Recent Development in the Design of Wind Deflectors for Vertical Axis Wind Turbine: A Review
Abstract
:1. Introduction
2. Prior Literature
3. Methodology
4. Results
4.1. Bibliometric Analysis
4.2. Small-Scale Wind Energy Generation
4.3. Applications of Wind Deflectors in Wind Turbines
4.3.1. Airfoil-Shaped Wind Deflectors
4.3.2. Flat-Plate Wind Deflectors
4.3.3. Compound Structured Wind Deflectors
4.4. Application of Wind Deflectors in Cooling Towers
4.5. Applications of Wind Deflectors in Building Structures
4.6. Applications of Wind Deflectors in Vehicles
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Storti, B.A.; Dorella, J.J.; Roman, N.D.; Peralta, I.; Albanesi, A.E. Improving the efficiency of a Savonius wind turbine by designing a set of deflector plates with a metamodel-based optimization approach. Energy 2019, 186, 115814. [Google Scholar] [CrossRef]
- De Blasis, R.; Masala, G.B.; Petroni, F. A Multivariate High-Order Markov Model for the Income Estimation of a Wind Farm. Energies 2021, 14, 388. [Google Scholar] [CrossRef]
- Wec. World Energy Scenarios: Composing Energy Futures to 2050. Available online: Http//WwwWorldenergyOrg/2013:1–288 (accessed on 15 March 2021).
- Mancini, F.; Nastasi, B. Solar Energy Data Analytics: PV Deployment and Land Use. Energies 2020, 13, 417. [Google Scholar] [CrossRef] [Green Version]
- Delgado, I.; Fahim, M. Wind Turbine Data Analysis and LSTM-Based Prediction in SCADA System. Energies 2020, 14, 125. [Google Scholar] [CrossRef]
- Li, S.; Huang, L.; Liu, Y.; Zhang, M. Modeling of Ultra-Short Term Offshore Wind Power Prediction Based on Condition-Assessment of Wind Turbines. Energies 2021, 14, 891. [Google Scholar] [CrossRef]
- Astolfi, D.; Byrne, R.; Castellani, F. Estimation of the Performance Aging of the Vestas V52 Wind Turbine through Comparative Test Case Analysis. Energies 2021, 14, 915. [Google Scholar] [CrossRef]
- Yuan, Z.; Jiang, J.; Zang, J.; Sheng, Q.; Sun, K.; Zhang, X.; Ji, R. A Fast Two-Dimensional Numerical Method for the Wake Simulation of a Vertical Axis Wind Turbine. Energies 2021, 14, 49. [Google Scholar] [CrossRef]
- Tang, S.; Tian, D.; Huang, M.; Li, B.; Tao, L. Load control optimization method for offshore wind turbine based on LTR. Energy Rep. 2021, 7, 4288–4297. [Google Scholar] [CrossRef]
- Zadorozhna, D.B.; Benavides, O.; Grajeda, J.S.; Ramirez, S.F.; de la Cruz May, L. A parametric study of the effect of leading edge spherical tubercle amplitudes on the aerodynamic performance of a 2D wind turbine airfoil at low Reynolds numbers using computational fluid dynamics. Energy Rep. 2021, 7, 4184–4196. [Google Scholar] [CrossRef]
- Abdelsalam, A.M.; Kotb, M.A.; Yousef, K.; Sakr, I.M. Performance study on a modified hybrid wind turbine with twisted Savonius blades. Energy Convers. Manag. 2021, 241, 114317. [Google Scholar] [CrossRef]
- Zadeh, M.N.; Pourfallah, M.; Sabet, S.S.; Gholinia, M.; Mouloodi, S.; Ahangar, A.T. Performance assessment and optimization of a helical Savonius wind turbine by modifying the Bach’s section. SN Appl. Sci. 2021, 3, 739. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, X.; Chao, Y.; Li, Q.; Li, M.; Chen, T.; Ouyang, W. Numerical optimization of horizontal-axis wind turbine blades with surrogate model. Proc. Inst. Mech. Eng. Part A J. Power Energy 2020, 235, 1173–1186. [Google Scholar] [CrossRef]
