Towards Optimal Management in Microgrids: An Overview
Abstract
:1. Introduction
2. Elements of an MG
2.1. Energy Generation System
2.2. Energy Storage System
- Ensure power balance in an MG under unfavorable conditions such as transients and load fluctuations, since DG, having a lower inertia, cannot manage to provide a fast response to these disturbances;
- Ensure energy transport capacity when dynamic variations occur in intermittent energy sources, for which even DG can operate as dispatchable units;
- Supply the initial power for the transition between network-connected and island mode operation in the MG.
2.3. Power Electronics
2.4. Loads
3. Microgrid Management
3.1. EMS Based on Metaheuristic Methods
3.2. EMS Based on Linear and Nonlinear Programming
3.3. EMS Based on Dynamic Programming
3.4. EMS Based on Stochastic and Robust Programming
3.5. EMSs Based on Model-Based Predictive Control
3.6. EMS Based on Multiple Agents
3.7. EMS Based on Artificial Intelligence
3.8. EMS Based on Other Techniques
3.9. Summary
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Alternating current |
ADP | Approximate dynamic programming |
BESS | Battery ESS |
CCHP | Combined cooling, heating, and power |
CHP | Combined heat and power |
COE | Cost of energy |
CSA | Crow search algorithm |
DC | Direct current |
DER | Distributed energy resource |
DG | Distributed generation |
DRO | Distributionally robust optimization |
DMC | Dynamic matrix control |
EV | Electric vehicle |
EMS | Energy management system |
ESS | Energy storage system |
FES | Fossil energy source |
FLC | Fuzzy logic controller |
GA | Genetic algorithm |
GOA | Grasshopper optimization algorithm |
GPSO-GM | Guaranteed convergence PSO |
MG | Microgrid |
MILP | Mixed-integer linear programming |
MINLP | Mixed-integer nonlinear programming |
MPC | Model predictive control |
MAS | Multi-agent system |
MOPSO | Multi-objective PSO |
NRLP | Newton–Raphson linear programming algorithm |
Renewable power generated | |
Power from a fossil generator | |
Public grid power | |
Demanded power | |
PSO | Particle swarm optimization |
ESS power | |
PV | Photovoltaics |
RegPSO | Regrouping PSO |
RegPSO | Regrouping PSO |
RES | Renewable energy source |
RBC | Rule-based controller |
REMS | Rule-based EMS |
SAA | Sample average approximation |
SOC | State-of-charge |
VSI | Voltage source inverter |
WT | Wind turbine |
References
- Platonova, E.V.; Toropov, A.S.; Tulikov, A.N. Simulation of energy input to solar panels. In Proceedings of the 2019 International Ural Conference on Electrical Power Engineering (UralCon 2019), Chelyabinsk, Russia, 21 October 2019; pp. 133–137. [Google Scholar] [CrossRef]
- Yu, K.; Ai, Q.; Wang, S.; Ni, J.; Lv, T. Analysis and Optimization of Droop Controller for Microgrid System Based on Small-Signal Dynamic Model. IEEE Trans. Smart Grid 2016, 7, 695–705. [Google Scholar] [CrossRef]
- Truong, L.P.; Quoc, H.A.; Tsai, H.L.; van Dung, D. A method to estimate and analyze the performance of a grid-connected photovoltaic power plant. Energies 2020, 13, 2583. [Google Scholar] [CrossRef]
- Cagnano, A.; De Tuglie, E.; Mancarella, P. Microgrids: Overview and guidelines for practical implementations and operation. Appl. Energy 2020, 258, 114039. [Google Scholar] [CrossRef]
- Egbue, O.; Uko, C. Multi-agent approach to modeling and simulation of microgrid operation with vehicle-to-grid system. Electr. J. 2020, 33, 106714. [Google Scholar] [CrossRef]
- Dimeas, A.L.; Hatziargyriou, N.D. Operation of a multiagent system for microgrid control. IEEE Trans. Power Syst. 2005, 20, 1447–1455. [Google Scholar] [CrossRef]
- Shuai, Z.; Sun, Y.; Shen, Z.J.; Tian, W.; Tu, C.; Li, Y.; Yin, X. Microgrid stability: Classification and a review. Renew. Sustain. Energy Rev. 2016, 58, 167–179. [Google Scholar] [CrossRef]
- Anastasiadis, A.G.; Kondylis, G.P.; Vokas, G.A.; Konstantinopoulos, S.A.; Salame, C.T.; Polyzakis, A.; Tsatsakis, K. Economic benefits from the coordinated control of Distributed Energy Resources and different Charging Technologies of Electric Vehicles in a Smart Microgrid. Energy Procedia 2017, 119, 417–425. [Google Scholar] [CrossRef]
