. J. Electr. Power Energy Syst. 2020, 122, 106189. [Google Scholar] [CrossRef]
- Rahman, S.; Mahmud, M.; Pota, H.; Hossain, M. A multi-agent approach for enhancing transient stability of smart grids. Int. J. Electr. Power Energy Syst. 2014, 67, 488–500. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Liu, M.; Bao, Z. Data-Based Line Trip Fault Prediction in Power Systems Using LSTM Networks and SVM. IEEE Access 2017, 6, 7675–7686. [Google Scholar] [CrossRef]
- Barik, M.A.; Gargoom, A.; Mahmud, M.A.; Haque, M.E.; Al-Khalidi, H.; Oo, A.M.T. A decentralized fault detection technique for detecting single phase to ground faults in power distribution systems with resonant grounding. IEEE Trans. Power Deliv. 2018, 33, 2462–2473. [Google Scholar] [CrossRef]
- Xiong, S.; Liu, Y.; Fang, J.; Dai, J.; Luo, L.; Jiang, X. Incipient Fault Identification in Power Distribution Systems via Human-Level Concept Learning. IEEE Trans. Smart Grid 2020, 11, 5239–5248. [Google Scholar] [CrossRef]
- Dhend, M.H.; Chile, R.H. Fault Diagnosis of Smart Grid Distribution System by Using Smart Sensors and Symlet Wavelet Function. J. Electron. Test. 2017, 33, 329–338. [Google Scholar] [CrossRef]
- Alazab, M.; Khan, S.; Krishnan, S.S.R.; Pham, Q.-V.; Reddy, M.P.K.; Gadekallu, T.R. A Multidirectional LSTM Model for Predicting the Stability of a Smart Grid. IEEE Access 2020, 8, 85454–85463. [Google Scholar] [CrossRef]
- Kalogeropoulos, I.; Sarimveis, H. Predictive control algorithms for congestion management in electric power distribution grids. Appl. Math. Model. 2019, 77, 635–651. [Google Scholar] [CrossRef]
- Milioudis, A.N.; Andreou, G.T.; Labridis, D. Detection and Location of High Impedance Faults in Multiconductor Overhead Distribution Lines Using Power Line Communication Devices. IEEE Trans. Smart Grid 2014, 6, 894–902. [Google Scholar] [CrossRef]
- Tang, Z.; Zhou, C.; Jiang, W.; Zhou, W.; Jing, X.; Yu, J.; Alkali, B.; Sheng, B. Analysis of Significant Factors on Cable Failure Using the Cox Proportional Hazard Model. IEEE Trans. Power Deliv. 2013, 29, 951–957. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.C.; Kezunovic, M. Fuzzy Logic Approach to Predictive Risk Analysis in Distribution Outage Management. IEEE Trans. Smart Grid 2016, 7, 2827–2836. [Google Scholar] [CrossRef]
- Kabir, E.; Guikema, S.D.; Quiring, S.M. Predicting Thunderstorm-Induced Power Outages to Support Utility Restoration. IEEE Trans. Power Syst. 2019, 34, 4370–4381. [Google Scholar] [CrossRef]
- Ullah, I.; Yang, F.; Khan, R.; Liu, L.; Yang, H.; Gao, B.; Sun, K. Predictive Maintenance of Power Substation Equipment by Infrared Thermography Using a Machine-Learning Approach. Energies 2017, 10, 1987. [Google Scholar] [CrossRef] [Green Version]
- Gururajapathy, S.S.; Mokhlis, H.; Illias, H. Fault location and detection techniques in power distribution systems with distributed generation: A review. Renew. Sustain. Energy Rev. 2017, 74, 949–958. [Google Scholar] [CrossRef]
- Roostaee, S.; Thomas, M.S.; Mehfuz, S. Experimental studies on impedance based fault location for long transmission lines. Prot. Control. Mod. Power Syst. 2017, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Firouzjah, K.G.; Sheikholeslami, A. A current independent method based on synchronized voltage measurement for fault location on transmission lines. Simul. Model. Pr. Theory 2009, 17, 692–707. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, W.; Zhang, Z. Istraživanje sustava zaštite releja mikro-rešetke. Teh. Vjesn. 2015, 22, 51–59. [Google Scholar] [CrossRef]
- Das, B. Impact of Distributed Generation on Reliability of Distribution System. IOSR J. Electr. Electron. Eng. 2013, 8, 42–50. [Google Scholar] [CrossRef]
- Hidayatullah, N.A.; Kurniawan, A.C.; Kalam, A. Power Transmission and Distribution Monitoring using Internet of Things (IoT) for Smart Grid. IOP Conf. Ser. Mater. Sci. Eng. 2018, 384, 012039. [Google Scholar] [CrossRef]
- Awalin, L.J.; Rahmat, M.K. A Recent Development of Monitoring Devices on Smart Grid. E3S Web Conf. 2020, 186, 02004. [Google Scholar] [CrossRef]