- Paranjape, A.D.; Bajaj, A.S.; Palanganda, S.T.; Parikh, R.; Nayak, R.; Radhakrishnan, J. Computational analysis of high-lift-generating airfoils for diffuser-augmented wind turbines. Wind Energy Sci. 2021, 6, 149–157. [Google Scholar] [CrossRef]
- Mohammadi, M.; Mohammadi, R.; Ramadan, A.; Mohamed, M.H. Numerical investigation of performance refinement of a drag wind rotor using flow augmentation and momentum exchange optimization. Energy 2018, 158, 592–606. [Google Scholar] [CrossRef]
- Dighe, V.V.; de Oliveira, G.; Avallone, F.; van Bussel, G.J.W. On the effects of the shape of the duct for ducted wind turbines. Wind Energy Symp. 2018, 0997. [Google Scholar] [CrossRef]
- Burlando, M.; Ricci, A.; Freda, A.; Repetto, M.P. Numerical and experimental methods to investigate the behaviour of vertical-axis wind turbines with stators. J. Wind Eng. Ind. Aerodyn. 2015, 144, 125–133. [Google Scholar] [CrossRef]
- Mohamed, M.H.; Janiga, G.; Pap, E.; Thévenin, D. Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade. Energy Convers. Manag. 2011, 52, 236–242. [Google Scholar] [CrossRef]
- Alom, N.; Saha, U.K. Four Decades of Research into the Augmentation Techniques of Savonius Wind Turbine Rotor. J. Energy Resour. Technol. Trans. ASME 2018, 140, 050801. [Google Scholar] [CrossRef]
- Golecha, K.; Eldho, T.I.; Prabhu, S.V. Influence of the deflector plate on the performance of modified Savonius water turbine. Appl. Energy 2011, 88, 3207–3217. [Google Scholar] [CrossRef]
- Jin, X.; Wang, Y.; Ju, W.; He, J.; Xie, S. Investigation into parameter influence of upstream deflector on vertical axis wind turbines output power via three-dimensional CFD simulation. Renew. Energy 2018, 115, 41–53. [Google Scholar] [CrossRef]
- Hou, L.; Shen, S.; Wang, Y. Numerical Study on Aerodynamic Performance of Different Forms of Adaptive Blades for Vertical Axis Wind Turbines. Energies 2021, 14, 880. [Google Scholar] [CrossRef]
- Loganathan, B.; Chowdhury, H.; Mustary, I.; Rana, M.M.; Alam, F. Design of a micro wind turbine and its economic feasibility study for residental power generation in built-up areas. Energy Procedia 2019, 160, 812–819. [Google Scholar] [CrossRef]
- Shin, J.; Baek, S.; Rhee, Y. Wind Farm Layout Optimization Using a Metamodel and EA/PSO Algorithm in Korea Offshore. Energies 2020, 14, 146. [Google Scholar] [CrossRef]
- Cottura, L.; Caradonna, R.; Ghigo, A.; Novo, R.; Bracco, G.; Mattiazzo, G. Dynamic Modeling of an Offshore Floating Wind Turbine for Application in the Mediterranean Sea. Energies 2021, 14, 248. [Google Scholar] [CrossRef]
- Offshore, F.; Farms, W. A Comparative Analysis of Economics of PMSG and SCSG Floating Offshore Wind Farms. Energies 2021, 14, 1386. [Google Scholar]
- Dorrego, J.R.; Ríos, A.; Hernandez-Escobedo, Q.; Campos-Amezcua, R.; Iracheta, R.; Lastres, O.; López, P.; Verde, A.; Hechavarria, L.; Perea-Moreno, M.-A.; et al. Theoretical and Experimental Analysis of Aerodynamic Noise in Small Wind Turbines. Energies 2021, 14, 727. [Google Scholar] [CrossRef]