- Llanos, J.; Olivares, D.E.; Simpson-Porco, J.W.; Kazerani, M.; Saez, D. A Novel Distributed Control Strategy for Optimal Dispatch of Isolated Microgrids Considering Congestion. IEEE Trans. Smart Grid 2019, 10, 6595–6606. [Google Scholar] [CrossRef]
- Preetha Roselyn, J.; Ravi, A.; Devaraj, D.; Venkatesan, R.; Sadees, M.; Vijayakumar, K. Intelligent coordinated control for improved voltage and frequency regulation with smooth switchover operation in LV microgrid. Sustain. Energy Grids Netw. 2020, 22, 100356. [Google Scholar] [CrossRef]
- Unamuno, E.; Barrena, J.A. Hybrid ac/dc microgrids—Part I: Review and classification of topologies. Renew. Sustain. Energy Rev. 2015, 52, 1251–1259. [Google Scholar] [CrossRef]
- Jadav, K.A.; Karkar, H.M.; Trivedi, I.N. A Review of Microgrid Architectures and Control Strategy. J. Inst. Eng. (India) Ser. B 2017, 98, 591–598. [Google Scholar] [CrossRef]
- Mariam, L.; Basu, M.; Conlon, M.F. A Review of Existing Microgrid Architectures. J. Eng. 2013, 2013, 937614. [Google Scholar] [CrossRef] [Green Version]
- Kwasinski, A. Quantitative evaluation of DC microgrids availability: Effects of system architecture and converter topology design choices. IEEE Trans. Power Electron. 2011, 26, 835–851. [Google Scholar] [CrossRef]
- Mariam, L.; Basu, M.; Conlon, M.F. Microgrid: Architecture, policy and future trends. Renew. Sustain. Energy Rev. 2016, 64, 477–489. [Google Scholar] [CrossRef]
- Kroposki, B.; Lasseter, R.; Ise, T.; Morozumi, S.; Papathanassiou, S.; Hatziargyriou, N. Making microgrids work. IEEE Power Energy Mag. 2008, 6, 40–53. [Google Scholar] [CrossRef]
- Aghdam, F.H.; Kalantari, N.T.; Mohammadi-Ivatloo, B. A chance-constrained energy management in multi-microgrid systems considering degradation cost of energy storage elements. J. Energy Storage 2020, 29, 101416. [Google Scholar] [CrossRef]
- Nejabatkhah, F.; Li, Y.W. Overview of Power Management Strategies of Hybrid AC/DC Microgrid. IEEE Trans. Power Electron. 2015, 30, 7072–7089. [Google Scholar] [CrossRef]
- Azizi, A.; Peyghami, S.; Mokhtari, H.; Blaabjerg, F. Autonomous and decentralized load sharing and energy management approach for DC microgrids. Electr. Power Syst. Res. 2019, 177, 106009. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, T.; Ollis, T.B.; Zhang, X.; Tomsovic, K. Distributed energy management for community microgrids considering network operational constraints and building thermal dynamics. Appl. Energy 2019, 239, 83–95. [Google Scholar] [CrossRef]
- McIlvenna, A.; Herron, A.; Hambrick, J.; Ollis, B.; Ostrowski, J. Reducing the computational burden of a microgrid energy management system. Comput. Ind. Eng. 2020, 143, 106384. [Google Scholar] [CrossRef]
- Vahid, A.; Jadid, S.; Ehsan, M. Optimal planning of a multi-carrier microgrid (MCMG) considering demand-side management. Int. J. Renew. Energy Res. (IJRER) 2018, 8, 238–249. [Google Scholar]
- Amir, V.; Jadid, S.; Ehsan, M. Operation of Multi Carrier Microgrid (MCMG) Considering Demand Response. J. Oper. Autom. Power Eng. 2019, 7, 119–128. [Google Scholar] [CrossRef]
- Guacaneme, J.A.; Velasco, D.; Trujillo, C.L. Revisión de las características de sistemas de almacenamiento de energía para aplicaciones en micro redes. Inf. Tecnol. 2014, 25, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Lidula, N.W.; Rajapakse, A.D. Microgrids research: A review of experimental microgrids and test systems. Renew. Sustain. Energy Rev. 2011, 15, 186–202. [Google Scholar] [CrossRef]
- Manohar, M.; Koley, E.; Ghosh, S. Microgrid protection under weather uncertainty using joint probabilistic modeling of solar irradiance and wind speed. Comput. Electr. Eng. 2020, 86, 106684. [Google Scholar] [CrossRef]
- Akorede, M.F.; Hizam, H.; Pouresmaeil, E. Distributed energy resources and benefits to the environment. Renew. Sustain. Energy Rev. 2010, 14, 724–734. [Google Scholar] [CrossRef]
- Adefarati, T.; Bansal, R.C. Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources. Appl. Energy 2019, 236, 1089–1114. [Google Scholar] [CrossRef]
- Lopes, J.A.P.; Madureira, A.G.; Moreira, C.C.L.M. A view of microgrids. Wiley Interdiscip. Rev. Energy Environ. 2013, 2, 86–103. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, A.; Parag, Y.; Guerrero, J. Microgrids: A review of technologies, key drivers, and outstanding issues. Renew. Sustain. Energy Rev. 2018, 90, 402–411. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Poullikkas, A. Cost metrics of electric energy storage technologies in potential power system operations. Sustain. Energy Technol. Assess. 2018, 25, 43–59. [Google Scholar] [CrossRef]
