Projected Near-Surface Wind Speed Trends in Lithuania
Abstract
:1. Introduction
2. Methodology
2.1. Climate Data
2.2. Wind Speed Analysis Methods
2.3. Software
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Renewable Energy Directive|Energy. Available online: https://ec.europa.eu/energy/topics/renewable-energy/directive-targets-and-rules/renewable-energy-directive_en (accessed on 16 August 2021).
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources (Recast) (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001&from=fr (accessed on 16 August 2021).
- Home-Eurostat. Available online: https://ec.europa.eu/eurostat/ (accessed on 16 August 2021).
- National Renewable Energy Action Plan. 2010. Available online: https://www.ena.lt/uploads/PDF-AEI/KITI-doc/EN/6a-national-renewable-energy-action-plan-lithuania-en.pdf (accessed on 16 August 2021).
- Tutak, M.; Brodny, J.; Siwiec, D.; Ulewicz, R.; Bindzár, P. Studying the Level of Sustainable Energy Development of the European Union Countries and Their Similarity Based on the Economic and Demographic Potential. Energies 2020, 13, 6643. [Google Scholar] [CrossRef]
- Renewable Energy Statistics 2021. Available online: https://irena.org/publications/2021/Aug/Renewable-energy-statistics-2021 (accessed on 16 August 2021).
- Rodiklių Duomenų Bazė-Oficialiosios Statistikos Portalas. Available online: https://osp.stat.gov.lt/statistiniu-rodikliu-analize#/ (accessed on 16 August 2021).
- Fan, Z.; Zhu, C. The optimization and the application for the wind turbine power-wind speed curve. Renew. Energy 2019, 140, 52–61. [Google Scholar] [CrossRef]
- Santos, C.S.; Carvalho, D.; Rocha, A.; G, M. Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections. Renew. Energy 2020, 101, 29–40. [Google Scholar] [CrossRef]
- Chen, L. Impacts of climate change on wind resources over North America based on NA-CORDEX. Renew. Energy 2020, 153, 1428–1438. [Google Scholar] [CrossRef]
- Weber, J.; Gotzens, F.; Witthaut, D. Impact of strong climate change on the statistics of wind power Impact of strong climate change in on Europe the statistics of wind power generation Assessing the feasibility of using the heat temperature function for a long-term district heat demand fore. Energy Procedia 2018, 153, 22–28. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D. Changing wind speed distributions under future global climate. Energy Convers. Manag. 2019, 198, 111841. [Google Scholar] [CrossRef]
- International Conference of Young Scientists on Energy Issues, Kaunas, Lithuania, 29–30 May 2014. Available online: https://cyseni.com/wp-content/archives/proceedings/Proceedings_of_CYSENI_2014.pdf (accessed on 16 August 2021).
- Vidutinės Klimatinių Rodiklių Reikšmės Lietuvoje Climate Averages for Lithuania. 1981. Available online: https://www.meteo.lt (accessed on 19 June 2021).
- AR5 Climate Change 2013: The Physical Science Basis—IPCC. Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 16 August 2021).
- Solaun, K.; Cerdá, E. Climate change impacts on renewable energy generation. A review of quantitative projections. Renew. Sustain. Energy Rev. 2019, 116, 109415. [Google Scholar] [CrossRef]
- Tobin, I.; Jerez, S.; Vautard, R.; Thais, F.; Van Meijgaard, E.; Prein, A.; Déqué, M.; Kotlarski, S.; Maule, C.F.; Nikulin, G.; et al. Climate change impacts on the power generation potential of a European mid-century wind farms scenario. Environ. Res. Lett. 2016, 11, 034013. [Google Scholar] [CrossRef]
- Martinez, A.; Iglesias, G. Wind resource evolution in Europe under different scenarios of climate change characterised by the novel Shared Socioeconomic Pathways. Energy Convers. Manag. 2021, 234, 113961. [Google Scholar] [CrossRef]
- Global Surface Summary of the Day-GSOD-Datasets-NOAA Data Catalog. Available online: https://data.noaa.gov/dataset/dataset/global-surface-summary-of-the-day-gsod (accessed on 16 August 2021).
- PCMDI-CMIP5 Overview. Available online: https://pcmdi.llnl.gov/mips/cmip5/ (accessed on 16 August 2021).