- Pacheco, J.; Oliveira, G.; Magalhães, F.; Moutinho, C.; Cunha, Á. Vibration-Based Monitoring of Wind Turbines: Influence of Layout and Noise of Sensors. Energies 2021, 14, 441. [Google Scholar] [CrossRef]
- Youssef, K.M.; El Kholy, A.M.; Hamed, A.M.; Mahmoud, N.A.; El Baz, A.M.; Mohamed, T.A. An innovative augmentation technique of savonius wind turbine performance. Wind Eng. 2020, 44, 93–112. [Google Scholar] [CrossRef]
- Qasemi, K.; Azadani, L.N. Optimization of the power output of a vertical axis wind turbine augmented with a flat plate deflector. Energy 2020, 202, 117745. [Google Scholar] [CrossRef]
- Wong, K.H.; Chong, W.T.; Sukiman, N.L.; Poh, S.C.; Shiah, Y.C.; Wang, C.T. Performance enhancements on vertical axis wind turbines using flow augmentation systems: A review. Renew. Sustain. Energy Rev. 2017, 73, 904–921. [Google Scholar] [CrossRef]
- Serrano González, J.; López, B.; Draper, M. Optimal Pitch Angle Strategy for Energy Maximization in Offshore Wind Farms Considering Gaussian Wake Model. Energies 2021, 14, 938. [Google Scholar] [CrossRef]
- Silva, J.E.; Danao, L.A.M. Varying VAWT Cluster Configuration and the Effect on Individual Rotor and Overall Cluster Performance. Energies 2021, 14, 1567. [Google Scholar] [CrossRef]
- Enrici, P.; Meny, I.; Matt, D. Conceptual Study of Vernier Generator and Rectifier Association for Low Power Wind Energy Systems. Energies 2021, 14, 666. [Google Scholar] [CrossRef]
- Reupke, P.; Probert, S.D. Slatted-blade Savonius wind-rotors. Appl. Energy 1991, 40, 65–75. [Google Scholar] [CrossRef]
- Aslam Bhutta, M.M.; Hayat, N.; Farooq, A.U.; Ali, Z.; Jamil, S.R.; Hussain, Z. Vertical axis wind turbine—A review of various configurations and design techniques. Renew. Sustain. Energy Rev. 2012, 16, 1926–1939. [Google Scholar] [CrossRef]
- Hansen, M.O.L.; Sørensen, J.N.; Voutsinas, S.; Sørensen, N.; Madsen, H.A. State of the art in wind turbine aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 2006, 42, 285–330. [Google Scholar] [CrossRef]
- Kopeika, O.V.; Tereshchenko, A.V. Wind-Power Transforming Systems. J. Math. Sci. 2001, 104, 1631–1634. [Google Scholar] [CrossRef]
- Biswas, S.; Sreedhard, B.N.; Singh, Y.P. Dynamic analysis of a vertical axis wind turbine using a new windload estimation technique. Comput. Struct. 1997, 65, 903–916. [Google Scholar] [CrossRef]
- Pope, K.; Dincer, I.; Naterer, G.F. Energy and exergy efficiency comparison of horizontal and vertical axis wind turbines. Renew. Energy 2010, 35, 2102–2113. [Google Scholar] [CrossRef]
- Pope, K.; Naterer, G.F.; Dincer, I.; Tsang, E. Power correlation for vertical axis wind turbines with varying geometries. Int. J. Energy Res. 2011, 35, 423–435. [Google Scholar] [CrossRef]
- Fujisawa, N.; Takeuchi, M. Flow Visualization and PIV Measurement of Flow Field around a Darrieus Rotor in Dynamic Stall. J. Vis. 1999, 1, 379–386. [Google Scholar] [CrossRef]