- Longo, E.; de Almeida La Porta, F. Recent advances in complex functional materials: From design to application. In Recent Advances in Complex Functional Materials: From Design to Application; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–454. [Google Scholar] [CrossRef]
- Afif, A.; Rahman, S.M.; Tasfiah Azad, A.; Zaini, J.; Islan, M.A.; Azad, A.K. Advanced materials and technologies for hybrid supercapacitors for energy storage—A review. J. Energy Storage 2019, 25, 100852. [Google Scholar] [CrossRef]
- Akram, U.; Nadarajah, M.; Shah, R.; Milano, F. A review on rapid responsive energy storage technologies for frequency regulation in modern power systems. Renew. Sustain. Energy Rev. 2020, 120, 109626. [Google Scholar] [CrossRef]
- González, A.; Goikolea, E.; Barrena, J.A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 2016, 58, 1189–1206. [Google Scholar] [CrossRef]
- Bullich-Massagué, E.; Cifuentes-García, F.J.; Glenny-Crende, I.; Cheah-Mañé, M.; Aragüés-Peñalba, M.; Díaz-González, F.; Gomis-Bellmunt, O. A review of energy storage technologies for large scale photovoltaic power plants. Appl. Energy 2020, 274, 115213. [Google Scholar] [CrossRef]
- Pu, Y.; Li, Q.; Chen, W.; Liu, H. Hierarchical energy management control for islanding DC microgrid with electric-hydrogen hybrid storage system. Int. J. Hydrog. Energy 2019, 4, 5153–5161. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, W. Decentralized coordination control of PV generators, storage battery, hydrogen production unit and fuel cell in islanded DC microgrid. Int. J. Hydrog. Energy 2020, 45, 8243–8256. [Google Scholar] [CrossRef]
- Nabi, B.; Seyedtabaii, S. Fast distributed control design for DC linked microgrids. Int. J. Electr. Power Energy Syst. 2020, 122, 106221. [Google Scholar] [CrossRef]
- Gil-González, W.; Montoya, O.D.; Garces, A. Modeling and control of a small hydro-power plant for a DC microgrid. Electr. Power Syst. Res. 2020, 180, 106104. [Google Scholar] [CrossRef]
- Farhadi, M.; Mohammed, O.A. Performance Enhancement of Actively Controlled Hybrid DC Microgrid Incorporating Pulsed Load. IEEE Trans. Ind. Appl. 2015, 51, 3570–3578. [Google Scholar] [CrossRef]
- Mardani, M.M.; Khooban, M.H.; Masoudian, A.; Dragicevic, T. Model Predictive Control of DC-DC Converters to Mitigate the Effects of Pulsed Power Loads in Naval DC Microgrids. IEEE Trans. Ind. Electron. 2019, 66, 5676–5685. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Zhang, W.; Chen, J. Optimize globally, control locally: Coordinated optimal local voltage control in hybrid AC/DC microgrid. Int. J. Electr. Power Energy Syst. 2020, 118, 105734. [Google Scholar] [CrossRef]
- Niknejad, P.; Venneti, S.; Vasefi, M.; Jeffryes, C.; Barzegaran, M.R. An electrochemically assisted AC/DC microgrid configuration with waste water treatment capability. Electr. Power Syst. Res. 2018, 162, 207–219. [Google Scholar] [CrossRef]
- Ortiz, L.; Gutiérrez, L.B.; González, J.W.; Águila, A. A novel strategy for dynamic identification in AC/DC microgrids based on ARX and Petri Nets. Heliyon 2020, 6, e03559. [Google Scholar] [CrossRef]
- Nema, P.; Nema, R.K.; Rangnekar, S. A current and future state of art development of hybrid energy system using wind and PV-solar: A review. Renew. Sustain. Energy Rev. 2009, 13, 2096–2103. [Google Scholar] [CrossRef]
- Torres-Moreno, J.L.; Gimenez-Fernandez, A.; Perez-Garcia, M.; Rodriguez, F. Energy management strategy for micro-grids with PV-battery systems and electric vehicles. Energies 2018, 11, 522. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Teodoro, J.; Rodríguez, F.; Berenguel, M.; Torres, J.L. Heterogeneous resource management in energy hubs with self-consumption: Contributions and application example. Appl. Energy 2018, 229, 537–550. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Teodoro, J.; Rodriguez-Diaz, F.; Berenguel, M. Modelado de Instalaciones Fotovoltaicas Para la Gestión de un Energy Hub Con Re-Cursos Heterogéneos. Available online: http://hdl.handle.net/10835/5711 (accessed on 28 June 2021).