- Rivas, A.E.L.; Abrão, T. Faults in smart grid systems: Monitoring, detection and classification. Electr. Power Syst. Res. 2020, 189, 106602. [Google Scholar] [CrossRef]
- Çınar, Z.M.; Nuhu, A.A.; Zeeshan, Q.; Korhan, O.; Asmael, M.; Safaei, B. Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0. Sustainability 2020, 12, 8211. [Google Scholar] [CrossRef]
- Sathya, R.; Abraham, A. Comparison of Supervised and Unsupervised Learning Algorithms for Pattern Classification. Int. J. Adv. Res. Artif. Intell. 2013, 2, 34–38. [Google Scholar] [CrossRef] [Green Version]
- Simeone, O. A Very Brief Introduction to Machine Learning With Applications to Communication Systems. IEEE Trans. Cogn. Commun. Netw. 2018, 4, 648–664. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, D.K.; Bhambhu, L. Data classification using support vector machine. J. Theor. Appl. Inf. Technol. 2010, 12, 1–7. [Google Scholar]
- Grossi, E.; Buscema, M. Introduction to artificial neural networks. Eur. J. Gastroenterol. Hepatol. 2007, 19, 1046–1054. [Google Scholar] [CrossRef]
- Kotsiopoulos, T.; Sarigiannidis, P.; Ioannidis, D.; Tzovaras, D. Machine Learning and Deep Learning in smart manufacturing: The Smart Grid paradigm. Comput. Sci. Rev. 2021, 40, 100341. [Google Scholar] [CrossRef]
- Ali, J.; Khan, R.; Ahmad, N.; Maqsood, I. Random Forests and Decision Trees. Int. J. Comput. Sci. Issues 2012, 9, 272–278. [Google Scholar]
- Lipton, Z.C.; Berkowitz, J.; Elkan, C. A Critical Review of Recurrent Neural Networks for Sequence Learning. arXiv 2015, arXiv:1506.00019. [Google Scholar]
- De Santis, E.; Livi, L.; Sadeghian, A.; Rizzi, A. Modeling and recognition of smart grid faults by a combined approach of dissimilarity learning and one-class classification. Neurocomputing 2015, 170, 368–383. [Google Scholar] [CrossRef] [Green Version]
- Zhai, C.; Zhang, H.; Xiao, G.; Pan, T.-C. A model predictive approach to protect power systems against cascading blackouts. Int. J. Electr. Power Energy Syst. 2019, 113, 310–321. [Google Scholar] [CrossRef]
- Zarei, M.E.; Gupta, M.; Ramirez, D.; Martinez-Rodrigo, F. Switch Fault Tolerant Model-Based Predictive Control of a VSC Connected to the Grid. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 9, 949–960. [Google Scholar] [CrossRef]
- Daryalal, M.; Sarlak, M. Fast fault detection scheme for series-compensated lines during power swing. Int. J. Electr. Power Energy Syst. 2017, 92, 230–244. [Google Scholar] [CrossRef]
- Affijulla, S.; Tripathy, P. A Robust Fault Detection and Discrimination Technique for Transmission Lines. IEEE Trans. Smart Grid 2017, 9, 6348–6358. [Google Scholar] [CrossRef]
- Calderaro, V.; Galdi, V.; Piccolo, A.; Siano, P. A Petri net based protection monitoring system for distribution networks with distributed generation. Electr. Power Syst. Res. 2009, 79, 1300–1307. [Google Scholar] [CrossRef]
- Strobl, C.; Ott, L.; Kaiser, J.; Gosses, K.; Schafer, M.; Rabenstein, R. Refined Fault Detection in LVDC-Grids with Signal Processing, System Identification and Machine Learning Methods. In Proceedings of the 2018 IEEE Holm Conference on Electrical Contacts, Albuquerque, NM, USA, 14–18 October 2018; pp. 418–425. [Google Scholar]
- Yen, S.W.; Morris, S.; Ezra, M.A.; Huat, T.J. Effect of smart meter data collection frequency in an early detection of shorter-duration voltage anomalies in smart grids. Int. J. Electr. Power Energy Syst. 2019, 109, 1–8. [Google Scholar] [CrossRef]
- Qi, P.; Jovanovic, S.; Lezama, J.; Schweitzer, P. Discrete wavelet transform optimal parameters estimation for arc fault detection in low-voltage residential power networks. Electr. Power Syst. Res. 2017, 143, 130–139. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, Z.; Wu, G.; Yu, S.; Su, Y.; Wang, K. Research on Power Fluctuation of DG Grid-Connected Operation Based on Distributed Predictive Control Algorithm. In Proceedings of the 2018 China International Conference on Electricity Distribution (CICED), Tianjin, China, 17–19 September 2018; pp. 88–92. [Google Scholar] [CrossRef]