- Wang, S.; Ingham, D.B.; Ma, L.; Pourkashanian, M.; Tao, Z. Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils. Comput. Fluids 2010, 39, 1529–1541. [Google Scholar] [CrossRef]
- Kumar, M.S.; Krishnan, A.S.; Vijayanandh, R. Vibrational Fatigue Analysis of NACA 63215 Small Horizontal Axis Wind Turbine blade. Mater. Today Proc. 2018, 5, 6665–6674. [Google Scholar] [CrossRef]
- Guo, W.; Shen, H.; Li, Y.; Feng, F.; Tagawa, K. Wind tunnel tests of the rime icing characteristics of a straight-bladed vertical axis wind turbine. Renew. Energy 2021, 179, 116–132. [Google Scholar] [CrossRef]
- Li, Y.; Tagawa, K.; Liu, W. Performance effects of attachment on blade on a straight-bladed vertical axis wind turbine. Curr. Appl. Phys. 2010, 10, S335–S338. [Google Scholar] [CrossRef]
- Astiz, M.A.; Caminos, E.; Puertos, C.; Madrid, U.P. De Wind-Induced Vibrations of the Alconétar Bridge, Spain. Struct. Eng. Int. 2010, 20, 195–199. [Google Scholar] [CrossRef]
- Nimje, A.A.; Gandhi, N.M. Design and development of small wind turbine for power generation through high velocity exhaust air. Renew. Energy 2020, 145, 1487–1493. [Google Scholar] [CrossRef]
- Hou, H.; Yue, G. Impact of sunroof deflector on interior sound quality. SAE Tech. Pap. 2015, 1–7. [Google Scholar] [CrossRef]
- Sinha, S.; Kavarana, F.; Williams, D.; Asao, K. A High Performance Airfoil-Profile Deflector for Open Sunroof Wind Noise. SAE Tech. Pap. 2016, 1–9. [Google Scholar] [CrossRef]
- Li, L.; Chopra, I.; Zhu, W.; Yu, M. Performance Analysis and Optimization of a Vertical-Axis Wind Turbine with a High Tip-Speed Ratio. Energies 2021, 14, 996. [Google Scholar] [CrossRef]
- Roy, S.; Saha, U.K. Review of experimental investigations into the design, performance and optimization of the Savonius rotor. Proc. Inst. Mech. Eng. Part A J. Power Energy 2013, 227, 528–542. [Google Scholar] [CrossRef]
- Fan, H.; Ouyang, J.; Sun, F.; Yu, P.; Kuang, N.; Hu, Y. Light-Weight Design of CRH Wind Deflector Panels based on Woven Textile Sandwich Composites. Acta Mech. Solida Sin. 2016, 29, 208–220. [Google Scholar] [CrossRef]
- Kook, H.S.; Shin, S.R.; Cho, J.; Ih, K.D. Development of an active deflector system for sunroof buffeting noise control. JVC/J. Vib. Control 2014, 20, 2521–2529. [Google Scholar] [CrossRef]
- Huang, C.H.; Wang, K.Y. Effect of adjustable deflectors on building facade on diverting the distribution of aerosol in micro climate wind field. Appl. Mech. Mater. 2011, 71–78, 338–341. [Google Scholar] [CrossRef]
- Araújo, F.; Pereira, M.; Freitas, M.; Silva, N.; Dantas, E. Bigger Is Not Always Better: Review of Small Wind in Brazil. Energies 2021, 14, 976. [Google Scholar] [CrossRef]
- Papi, F.; Nocentini, A.; Ferrara, G.; Bianchini, A. On the Use of Modern Engineering Codes for Designing a Small Wind Turbine: An Annotated Case Study. Energies 2021, 14, 1013. [Google Scholar] [CrossRef]
- Wrobel, K.; Tomczewski, K.; Sliwinski, A.; Tomczewski, A. Optimization of a Small Wind Power Plant for Annual Wind Speed Distribution. Energies 2021, 14, 1587. [Google Scholar] [CrossRef]
- EAWE Committees n.d. Available online: https://www.eawe.eu/organisation/committees/ (accessed on 15 March 2021).