- Bornapour, M.; Hooshmand, R.A.; Parastegari, M. An efficient scenario-based stochastic programming method for optimal scheduling of CHP-PEMFC, WT, PV and hydrogen storage units in micro grids. Renew. Energy 2019, 130, 1049–1066. [Google Scholar] [CrossRef]
- Bukar, A.L.; Tan, C.W.; Lau, K.Y. Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm. Sol. Energy 2019, 188, 685–696. [Google Scholar] [CrossRef]
- Olatunde, O.; Hassan, M.Y.; Abdullah, M.P.; Rahman, H.A. Hybrid photovoltaic/small-hydropower microgrid in smart distribution network with grid isolated electric vehicle charging system. J. Energy Storage 2020, 31, 101673. [Google Scholar] [CrossRef]
- Zhang, L.; Xiang, J. The performance of a grid-tied microgrid with hydrogen storage and a hydrogen fuel cell stack. Energy Convers. Manag. 2014, 87, 421–427. [Google Scholar] [CrossRef]
- Cau, G.; Cocco, D.; Petrollese, M.; Knudsen Kær, S.; Milan, C. Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system. Energy Convers. Manag. 2014, 87, 820–831. [Google Scholar] [CrossRef]
- Mousavi G, S.M.; Faraji, F.; Majazi, A.; Al-Haddad, K. A comprehensive review of Flywheel Energy Storage System technology. Renew. Sustain. Energy Rev. 2017, 67, 477–490. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Carli, R.; Dotoli, M. A Residential Demand-Side Management Strategy under Nonlinear Pricing Based on Robust Model Predictive Control. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 28 November 2019; pp. 3243–3248. [Google Scholar] [CrossRef]
- Sortomme, E.; El-Sharkawi, M.A. Optimal Power Flow for a System of Microgrids with Controllable Loads and Battery Storage. In Proceedings of the 2009 IEEE/PES Power Systems Conference and Exposition, Seattle, WA, USA, 24 April 2009; pp. 1–5. [Google Scholar] [CrossRef]
- Pilehvar, M.S.; Shadmand, M.B.; Mirafzal, B. Analysis of Smart Loads in Nanogrids. IEEE Access 2019, 7, 548–562. [Google Scholar] [CrossRef]
- Diahovchenko, I.; Kolcun, M.; Čonka, Z.; Savkiv, V.; Mykhailyshyn, R. Progress and challenges in smart grids: Distributed generation, smart metering, energy storage and smart loads. Iran. J. Sci. Technol. Trans. Electr. Eng. 2020, 44, 1319–1333. [Google Scholar] [CrossRef]
- Vera, Y.E.; Dufo-López, R.; Bernal-Agustín, J.L. Energy management in microgrids with renewable energy sources: A literature review. Appl. Sci. 2019, 9, 3854. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Sanseverino, E.R.; Luna, A.; Dragicevic, T.; Vasquez, J.C.; Guerrero, J.M. Microgrid supervisory controllers and energy management systems: A literature review. Renew. Sustain. Energy Rev. 2016, 60, 1263–1273. [Google Scholar] [CrossRef]
- Zia, M.F.; Elbouchikhi, E.; Benbouzid, M. Microgrids energy management systems: A critical review on methods, solutions, and prospects. Appl. Energy 2018, 222, 1033–1055. [Google Scholar] [CrossRef]
- Minchala-Avila, L.I.; Garza-Castañón, L.E.; Vargas-Martínez, A.; Zhang, Y. A review of optimal control techniques applied to the energy management and control of microgrids. Procedia Comput. Sci. 2015, 52, 780–787. [Google Scholar] [CrossRef] [Green Version]
- Shayeghi, H.; Shahryari, E.; Moradzadeh, M.; Siano, P. A survey on microgrid energy management considering flexible energy sources. Energies 2019, 12, 2156. [Google Scholar] [CrossRef] [Green Version]
- Aghajani, G.; Ghadimi, N. Multi-objective energy management in a micro-grid. Energy Rep. 2018, 4, 218–225. [Google Scholar] [CrossRef]
- Indragandhi, V.; Logesh, R.; Subramaniyaswamy, V.; Vijayakumar, V.; Siarry, P.; Uden, L. Multi-objective optimization and energy management in renewable based AC/DC microgrid. Comput. Electr. Eng. 2018, 70, 179–198. [Google Scholar] [CrossRef]
- Hossain, M.A.; Pota, H.R.; Squartini, S.; Abdou, A.F. Modified PSO algorithm for real-time energy management in grid-connected microgrids. Renew. Energy 2019, 136, 746–757. [Google Scholar] [CrossRef]
- Abedini, M.; Moradi, M.H.; Hosseinian, S.M. Optimal management of microgrids including renewable energy scources using GPSO-GM algorithm. Renew. Energy 2016, 90, 430–439. [Google Scholar] [CrossRef]
- Skoplaki, E.; Palyvos, J.A. Operating temperature of photovoltaic modules: A survey of pertinent correlations. Renew. Energy 2009, 34, 23–29. [Google Scholar] [CrossRef]
- Li, H.; Eseye, A.T.; Zhang, J.; Zheng, D. Optimal energy management for industrial microgrids with high-penetration renewables. Prot. Control. Mod. Power Syst. 2017, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Berti, S. New optimization method based on energy management in microgrids based on energy storage systems and combined heat and power. Comput. Intell. 2020, 36, 55–79. [Google Scholar] [CrossRef]