- Jamali, S.; Bahmanyar, A.; Borhani-Bahabadi, H. A fast and accurate fault location method for distribution networks with dg using genetic algorithms. In Proceedings of the 2015 Smart Grid Conference (SGC), Tehran, Iran, 22–23 December 2015; pp. 110–114. [Google Scholar] [CrossRef]
- Deng, X.; Yuan, R.; Xiao, Z.; Li, T.; Wang, K.L.L. Fault location in loop distribution network using SVM technology. Int. J. Electr. Power Energy Syst. 2015, 65, 254–261. [Google Scholar] [CrossRef]
- Ferreira, E.F.; Barros, J.D. Faults Monitoring System in the Electric Power Grid of Medium Voltage. Procedia Comput. Sci. 2018, 130, 696–703. [Google Scholar] [CrossRef]
- Khuzyashev, R.G.; Kuzmin, I.L.; Vasilyev, V.D.; Tukaev, S.M. System of the Traveling-Wave Fault Location in 6(10) kV Treelike Distribution Electric Grids. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Sapountzoglou, N.; Raison, B.; Silva, N. Fault Detection and Localization in LV Smart Grids. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Carta, D.; Pegoraro, P.A.; Sulis, S.; Pau, M.; Ponci, F.; Monti, A. A Compressive Sensing Approach for Fault Location in Distribution Grid Branches. In Proceedings of the 2019 International Conference on Smart Energy Systems and Technologies (SEST), Porto, Portugal, 9–11 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, L.; Liu, M.; Dai, P.; Hao, R.; Zhang, Y. Research on Quick Distributed Feeder Automation for Fast Fault Isolation/Self-healing in Distribution Network. In Proceedings of the 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Chengdu, China, 21–24 May 2019; pp. 202–206. [Google Scholar] [CrossRef]
- Zhao, J.; Xia, X.; Su, D.; Xu, C.; Wu, F. Fault Section Location Method Based on Random Forest Algorithm for Distribution Networks with Distribution Generations. In Proceedings of the 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Chengdu, China, 21–24 May 2019; pp. 4165–4169. [Google Scholar] [CrossRef]
- Hassani, H.; RazavinFar, R.; Saif, M. Locating Faults in Smart Grids Using Neuro–Fuzzy Networks. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019. [Google Scholar] [CrossRef]
- Kong, B.; Liu, X.; Pu, B.; Feng, J.; Ying, Z.; Liu, S. Modeling and Simulation of Fault Location with Traveling Wave for 35kV Distribution Networks. In Proceedings of the 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2), Changsha, China, 8–10 November 2019; pp. 2617–2620. [Google Scholar] [CrossRef]
- Yu, B.; Li, H.; Zhu, W.; Ouyang, F.; Ao, F.; Yan, Y. Distribution Line Fault Location Method Based on Multi Terminal Information Fusion and Filtering Estimation. In Proceedings of the 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2), Changsha, China, 8–10 November 2019; pp. 889–893. [Google Scholar] [CrossRef]
- Lin, L.; Fu, J.; Jin, Z.; Feng, X.; Gu, X. RL model algorithm-based fault location for DC distribution networks. In Proceedings of the 2019 4th IEEE Workshop on the Electronic Grid (eGRID), Xiamen, China, 11–14 November 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Parikh, P.; Voloh, I.; Mahony, M. Fault location, isolation, and service restoration (FLISR) technique using IEC 61850 GOOSE. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Kashyap, N.; Member, S.; Yang, C.; Member, S.; Sierla, S.; Flikkema, P.G. Automated Fault Location and Isolation in Distribution Grids with Distributed Control and Unreliable Communication. IEEE Trans. Ind. Electron. 2015, 62, 2612–2619. [Google Scholar] [CrossRef]
- Kirubadevi, S.; Sutha, S. Wavelet based transmission line fault identification and classification. In Proceedings of the 2017 International Conference on Computation of Power, Energy Information and Commuincation (ICCPEIC), Melmaruvathur, India, 22–23 March 2017; pp. 737–741. [Google Scholar] [CrossRef]
- Sarwar, M.; Mehmood, F.; Abid, M.; Khan, A.Q.; Gul, S.T.; Khan, A.S. High impedance fault detection and isolation in power distribution networks using support vector machines. J. King Saud Univ. Eng. Sci. 2019, 32, 524–535. [Google Scholar] [CrossRef]