- Selpoint Function-RDocumentation. Available online: https://www.rdocumentation.org/packages/cmsaf/versions/1.9.0/topics/selpoint (accessed on 16 August 2021).
- Bedia, J.; Baño-Medina, J.; Legasa, M.N.; Iturbide, M.; Manzanas, R.; Herrera, S.; Casanueva, A.; San-Martín, D.; Cofiño, A.S.; Gutiérrez, J.M. Statistical downscaling with the downscaleR package (v3.1.0): Contribution to the VALUE intercomparison experiment. Geosci. Model Dev. 2020, 13, 1711–1735. [Google Scholar] [CrossRef] [Green Version]
- Al Dhaheri, K.; Woon, W.L.; Aung, Z. Wind speed forecasting using statistical and machine learning methods: A case study in the UAE. In Data Analytics for Renewable Energy Integration: Informing the Generation and Distribution of Renewable Energy Lecture Notes in Computer Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 107–120. [Google Scholar] [CrossRef]
- Package “cmsaf”. A Toolbox for CM SAF NetCDF Data. 2021. Available online: https://cran.r-project.org/web/packages/cmsaf/cmsaf.pdf (accessed on 16 August 2021).
- ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files. 2019. Available online: https://cran.r-project.org/web/packages/ncdf4/index.html (accessed on 16 August 2021).
- Discover QGIS. Available online: https://www.qgis.org/en/site/about/index.html (accessed on 16 August 2021).
- Blanco, I.; Diego, I.; Bueno, P.; Fernández, E.; Casas-Maldonado, F.; Esquinas, C.; Soriano, J.B.; Miravitlles, M. Geographical distribution of COPD prevalence in Europe, estimated by an inverse distance weighting interpolation technique. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 57. [Google Scholar] [CrossRef] [Green Version]
- Cofiño, A.S.; Bedia, J.; Iturbide, M.; Vega, M.; Herrera, S.; Fernández, J.; Frías, M.D.; Manzanas, R.; Gutiérrez, J.M. The ECOMS User Data Gateway: Towards seasonal forecast data provision and research reproducibility in the era of Climate Services. Clim. Serv. 2018, 9, 33–43. [Google Scholar] [CrossRef]
- Davy, R.; Gnatiuk, N.; Pettersson, L.; Bobylev, L. Climate change impacts on wind energy potential in the European domain with a focus on the Black Sea. Renew. Sustain. Energy Rev. 2018, 81, 1652–1659. [Google Scholar] [CrossRef] [Green Version]
- Devis, A.; Van Lipzig, N.P.M.; Demuzere, M. Should future wind speed changes be taken into account in wind farm development? Environ. Res. Lett. 2018, 13. [Google Scholar] [CrossRef]
- windPRO | EMD International. Available online: https://www.emd.dk/windpro/ (accessed on 27 June 2021).
- Gonzalez, P.L.M.; Brayshaw, D.J.; Zappa, G. The contribution of North Atlantic atmospheric circulation shifts to future wind speed projections for wind power over Europe. Clim. Dyn. 2019, 53, 4095–4113. [Google Scholar] [CrossRef] [Green Version]
- Hosking, J.S.; Macleod, D.; Phillips, T.; Holmes, C.R.; Watson, P.; Shuckburgh, E.F.; Mitchell, D. Changes in European wind energy generation potential within a 1.5 °C warmer world. Environ. Res. Lett. 2018, 13, 054032. [Google Scholar] [CrossRef]
- Gaetani, M.; Monforti, F.; Huld, T.; Dosio, A. Climate Modelling and Renewable Energy Resource Assessment Resilience of Large Investments and Critical Infrastructures in Europe to Climate Change (CCMFF) View Project Saharan Heat Low and West African Climate View Project. 2015. Available online: https://www.researchgate.net/publication/275342727 (accessed on 16 August 2021).