- Papari, B.; Edrington, C.S.; Bhattacharya, I.; Radman, G. Effective Energy Management of Hybrid AC-DC Microgrids with Storage Devices. IEEE Trans. Smart Grid 2019, 10, 193–203. [Google Scholar] [CrossRef]
- Bukar, A.L.; Tan, C.W.; Yiew, L.K.; Ayop, R.; Tan, W.S. A rule-based energy management scheme for long-term optimal capacity planning of grid-independent microgrid optimized by multi-objective grasshopper optimization algorithm. Energy Convers. Manag. 2020, 221, 113161. [Google Scholar] [CrossRef]
- Rana, M.M.; Li, L.; Su, S.W.; Xiang, W. Consensus-based smart grid state estimation algorithm. IEEE Trans. Ind. Inform. 2018, 14, 3368–3375. [Google Scholar] [CrossRef]
- Moya, F.D.; Torres-Moreno, J.L.; Álvarez, J.D. Optimal model for energy management strategy in smart building with energy storage systems and electric vehicles. Energies 2020, 13, 3605. [Google Scholar] [CrossRef]
- Murty, V.V.; Kumar, A. Multi-objective energy management in microgrids with hybrid energy sources and battery energy storage systems. Prot. Control. Mod. Power Syst. 2020, 5, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Bui, V.H.; Kim, H.M. A Resilient and Privacy-Preserving Energy Management Strategy for Networked Microgrids. IEEE Trans. Smart Grid 2018, 9, 2127–2139. [Google Scholar] [CrossRef]
- SoltaniNejad Farsangi, A.; Hadayeghparast, S.; Mehdinejad, M.; Shayanfar, H. A novel stochastic energy management of a microgrid with various types of distributed energy resources in presence of demand response programs. Energy 2018, 160, 257–274. [Google Scholar] [CrossRef]
- Farzin, H.; Fotuhi-Firuzabad, M.; Moeini-Aghtaie, M. Stochastic Energy Management of Microgrids during Unscheduled Islanding Period. IEEE Trans. Ind. Inform. 2017, 13, 1079–1087. [Google Scholar] [CrossRef]
- Umeozor, E.C.; Trifkovic, M. Energy management of a microgrid via parametric programming. IFAC-PapersOnLine 2016, 49, 272–277. [Google Scholar] [CrossRef]
- Rezaei, N.; Khazali, A.; Mazidi, M.; Ahmadi, A. Economic energy and reserve management of renewable-based microgrids in the presence of electric vehicle aggregators: A robust optimization approach. Energy 2020, 201, 117629. [Google Scholar] [CrossRef]
- Atia, R.; Yamada, N. Distributed renewable generation and storage system sizing based on smart dispatch of microgrids. Energies 2016, 9, 176. [Google Scholar] [CrossRef] [Green Version]
- Tavakoli, M.; Shokridehaki, F.; Funsho Akorede, M.; Marzband, M.; Vechiu, I.; Pouresmaeil, E. CVaR-based energy management scheme for optimal resilience and operational cost in commercial building microgrids. Int. J. Electr. Power Energy Syst. 2018, 100, 1–9. [Google Scholar] [CrossRef]
- Shuai, H.; Fang, J.; Ai, X.; Wen, J.; He, H. Optimal Real-Time Operation Strategy for Microgrid: An ADP-Based Stochastic Nonlinear Optimization Approach. IEEE Trans. Sustain. Energy 2019, 10, 931–942. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Qiu, J.; Reedman, L.; Meng, K.; Lai, L.L. Two-stage energy management for networked microgrids with high renewable penetration. Appl. Energy 2018, 226, 39–48. [Google Scholar] [CrossRef]
- Jafari, M.; Malekjamshidi, Z. Optimal energy management of a residential-based hybrid renewable energy system using rule-based real-time control and 2D dynamic programming optimization method. Renew. Energy 2020, 146, 254–266. [Google Scholar] [CrossRef]
- Park, K.; Lee, W.; Won, D. Optimal Energy Management of DC Microgrid System using Dynamic Programming. IFAC-PapersOnLine 2019, 52, 194–199. [Google Scholar] [CrossRef]
- Bahlawan, H.; Morini, M.; Pinelli, M.; Ruggero, P. Dynamic programming based methodology for the optimization of the sizing and operation of hybrid energy plants. Appl. Therm. Eng. 2019, 160, 113967. [Google Scholar] [CrossRef]
- Liu, D.; Xu, Y.; Wei, Q.; Liu, X. Residential energy scheduling for variable weather solar energy based on adaptive dynamic programming. IEEE/CAA J. Autom. Sin. 2018, 5, 36–46. [Google Scholar] [CrossRef]
- Jafari, M.; Malekjamshidi, Z.; Zhu, J. A magnetically coupled multi-port, multi-operation mode micro-grid with a predictive dynamic programming-based energy management for residential applications. Int. J. Electr. Power Energy Syst. 2019, 104, 784–796. [Google Scholar] [CrossRef]
- Shi, Z.; Liang, H.; Huang, S.; Dinavahi, V. Multistage robust energy management for microgrids considering uncertainty. IET Gener. Transm. Distrib. 2019, 13, 1906–1913. [Google Scholar] [CrossRef]
- Wu, N.; Wang, H. Deep learning adaptive dynamic programming for real time energy management and control strategy of micro-grid. J. Clean. Prod. 2018, 204, 1169–1177. [Google Scholar] [CrossRef]