- Coles, D.; Angeloudis, A.; Goss, Z.; Miles, J. Tidal stream vs. wind energy: The value of predictable, cyclic power generation in off-grid hybrid systems. Energies 2021, 14, 1106. [Google Scholar] [CrossRef]
- Gajewski, P.; Pieńkowski, K. Control of the Hybrid Renewable Energy System with Wind Turbine, Photovoltaic Panels and Battery Energy Storage. Energies 2021, 14, 1595. [Google Scholar] [CrossRef]
- Guezgouz, M.; Jurasz, J.; Mikulik, J.; Paweł, B.D. Complementarity and ‘Resource Droughts’ of Solar and Wind Energy in Poland: An ERA5-Based Analysis. Energies 2021, 14, 1118. [Google Scholar]
- Robak, S.; Gulczy, T. Hybrid and Ensemble Methods of Two Days Ahead Forecasts of Electric Energy Production in a Small Wind Turbine. Energies 2021, 14, 1225. [Google Scholar]
- Niu, H.; Yang, Y.; Zeng, L.; Li, Y. ELM-QR-Based Nonparametric Probabilistic Prediction Method for Wind Power. Energies 2021, 14, 701. [Google Scholar] [CrossRef]
- Wyrobek, J.; Popławski, Ł.; Dziku, M. Analysis of Financial Problems of Wind Farms in Poland. Energies 2021, 14, 1239. [Google Scholar] [CrossRef]
- Dietrich, F.; Borchers-Tigasson, S.; Naumann, T.; Schulte, H. Adaptive Extremum Seeking Control of Urban Area Wind Turbines. Energies 2021, 14, 1356. [Google Scholar] [CrossRef]
- Ding, S.; Li, Z. Optimization of Wind Deflector Structure of Permanent Magnet Wind Turbine. In Proceedings of the 2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Nanjing, China, 20–23 September 2020. [Google Scholar] [CrossRef]
- Betz, A. Das Maximum der theoretisch moeglichen Ausnutzung des Windes durch Windmotoren. Z. Gesamte Turbinenwesten 1920, 20. Available online: https://ci.nii.ac.jp/naid/20000993058/ (accessed on 18 August 2021).
- Shaughnessy, B.M.; Probert, S.D. Partially-blocked savonius rotor. Appl. Energy 1992, 43, 239–249. [Google Scholar] [CrossRef]
- Chen, C.A.; Huang, T.Y.; Chen, C.H. Novel plant development of a parallel matrix system of Savonius wind rotors with wind deflector. J. Renew. Sustain. Energy 2015, 7, 013135. [Google Scholar] [CrossRef]
- Belabes, B.; Youcefi, A.; Paraschivoiu, M. Numerical investigation of Savonius wind turbine farms. J. Renew. Sustain. Energy 2016, 8, 053302. [Google Scholar] [CrossRef]
- Wijnen, M.; Chattot, J.J. Multi-point optimization of wind turbine blades using helicoidal vortex model. In Proceedings of the Sixth International Conference on Computational Fluid Dynamics, ICCFD6, St. Petersburg, Russia, 12–16 July 2010. [Google Scholar] [CrossRef]
- Schmid, G.; Chen, C.H.; Ma, W.C.; Yang, T.H.; Chen, S.L. Performance enhancement of rooftop turbine ventilators using wind deflectors. J. Chin. Inst. Eng. Trans. Chin. Inst. Eng. A 2016, 39, 461–467. [Google Scholar] [CrossRef]
- Kim, D.; Gharib, M. Efficiency improvement of straight-bladed vertical-axis wind turbines with an upstream deflector. J. Wind Eng. Ind. Aerodyn. 2013, 115, 48–52. [Google Scholar] [CrossRef]
- Layeghmand, K.; Ghiasi Tabari, N.; Zarkesh, M. Improving efficiency of Savonius wind turbine by means of an airfoil-shaped deflector. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 1–12. [Google Scholar] [CrossRef]
- Yan, Y.; Avital, E.; Williams, J.; Cui, J. CFD analysis for the performance of micro-vortex generator on aerofoil and vertical axis turbine. J. Renew. Sustain. Energy 2019, 11, 043302. [Google Scholar] [CrossRef]
- Mohamed, M.H.; Janiga, G.; Pap, E.; Thèvenin, D. Optimization of Savonius turbines using an obstacle shielding the returning blade. Renew. Energy 2010, 35, 2618–2626. [Google Scholar] [CrossRef]
- Wong, K.H.; Chong, W.T.; Poh, S.C.; Shiah, Y.C.; Sukiman, N.L.; Wang, C.T. 3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine. Renew. Energy 2018, 129, 32–55. [Google Scholar] [CrossRef]
- Li, Q.; Maeda, T.; Kamada, Y.; Murata, J.; Furukawa, K.; Yamamoto, M. The influence of flow field and aerodynamic forces on a straight-bladed vertical axis wind turbine. Energy 2016, 111, 260–271. [Google Scholar] [CrossRef]
- Cunningham, J.; Milne, H.K. Effect of Helix Angle on the Performance of Roped Tubes. 1978, pp. 1–24. Available online: https://ihtcdigitallibrary.com/conferences/2d9b67ad1b92ab15,236f34554bc7a5ca,07883cb13dbf1383.html (accessed on 18 August 2021).
