Winding MMF and PM MMF Analysis of Axial-Flux Machine with Multi-Phase and Multi-Layer Winding
Abstract
:1. Introduction
2. Winding MMF of Multi-Phase and Multi-Layer Layout
2.1. DTP-DL Winding Function
2.2. TP-FL Winding Function
2.3. DTP-FL Winding Function
3. PM MMF and Motor Characteristic
3.1. Rotor PM MMF
3.2. Air Gap Permeance and Relative Air Gap Permeance
3.3. Air Gap Flux Density
3.4. No-Load Back-EMF
3.5. Electromagnetic Torque and Its Ripple
4. Prototype Manufacture and Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alberti, L.; Bianchi, N. Theory and design of fractional-slot multilayer windings. IEEE Trans. Ind. Appl. 2013, 49, 841–849. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, R.; Li, J. Multilayer windings effect on interior PM machines for EV applications. IEEE Trans. Ind. Appl. 2015, 51, 2208–2215. [Google Scholar] [CrossRef]
- Abdel-Khalik, A.S.; Ahmed, S.; Massoud, A.M. Effect of multilayer windings with different stator winding connections on interior PM machines for EV applications. IEEE Trans. Magn. 2016, 52, 1–7. [Google Scholar] [CrossRef]
- Rallabandi, V.; Taran, N.; Ionel, D.M. Multilayer concentrated windings for axial flux pm machines. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar] [CrossRef]
- Sun, A.; Li, J.; Qu, R.; Li, D. Effect of multilayer windings on rotor losses of interior permanent magnet generator with fractional-slot concentrated-windings. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Lu, Y.; Li, J.; Lu, H.; Qu, R.; Xiao, L.; Li, D.; Zhang, R. Six-phase double-stator inner-rotor axial flux PM machines with novel detached winding. IEEE Trans. Ind. Appl. 2017, 53, 1931–1941. [Google Scholar] [CrossRef]
- Abdel-Khalik, A.S.; Ahmed, S.; Massoud, A.M. A six-phase 24-slot/10-pole permanent-magnet machine with low space harmonics for electric vehicle applications. IEEE Trans. Magn. 2016, 52, 1–10. [Google Scholar] [CrossRef]
- Reddy, P.B.; El-Refaie, A.M.; Huh, K.K. Effect of number of layers on performance of fractional-slot concentrated-windings interior permanent magnet machines. IEEE Trans. Power Electron. 2015, 30, 2205–2218. [Google Scholar] [CrossRef]
- Bianchi, N.; Bolognani, S.; Pre, M.D.; Grezzani, G.A.G.G. Design considerations for fractional-slot winding configurations of synchronous machines. IEEE Trans. Ind. Appl. 2006, 42, 997–1006. [Google Scholar] [CrossRef]
- Hwang, C.C.; Chang, C.M.; Hung, S.S.; Liu, C.T. Design of high performance flux switching PM machines with concentrated windings. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Aslan, B.; Semail, E.; Legranger, J. General analytical model of magnet average eddy-current volume losses for comparison of multiphase PM machines with concentrated winding. IEEE Trans. Energy Convers. 2014, 29, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Khalik, A.S.; Ahmed, S.; Massoud, A.M. Low space harmonics cancelation in double-layer fractional slot winding using dual multiphase winding. IEEE Trans. Magn. 2015, 51, 1–10. [Google Scholar] [CrossRef]
- Ji, J.; Luo, J.; Zhao, W.; Zheng, J.; Zhang, Y. Effect of circumferential segmentation of permanent magnets on rotor loss in fractional-slot concentrated-winding machines. IET Electr. Power Appl. 2017, 11, 1151–1159. [Google Scholar] [CrossRef]
- Nair, S.S.; Wang, J.; Chin, R.; Chen, L.; Sun, T. Analytical prediction of 3-D magnet eddy current losses in surface mounted PM machines accounting slotting effect. IEEE Trans. Energy Convers. 2017, 32, 414–423. [Google Scholar] [CrossRef]
- Kabir, M.A.; Husain, I. Application of a multilayer AC winding to design synchronous reluctance motors. IEEE Trans. Ind. Appl. 2018, 54, 5941–5953. [Google Scholar] [CrossRef]
- Liu, X.; Hu, H.; Zhao, J.; Belahcen, A.; Tang, L.; Yang, L. Analytical solution of the magnetic field and EMF calculation in ironless BLDC motor. IEEE Trans. Magn. 2016, 52, 1–10. [Google Scholar] [CrossRef]
- Zhu, L.; Zhu, J.; Tong, W.; Han, X. Analytical method of no-load iron losses of axial flux amorphous alloy permanent magnet motor. Zhongguo Dianji Gongcheng Xuebao/Proc. Chin. Soc. Electr. Eng. 2017, 37, 923–930. [Google Scholar]
- Guo, B.; Huang, Y.; Peng, F.; Guo, Y.; Zhu, J. Analytical modeling of manufacturing imperfections in double-rotor axial flux PM machines: Effects on back EMF. IEEE Trans. Magn. 2017, 53, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Qazalbash, A.A.; Sharkh, S.M.; Irenji, N.T.; Wills, R.G.; Abusara, M.A. Calculation of no-load rotor eddy-current power loss in PM synchronous machines. IEEE Trans. Magn. 2014, 50, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.H.; Li, Q.F.; Wang, S.H. Analytical calculation of no-load air-gap magnetic field and back electromotive force in brushless dc motor. Proc. Csee 2003, 23, 126–130. [Google Scholar]
- Souissi, A.; Abdennadher, I.; Masmoudi, A. Analytical prediction of the no-load operation features of tubular-linear permanent magnet synchronous machines. IEEE Trans. Magn. 2016, 52, 1–7. [Google Scholar] [CrossRef]
Winding Layout | TP-SL | TP-DL | DTP-DL | TP-FL | DTP-FL |
---|---|---|---|---|---|
THD (%) | 151.2 | 79.8 | 71 | 71.9 | 71 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Rated power (kW) | 2.2 | Air gap length (mm) | 2 |
Rated voltage (V) | 380 | PM thickness (mm) | 3.8 |
Number of slots | 12 | Back iron thickness (mm) | 7 |
Number of poles | 10 | Turns per coil | 41 |
Outer diameter of stator iron (mm) | 180 | Rated speed (rpm) | 3000 |
Inner diameter of stator iron (mm) | 115 | Maximum speed (rpm) | 5500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Li, G.; Cao, W.; Qian, Z.; Wang, Q. Winding MMF and PM MMF Analysis of Axial-Flux Machine with Multi-Phase and Multi-Layer Winding. Energies 2021, 14, 5147. https://doi.org/10.3390/en14165147
Chen Q, Li G, Cao W, Qian Z, Wang Q. Winding MMF and PM MMF Analysis of Axial-Flux Machine with Multi-Phase and Multi-Layer Winding. Energies. 2021; 14(16):5147. https://doi.org/10.3390/en14165147
Chicago/Turabian StyleChen, Qixu, Guoli Li, Wenping Cao, Zhe Qian, and Qunjing Wang. 2021. "Winding MMF and PM MMF Analysis of Axial-Flux Machine with Multi-Phase and Multi-Layer Winding" Energies 14, no. 16: 5147. https://doi.org/10.3390/en14165147
APA StyleChen, Q., Li, G., Cao, W., Qian, Z., & Wang, Q. (2021). Winding MMF and PM MMF Analysis of Axial-Flux Machine with Multi-Phase and Multi-Layer Winding. Energies, 14(16), 5147. https://doi.org/10.3390/en14165147