- Venayagamoorthy, G.K.; Sharma, R.K.; Gautam, P.K.; Ahmadi, A. Dynamic Energy Management System for a Smart Microgrid. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1643–1656. [Google Scholar] [CrossRef]
- Wei, Q.; Liu, D.; Lewis, F.L.; Liu, Y.; Zhang, J. Mixed Iterative Adaptive Dynamic Programming for Optimal Battery Energy Control in Smart Residential Microgrids. IEEE Trans. Ind. Electron. 2017, 64, 4110–4120. [Google Scholar] [CrossRef]
- Kazemzadeh, N.; Ryan, S.M.; Hamzeei, M. Robust optimization vs. stochastic programming incorporating risk measures for unit commitment with uncertain variable renewable generation. Energy Syst. 2019, 10, 517–541. [Google Scholar] [CrossRef] [Green Version]
- Bazmohammadi, N.; Tahsiri, A.; Anvari-Moghaddam, A.; Guerrero, J.M. A hierarchical energy management strategy for interconnected microgrids considering uncertainty. Int. J. Electr. Power Energy Syst. 2019, 109, 597–608. [Google Scholar] [CrossRef]
- Hu, M.C.; Lu, S.Y.; Chen, Y.H. Stochastic programming and market equilibrium analysis of microgrids energy management systems. Energy 2016, 113, 662–670. [Google Scholar] [CrossRef]
- Zhang, G.; Cao, Y.; Cao, Y.; Li, D.; Wang, L. Optimal energy management for microgrids with combined heat and power (CHP) generation, energy storages, and renewable energy sources. Energies 2017, 10, 1288. [Google Scholar] [CrossRef]
- Reddy, S.S. Optimization of renewable energy resources in hybrid energy systems. J. Green Eng. 2017, 7, 43–60. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Liang, H.; Huang, S.; Dinavahi, V. Distributionally robust chance-constrained energy management for islanded microgrids. IEEE Trans. Smart Grid 2019, 10, 2234–2244. [Google Scholar] [CrossRef]
- Giraldo, J.S.; Castrillon, J.A.; Lopez, J.C.; Rider, M.J.; Castro, C.A. Microgrids Energy Management Using Robust Convex Programming. IEEE Trans. Smart Grid 2019, 10, 4520–4530. [Google Scholar] [CrossRef]
- Luo, Z.; Gu, W.; Wu, Z.; Wang, Z.; Tang, Y. A robust optimization method for energy management of CCHP microgrid. J. Mod. Power Syst. Clean Energy 2018, 6, 132–144. [Google Scholar] [CrossRef]
- Hong, B.; Zhang, W.; Zhou, Y.; Chen, J.; Xiang, Y.; Mu, Y. Energy-Internet-oriented microgrid energy management system architecture and its application in China. Appl. Energy 2020, 228, 2153–2164. [Google Scholar] [CrossRef]
- Xiang, Y.; Liu, J.; Liu, Y. Robust Energy Management of Microgrid with Uncertain Renewable Generation and Load. IEEE Trans. Smart Grid 2016, 7, 1034–1043. [Google Scholar] [CrossRef]
- Dini, A.; Pirouzi, S.; Norouzi, M.; Lehtonen, M. Sustainable Energy, Grids and Networks Hybrid stochastic/robust scheduling of the grid-connected microgrid based on the linear coordinated power management strategy. Sustain. Energy Grids Netw. 2020, 24, 100400. [Google Scholar] [CrossRef]
- Camacho, E.F.; Alba, C.B. Model Predictive Control (Google eBook); Springer Science & Business Media: Berlin, Germany, 2013; p. 427. [Google Scholar]
- Dong, R.; Liu, S.; Liang, G.; An, X.; Xu, Y. Output Control Method of Microgrid VSI Control Network Based on Dynamic Matrix Control Algorithm. IEEE Access 2019, 7, 158459–158480. [Google Scholar] [CrossRef]
- Luo, Z.; Wu, Z.; Li, Z.; Cai, H.Y.; Li, B.J.; Gu, W. A two-stage optimization and control for CCHP microgrid energy management. Appl. Therm. Eng. 2017, 125, 513–522. [Google Scholar] [CrossRef]
- Petrollese, M.; Valverde, L.; Cocco, D.; Cau, G.; Guerra, J. Real-time integration of optimal generation scheduling with MPC for the energy management of a renewable hydrogen-based microgrid. Appl. Energy 2016, 166, 96–106. [Google Scholar] [CrossRef]
- Rigaut, T.; Nassiopoulos, A.; Bourquin, F.; Giroux, P.; Pény, A. Model Predictive Control for Energy and Climate Management of a Subway Station Thermo-electrical Microgrid. Transp. Res. Procedia 2016, 14, 926–935. [Google Scholar] [CrossRef] [Green Version]
- Bruni, G.; Cordiner, S.; Mulone, V.; Sinisi, V.; Spagnolo, F. Energy management in a domestic microgrid by means of model predictive controllers. Energy 2015, 108, 119–131. [Google Scholar] [CrossRef]
- Morstyn, T.; McCulloch, M.D. Multiclass Energy Management for Peer-to-Peer Energy Trading Driven by Prosumer Preferences. IEEE Trans. Power Syst. 2019, 34, 4005–4014. [Google Scholar] [CrossRef]
- Bazmohammadi, N.; Anvari-Moghaddam, A.; Tahsiri, A.; Madary, A.; Vasquez, J.C.; Guerrero, J.M. Stochastic predictive energy management of multi-microgrid systems. Appl. Sci. 2020, 10, 4833. [Google Scholar] [CrossRef]
- Morstyn, T.; Hredzak, B.; Aguilera, R.P.; Agelidis, V.G. Model predictive control for distributed microgrid battery energy storage systems. IEEE Trans. Control. Syst. Technol. 2017, 26, 1107–1114. [Google Scholar] [CrossRef] [Green Version]