- Jiang, Y.; Zhao, P.; Stoesser, T.; Wang, K.; Zou, L. Experimental and numerical investigation of twin vertical axis wind turbines with a deflector. Energy Convers. Manag. 2020, 209, 112588. [Google Scholar] [CrossRef]
- Oliveira, J.A.; Filho, Á.F.F. Performance Evaluation of a Stator Modular Ring Generator for a Shrouded Wind Turbine. Energies 2020, 14, 67. [Google Scholar] [CrossRef]
- Cutillas, C.G.; Ramírez, J.R.; Miralles, M.L. Optimum design and operation of an HVAC cooling tower for energy and water conservation. Energies 2017, 10, 299. [Google Scholar] [CrossRef] [Green Version]
- Goodarzi, M. A proposed stack configuration for dry cooling tower to improve cooling efficiency under crosswind. J. Wind Eng. Ind. Aerodyn. 2010, 98, 858–863. [Google Scholar] [CrossRef]
- Du, X.; Han, D.; Zhu, Q. Heat transfer enhancement of the air-cooling tower with rotating wind deflectors under crosswind conditions. Appl. Sci. 2018, 8, 544. [Google Scholar] [CrossRef] [Green Version]
- Gong, X.; Gu, Z.; Li, Z.; Song, X.; Wang, Y. Aerodynamic shape optimization of a container-truck’s wind deflector using approximate model. SAE Tech. Pap. 2010, 1–10. [Google Scholar] [CrossRef]
Author(s) | Method | Pros | Limitations |
---|---|---|---|
Delgado I. et al. [5] | Prediction: Long Short-Term Memory (LSTM) based prediction | Applicable in real-life scenarios | Short-term prediction about turbine’s power generation and wind speed and direction |
Li S. et al. [6] | Prediction: Health Condition Assessment based on Modified Fuzzy Comprehension Evaluation (MFCE) | Improved indication of marine environmental deterioration on the wind turbine | Limited to onshore wind turbines only |
Astolfi D. et al. [7] | Prediction: Wind Turbine’s Aging Impact Analysis | The performance of the wind turbine can be analyzed at a certain age | Machine and location- dependent |
Yuan Z. et al. [8] | Wake-Field: Numerical Simulation | A fast and accurate method to design the optimized array of VAWTs by simulating the wake-field | The method is theoretically feasible; however, experimental validation is limited |
S. Tang et al. [9] | Pitch Controller: Loop Transfer Recovery (LTR) based Pitch Controller Optimization | Turbine rotor rotation and tower motion controller (due to aerodynamic forces), Improved performance for tower load alleviation and power fluctuation mitigation | Suitable for HAWT only, Output power stabilization needs to be investigated under different wind conditions |
O. Benavides et al. [10] | Aerofoil: Optimization by CFD analysis on low Reynolds number aerofoil | Compared to the unmodified version of the aerofoil, the aerofoil with a tubercle at the leading edge has a lower maximum lift coefficient and lower stall angle | Not suitable for large scale HAWT, instead it performs better for small VAWT in small winds |
M. Abdelsalam et al. [11] | Hybrid VAWT Rotors | The improved self-starting ability of Savonius rotor due to additional Darrieus blades | Variation in radius ratio has a significant influence on performance, Structural complexity |
Zadeh M.N., et al. [12] | Blade Optimization | Compared to the basic helical Savonius, the optimized Bach model performs better in the high velocity and turbulent environment | Lack of experimental validation |
Wang et al. [13] | Blade optimization (based on the combined method of Surrogate model and numerical simulation) | Optimized blade of HAWT can capture more kinetic energy, power coefficient increased by 4.3% | The structural load on the HAWT blade is also increased, Not applicable for VAWT |
Aniruddha et al. [14] | Flow Augmentation | A pool of airfoils to design the diffuser as an augmentor for wind turbines | The thurst coefficient and tip clearance effect of the turbine in the diffuser are yet to be studied |