- Kavaskar, S.; Mohanty, N.K. Detection of High Impedance Fault in Distribution Networks. Ain Shams Eng. J. 2018, 10, 5–13. [Google Scholar] [CrossRef]
- Asgharigovar, S.; Pourghasem, P.; Seyedi, H. Electrical Power and Energy Systems High impedance fault protection scheme for smart grids based on WPT and ELM considering evolving and cross-country faults. Electr. Power Energy Syst. 2019, 107, 412–421. [Google Scholar] [CrossRef]
- Ferreira, G.D.A.; Assis, T.M.L. A Novel High Impedance Arcing Fault Detection Based on the Discrete Wavelet Transform for Smart Distribution Grids. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Conference-Latin America (ISGT Latin America), Gramado, Brazil, 15–18 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Rajendran, G.; Sathyabalu, H.V.; Sachi, M.; Devarajan, V. Cyber Security in Smart Grid: Challenges and Solutions. In Proceedings of the 2019 2nd International Conference on Power and Embedded Drive Control (ICPEDC), Chennai, India, 21–23 August 2019; pp. 546–551. [Google Scholar] [CrossRef]
- Bayindir, R.; Hossain, E.; Vadi, S. The path of the smart grid -the new and improved power grid. In Proceedings of the 2016 International Smart Grid Workshop and Certificate Program (ISGWCP), Istanbul, Turkey, 21–25 March 2016; pp. 1–8. [Google Scholar] [CrossRef]
Research Papers | [9] | [10] | [11] | [12] | This Paper |
---|---|---|---|---|---|
Power Failure In The Smart Grid | ✓ | ✗ | ✓ | ✓ | ✓ |
Type Of Faults Statistics | ✗ | ✗ | ✓ | ✗ | ✓ |
Fault Detection And Fault Location | ✓ | ✗ | ✗ | ✗ | ✓ |
Prediction Methods | ✗ | ✓ | ✗ | ✗ | ✓ |
Challenges | ✗ | ✓ | ✗ | ✓ | ✓ |
Motivation | ✗ | ✗ | ✗ | ✗ | ✓ |
Opportunities | ✗ | ✗ | ✓ | ✗ | ✓ |
Causes | Faults | Faults Covered | Location of Fault in a Grid System | Techniques | Ref |
---|---|---|---|---|---|
Equipment breakdown at a substation |
|
| Distribution |
| [4,7,48] |
large scale faults and small disturbances in the grid |
|
| Distribution |
| [1,3,5,6,39] |
Weather impacts
|
|
| Distribution |
| [8,46,47] |
Electrical Power system faults |
|
| Distribution |
| [2,35,36,37,38,65,66,67] |
Power swing in the series compensated line. |
|
| [68,69] | ||
|
|
| [30,31,32,33,34,70,71,72] | ||
Electrical wires are damaged or connections are defective or loose. |
|
| [73] | ||
distribution lines |
| Distribution |
| [43,44,74] | |
Incipient faults in power distribution systems potentially |
| For underground cables, insulation aging presented as water tree electrical | Distribution |
| [23,40,41,42] |
fault-location |
|
| Distribution & Transmission |
| [26,27,28,29,75,76,77,78,79,80,81,82,83,84,85,86,87,88] |
Transmission line |
| Transmission |
| [89,90] | |
High impedance fault detection |
| Distribution |
| [91,92,93,94] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, M.A.; Md Nasir, N.R.; Gurunathan, M.; Raj, P.; Mostafa, S.A. The Current State of the Art in Research on Predictive Maintenance in Smart Grid Distribution Network: Fault’s Types, Causes, and Prediction Methods—A Systematic Review. Energies 2021, 14, 5078. https://doi.org/10.3390/en14165078
Mahmoud MA, Md Nasir NR, Gurunathan M, Raj P, Mostafa SA. The Current State of the Art in Research on Predictive Maintenance in Smart Grid Distribution Network: Fault’s Types, Causes, and Prediction Methods—A Systematic Review. Energies. 2021; 14(16):5078. https://doi.org/10.3390/en14165078
Chicago/Turabian StyleMahmoud, Moamin A., Naziffa Raha Md Nasir, Mathuri Gurunathan, Preveena Raj, and Salama A. Mostafa. 2021. "The Current State of the Art in Research on Predictive Maintenance in Smart Grid Distribution Network: Fault’s Types, Causes, and Prediction Methods—A Systematic Review" Energies 14, no. 16: 5078. https://doi.org/10.3390/en14165078
APA StyleMahmoud, M. A., Md Nasir, N. R., Gurunathan, M., Raj, P., & Mostafa, S. A. (2021). The Current State of the Art in Research on Predictive Maintenance in Smart Grid Distribution Network: Fault’s Types, Causes, and Prediction Methods—A Systematic Review. Energies, 14(16), 5078. https://doi.org/10.3390/en14165078