- Kou, P.; Liang, D.; Gao, L. Distributed EMPC of multiple microgrids for coordinated stochastic energy management. Appl. Energy 2017, 185, 939–952. [Google Scholar] [CrossRef]
- Garcia-Torres, F.; Bordons, C.; Ridao, M.A. Optimal economic schedule for a network of microgrids with hybrid energy storage system using distributed model predictive control. IEEE Trans. Ind. Electron. 2019, 66, 1919–1929. [Google Scholar] [CrossRef]
- Parisio, A.; Wiezorek, C.; Kyntäjä, T.; Elo, J.; Strunz, K.; Johansson, K.H. Cooperative MPC-Based Energy Management for Networked Microgrids. IEEE Trans. Smart Grid 2017, 8, 3066–3074. [Google Scholar] [CrossRef]
- Anvari-Moghaddam, A.; Rahimi-Kian, A.; Mirian, M.S.; Guerrero, J.M. A multi-agent based energy management solution for integrated buildings and microgrid system. Appl. Energy 2017, 203, 41–56. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Jia, X.; Zhou, Y.; Li, X. A microgrids energy management model based on multi-agent system using adaptive weight and chaotic search particle swarm optimization considering demand response. J. Clean. Prod. 2020, 262, 121247. [Google Scholar] [CrossRef]
- Basir Khan, M.R.; Jidin, R.; Pasupuleti, J. Multi-agent based distributed control architecture for microgrid energy management and optimization. Energy Convers. Manag. 2016, 112, 288–307. [Google Scholar] [CrossRef]
- Samadi, E.; Badri, A.; Ebrahimpour, R. Decentralized multi-agent based energy management of microgrid using reinforcement learning. Int. J. Electr. Power Energy Syst. 2020, 122, 106211. [Google Scholar] [CrossRef]
- Rahman, M.S.; Oo, A.M. Distributed multi-agent based coordinated power management and control strategy for microgrids with distributed energy resources. Energy Convers. Manag. 2017, 139, 20–32. [Google Scholar] [CrossRef]
- Jin, S.; Wang, S.; Fang, F. Electrical Power and Energy Systems Game theoretical analysis on capacity configuration for microgrid based on. Electr. Power Energy Syst. 2021, 125, 106485. [Google Scholar] [CrossRef]
- Kofinas, P.; Dounis, A.I.; Vouros, G.A. Fuzzy Q-Learning for multi-agent decentralized energy management in microgrids. Appl. Energy 2018, 219, 53–67. [Google Scholar] [CrossRef]
- Afrasiabi, M.; Mohammadi, M.; Rastegar, M.; Kargarian, A. Multi-agent microgrid energy management based on deep learning forecaster. Energy 2019, 186, 115873. [Google Scholar] [CrossRef]
- Cruz May, E.; Ricalde, L.J.; Atoche, E.J.; Bassam, A.; Sanchez, E.N. Forecast and energy management of a microgrid with renewable energy sources using artificial intelligence. Commun. Comput. Inf. Sci. 2018, 820, 81–96. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Wang, Y.; Zeng, M.; Li, F.; Wang, Y.; Zhang, Y. Energy management of smart micro-grid with response loads and distributed generation considering demand response. J. Clean. Prod. 2018, 197, 1069–1083. [Google Scholar] [CrossRef]
- Aldaouab, I.; Daniels, M.; Hallinan, K. Microgrid cost optimization for a mixed-use building. In Proceedings of the 2017 IEEE Texas Power and Energy Conference (TPEC 2017), College Station, TX, USA, 2 March 2017; pp. 19–23. [Google Scholar] [CrossRef]
- Leonori, S.; Paschero, M.; Frattale Mascioli, F.M.; Rizzi, A. Optimization strategies for Microgrid energy management systems by Genetic Algorithms. Appl. Soft Comput. J. 2020, 86, 105903. [Google Scholar] [CrossRef]
- Vivas, F.J.; Segura, F.; Andújar, J.M.; Palacio, A.; Saenz, J.L.; Isorna, F.; López, E. Multi-objective fuzzy logic-based energy management system for microgrids with battery and hydrogen energy storage system. Electronics 2020, 9, 1074. [Google Scholar] [CrossRef]
- Al-Sakkaf, S.; Kassas, M.; Khalid, M.; Abido, M.A. An energy management system for residential autonomous DC microgrid using optimized fuzzy logic controller considering economic dispatch. Energies 2019, 12, 1457. [Google Scholar] [CrossRef] [Green Version]
- Arcos-Aviles, D.; Pascual, J.; Marroyo, L.; Sanchis, P.; Guinjoan, F. Fuzzy logic-based energy management system design for residential grid-connected microgrids. IEEE Trans. Smart Grid 2018, 9, 530–543. [Google Scholar] [CrossRef] [Green Version]
- Ulutas, A.; Altas, I.H.; Onen, A.; Ustun, T.S. Neuro-fuzzy-based model predictive energy management for grid connected microgrids. Electronics 2020, 9, 900. [Google Scholar] [CrossRef]
- Mondal, A.; Misra, S.; Patel, L.S.; Pal, S.K.; Obaidat, M.S. DEMANDS: Distributed energy management using noncooperative scheduling in smart grid. IEEE Syst. J. 2018, 12, 2645–2653. [Google Scholar] [CrossRef]
- Leonori, S.; Martino, A.; Frattale Mascioli, F.M.; Rizzi, A. Microgrid Energy Management Systems Design by Computational Intelligence Techniques. Appl. Energy 2020, 277, 115524. [Google Scholar] [CrossRef]