- Hueging, H.; Haas, R.; Born, K.; Jacob, D.; Pinto, J.G. Regional changes in wind energy potential over Europe using regional climate model ensemble projections. J. Appl. Meteorol. Climatol. 2013, 52, 903–917. [Google Scholar] [CrossRef] [Green Version]
- Barstad, I.; Sorteberg, A.; Mesquita, M.d.S. Present and future offshore wind power potential in northern Europe based on downscaled global climate runs with adjusted SST and sea ice cover. Renew. Energy 2012, 44, 398–405. [Google Scholar] [CrossRef]
- Tobin, I.; Vautard, R.; Balog, I.; Bréon, F.M.; Jerez, S.; Ruti, P.M.; Thais, F.; Vrac, M.; Yiou, P. Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections. Clim. Change 2015, 128, 99–112. [Google Scholar] [CrossRef]
- Solaun, K.; Cerdá, E. Impacts of climate change on wind energy power—Four wind farms in Spain. Renew. Energy 2020, 145, 1306–1316. [Google Scholar] [CrossRef]
- Akhtar, N.; Geyer, B.; Rockel, B.; Sommer, P.S.; Schrum, C. Accelerating deployment of offshore wind energy alter wind climate and reduce future power generation potentials. Sci. Rep. 2021, 11, 11826. [Google Scholar] [CrossRef]
Station | Latitude, °N | Longitude, °E | Altitude, m | Region |
---|---|---|---|---|
Biržai | 55.20 | 24.76 | 63 | Northern |
Dotnuva | 55.37 | 23.89 | 48 | Central |
Dūkštas | 55.52 | 26.32 | 151 | Central |
Kaunas | 54.90 | 23.89 | 48 | Central |
Kybartai | 54.64 | 22.76 | 70 | Southern |
Klaipėda | 55.71 | 21.13 | 21 | Coastal |
Laukuva | 55.62 | 22.23 | 166 | Coastal |
Lazdijai | 54.23 | 23.52 | 126 | Southern |
Mažeikiai | 56.31 | 22.34 | 81 | Coastal |
Nida | 55.30 | 21.00 | 4 | Coastal |
Panevėžys | 55.73 | 24.36 | 61 | Northern |
Raseiniai | 55.38 | 23.12 | 125 | Central |
Rokiškis | 55.96 | 25.59 | 133 | Northern |
Šiauliai | 55.92 | 23.32 | 107 | Northern |
Šilutė | 55.34 | 21.47 | 11 | Coastal |
Švenčionys | 55.13 | 26.16 | 230 | Central |
Tauragė | 55.25 | 22.29 | 36 | Coastal |
Telšiai | 55.99 | 22.20 | 128 | Coastal |
Ukmergė | 55.25 | 24.76 | 64 | Central |
Utena | 55.50 | 25.60 | 113 | Central |
Varėna | 54.20 | 24.58 | 136 | Southern |
Vėžaičiai | 55.72 | 21.48 | 56 | Coastal |
Vilnius | 54.68 | 25.29 | 148 | Southern |
Station | Region | PCC | p Value | MK | p Value | MAPE, % |
---|---|---|---|---|---|---|
Biržai | Northern | 0.598 | 0.024 | 0.429 | 0.036 | 0.29 |
Dotnuva | Central | 0.682 | 0.007 | 0.451 | 0.026 | 0.25 |
Dūkštas | Central | 0.792 | <0.001 | 0.626 | 0.001 | 0.24 |
Kaunas | Central | 0.626 | 0.017 | 0.473 | 0.019 | 0.04 |
Kybartai | Southern | 0.626 | 0.017 | 0.407 | 0.047 | 0.10 |
Klaipėda | Coastal | 0.550 | 0.042 | 0.451 | 0.026 | 0.30 |