M. Mohammadi et al. [15] | Flow Augmentation | The performance of the Savonius turbine is increased by adding a nozzle in front of the advancing blade | The nozzle is fixed and hence can not follow the wind direction |
Dighe et al. [16] | Flow Augmentation | Among different shapes of the Duct for DWT, the S1223 airfoil-shaped duct attains better coefficient of performance | Increased structural complexity |
Technique | Method(s) | Description |
---|---|---|
Calculation of Aerodynamic Load | Belade element momentum (BEM) [37] | This method is useful to calculate aerodynamic drag, assuming an order of 10–20 rotor sections to be independent and calculated separately |
Actuator disc [37] | This method has more accuracy but relatively higher complexity compared to BEM; the turbine rotor is assumed to be a permeable disc that is subjected to surface forces when flow passes through it | |
Vortex method [38] | This is useful when considering the parts where vorticity is observed, rather than calculating aerodynamic characteristics at all the grid nodes on the blade | |
Impulsive method [38] | It is based on the relationship between the time average of aerodynamic forces on blades and the impulse loss of the airflow across the rotor swept area | |
Dynamic analysis [39] | This method can be useful to calculate aerodynamic load as well as to estimate the vibratory stress on the blade with great accuracy | |
Efficiency | Computational fluid dynamics (CFD) [18] | CFD simulations are very useful to determine the power coefficient of the turbine; the correct utilization of fluid models can ensure good agreement between experimental and simulated results |
Exergy analysis [40] | It can be based on different operating conditions, design parameters, and geometries, and help to identify the area of improvement | |
Buckingham Pi theorem [41] | A relation based on which power coefficient can be obtained for a given tip speed ratio | |
Airflow Analysis | Particle image velocimetry (PIV) [42] | Flow is visualized by dye injection while the PIV combined with an imaging technique measures the distribution of velocity around the blade |
CFD [43] | CFD simulations capture vortex shedding flow structure over the blade in close agreement with experimental data | |
Vibration and Fatigue Analysis | Operating wind turbine analysis [44] | The aerodynamic load affects the aero-elastic and structural behavior of the wind turbine. Therefore, it is important to analyze the fatigue life of an operational wind turbine |
Analysis of Weathering Effects | Wind tunnel tests [45,46] | Weathering effect on a wind turbine is analysed in terms of attachments (such as ice) on the blades |
Deflector | VAWT Turbine | Result/Augmentation Gain |
---|---|---|
Flat plate | Savonius 2-Bladed | 27.3% |
Flat plate | Savonius 3-Bladed | 27.55% |
Flat Plate | H-Type NACA 0021 blade | 47.1% |
Airfoil shaped | Savonius | 50% |
Flat Plate | Straight Blade Twin Turbine | 26% |
Kite Shaped | Straight Blade Twin Turbine | 38.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajpar, A.H.; Ali, I.; Eladwi, A.E.; Bashir, M.B.A. Recent Development in the Design of Wind Deflectors for Vertical Axis Wind Turbine: A Review. Energies 2021, 14, 5140. https://doi.org/10.3390/en14165140
Rajpar AH, Ali I, Eladwi AE, Bashir MBA. Recent Development in the Design of Wind Deflectors for Vertical Axis Wind Turbine: A Review. Energies. 2021; 14(16):5140. https://doi.org/10.3390/en14165140
Chicago/Turabian StyleRajpar, Altaf Hussain, Imran Ali, Ahmad E. Eladwi, and Mohamed Bashir Ali Bashir. 2021. "Recent Development in the Design of Wind Deflectors for Vertical Axis Wind Turbine: A Review" Energies 14, no. 16: 5140. https://doi.org/10.3390/en14165140
APA StyleRajpar, A. H., Ali, I., Eladwi, A. E., & Bashir, M. B. A. (2021). Recent Development in the Design of Wind Deflectors for Vertical Axis Wind Turbine: A Review. Energies, 14(16), 5140. https://doi.org/10.3390/en14165140