- Mbuwir, B.V.; Ruelens, F.; Spiessens, F.; Deconinck, G. Battery energy management in a microgrid using batch reinforcement learning. Energies 2017, 10, 1846. [Google Scholar] [CrossRef] [Green Version]
- Jordehi, A.R.; Javadi, M.S.; Catalão, J.P. Energy management in microgrids with battery swap stations and var compensators. J. Clean. Prod. 2020, 272, 122943. [Google Scholar] [CrossRef]
- Wang, P.; Wang, W.; Meng, N.; Xu, D. Multi-objective energy management system for DC microgrids based on the maximum membership degree principle. J. Mod. Power Syst. Clean Energy 2018, 6, 668–678. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, M.A.; Mokhlis, H.; Naidu, K.; Amin, A.; Franco, J.F.; Othman, M. Distribution Network Planning Enhancement via Network Reconfiguration and DG Integration Using Dataset Approach and Water Cycle Algorithm. J. Mod. Power Syst. Clean Energy 2020, 8, 86–93. [Google Scholar] [CrossRef]
- Helmi, A.M.; Carli, R.; Dotoli, M.; Ramadan, H.S. Efficient and Sustainable Reconfiguration of Distribution Networks via Metaheuristic Optimization. IEEE Trans. Autom. Sci. Eng. 2021, 1–17. [Google Scholar] [CrossRef]
- Fazlhashemi, S.S.; Sedighizadeh, M.; Khodayar, M.E. Day-ahead energy management and feeder reconfiguration for microgrids with CCHP and energy storage systems. J. Energy Storage 2020, 29, 101301. [Google Scholar] [CrossRef]
Category | Type | Typical Interface | Advantages | Disadvantages |
---|---|---|---|---|
RES | PV [46,47,48,49,50] | Converter (DC-DC-AC) | Free fuel supply | Depends on random weather conditions |
MWT [46,50,51] | Converter (AC-DC-AC) | Zero greenhouse gas emissions | Not dispatchable without storage | |
Small hydro [40,52] | Synchronous or induction generation | |||
Fuel cell [37,53,54] | Converter (AC-DC-AC) | Zero pollution on-site | High cost | |
CHP can be used | Limited lifetime | |||
Dispatchable | ||||
FES | Internal combustion engine [51] | Synchronous or induction generator | Fast startup | Greenhouse gas emissions |
CHP can be used | Noise generation | |||
Dispatchable | Generates pollution particles | |||
Storage | Battery [36] | Converter (DC-DC-AC) | Proven technology with many years of research | Generates waste |
Limited charge and discharge cycles | ||||
The price of this technology is high | ||||
Flywheel [55] | Converter (AC-DC-AC) | High efficiency | High losses | |
Limited discharge time | ||||
Supercapacitor [33] | Converter (AC-DC-AC) | High storage capability and power output | Low energy density | |
Longer lifecycle compared to modem secondary batteries | Continuous research for improvement | |||
Hydrogen from hydrolysis [53,54] | Fuel cell | Zero pollution | Low system efficiency | |
Hydrogen storage under investigation |
Optimization Method | Reference | Number of References |
---|---|---|
Metaheuristic | [47,65,66,67,68,69,70,71,72,73,74] | 11 |
Linear and nonlinear programming | [75,76,77,78,79,80,81,82,83,84,85] | 11 |
Dynamic programming | [86,87,88,89,90,91,92,93,94] | 9 |
Stochastic and robust programming | [96,97,98,99,100,101,102,103,104,105] | 10 |
Model-based predictive control | [107,108,109,110,111,112,113,114,115,116,117] | 11 |
Multi-agents | [118,119,120,121,122,123,124,125] | 8 |
Artificial intelligence | [126,127,128,129,130,131,132,133,134] | 9 |
Other techniques | [135,136,137,138] | 4 |
Addressed Problems | Reference | Number of References |
---|---|---|
Operative cost | [65,68,70,71,72,76,77,78,79,81,85,87,91,93,97,98,99,108,109,115,117,118,119,121,123,127,137,138] | 28 |
CO reduction | [65,71,92,104] | 4 |
Public grid consumption | [47,66,67,70,73,74,75,76,81,88,90,92,93,94,101,105,110,113,115,116,126,129,136] | 23 |
Balance generation and demand | [91,92,100,103,118,122,124,130,131,133,134,135] | 12 |
Others | [80,82,83,84,86,89,96,100,102,107,111,112,114,120,125,128,132] | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topa Gavilema, Á.O.; Álvarez, J.D.; Torres Moreno, J.L.; García, M.P. Towards Optimal Management in Microgrids: An Overview. Energies 2021, 14, 5202. https://doi.org/10.3390/en14165202
Topa Gavilema ÁO, Álvarez JD, Torres Moreno JL, García MP. Towards Optimal Management in Microgrids: An Overview. Energies. 2021; 14(16):5202. https://doi.org/10.3390/en14165202
Chicago/Turabian StyleTopa Gavilema, Álex Omar, José Domingo Álvarez, José Luis Torres Moreno, and Manuel Pérez García. 2021. "Towards Optimal Management in Microgrids: An Overview" Energies 14, no. 16: 5202. https://doi.org/10.3390/en14165202
APA StyleTopa Gavilema, Á. O., Álvarez, J. D., Torres Moreno, J. L., & García, M. P. (2021). Towards Optimal Management in Microgrids: An Overview. Energies, 14(16), 5202. https://doi.org/10.3390/en14165202