Laukuva | Coastal | 0.610 | 0.021 | 0.472 | 0.019 | 0.07 |
Lazdijai | Southern | 0.608 | 0.021 | 0.451 | 0.026 | 0.35 |
Mažeikiai | Coastal | 0.522 | 0.055 | 0.385 | 0.062 | 0.42 |
Nida | Coastal | 0.505 | 0.065 | 0.429 | 0.036 | 0.22 |
Panevėžys | Northern | 0.751 | 0.002 | 0.582 | 0.003 | 0.14 |
Raseiniai | Central | 0.640 | 0.013 | 0.473 | 0.019 | 0.04 |
Rokiškis | Northern | 0.790 | <0.001 | 0.582 | 0.003 | 0.43 |
Šiauliai | Northern | 0.699 | 0.005 | 0.582 | 0.003 | 0.34 |
Šilutė | Coastal | 0.541 | 0.046 | 0.451 | 0.026 | 0.04 |
Švenčionys | Central | 0.794 | <0.001 | 0.626 | 0.001 | 0.44 |
Tauragė | Coastal | 0.584 | 0.028 | 0.495 | 0.014 | 0.47 |
Telšiai | Coastal | 0.526 | 0.053 | 0.363 | 0.079 | 0.27 |
Ukmergė | Central | 0.735 | 0.003 | 0.560 | 0.004 | 0.18 |
Utena | Central | 0.787 | <0.001 | 0.560 | 0.005 | 0.38 |
Varėna | Southern | 0.683 | 0.007 | 0.429 | 0.036 | 0.42 |
Vėžaičiai | Coastal | 0.552 | 0.041 | 0.451 | 0.026 | 0.23 |
Vilnius | Southern | 0.703 | 0.005 | 0.407 | 0.047 | 0.19 |
Location/Scenario | RCP2.6 | RCP4.5 | RCP8.5 | ||||||
---|---|---|---|---|---|---|---|---|---|
Change, % | NF | MF | FF | NF | MF | FF | NF | MF | FF |
Biržai | 0.4 | 0.3 | 1.9 | −3.3 | −3.3 | −5.3 | 0.3 | −0.6 | −1.4 |
Dotnuva | 0.5 | 1.3 | 2.5 | −4.8 | −4.8 | −7.1 | 1.3 | −0.5 | −1.3 |
Dūkštas | 0.2 | 0.3 | 0.3 | −4.5 | −4.5 | −6.5 | 0.3 | −0.7 | −1.6 |
Kaunas | 0.0 | 1.1 | 2.1 | −3.6 | −3.6 | −6.5 | 1.1 | −0.6 | −1.7 |
Kybartai | 0.2 | 1.3 | 2.6 | −3.8 | −3.6 | −6.3 | 1.3 | −0.6 | −1.3 |
Klaipėda | 0.1 | 1.0 | 0.3 | −4.6 | −4.3 | −7.5 | 1.0 | 0.1 | −1.7 |
Laukuva | 0.2 | 1.4 | 0.9 | −4.7 | −4.3 | −8.2 | 1.4 | 0.0 | −2.5 |
Lazdijai | 0.0 | 1.1 | 2.1 | −3.6 | −3.6 | −6.5 | 1.1 | −0.6 | −1.7 |
Mažeikiai | 0.5 | 1.2 | 1.0 | −3.3 | −2.4 | −5.2 | 1.2 | 0.3 | −1.7 |
Nida | 0.1 | 1.0 | 0.3 | −4.6 | −4.3 | −7.5 | 1.0 | 0.1 | −1.7 |
Panevėžys | 0.4 | 0.9 | 1.2 | −4.3 | −4.4 | −7.1 | 0.8 | −0.9 | −1.9 |
Raseiniai | 0.7 | 1.5 | 3.0 | −4.9 | −4.8 | −7.0 | 1.5 | −0.5 | −0.9 |
Rokiškis | 0.3 | 0.4 | 0.1 | −4.2 | −4.3 | −6.7 | 0.4 | −0.8 | −2.0 |
Šiauliai | 0.7 | 1.5 | 3.0 | −4.9 | −4.8 | −7.0 | 1.5 | −0.5 | −0.9 |
Šilutė | 0.1 | 1.0 | 0.3 | −4.6 | −4.3 | −7.5 | 1.0 | 0.1 | −1.7 |
Švenčionys | 0.3 | 0.4 | 0.1 | −4.2 | −4.3 | −6.7 | 0.4 | −0.8 | −2.0 |
Tauragė | 0.2 | 1.5 | 0.9 | −4.7 | −4.4 | −8.2 | 1.4 | 0.0 | −2.5 |
Telšiai | 0.1 | 1.1 | 1.0 | −3.7 | −3.3 | −6.4 | 1.1 | 0.2 | −1.9 |
Ukmergė | 0.4 | 0.9 | 1.2 | −4.3 | −4.4 | −7.1 | 0.8 | −0.9 | −1.9 |
Utena | 0.3 | 0.4 | 0.1 | −4.2 | −4.3 | −6.7 | 0.4 | −0.8 | −2.0 |
Varėna | 0.2 | 1.1 | 1.5 | −3.8 | −4.4 | −7.2 | 1.1 | −1.0 | −1.9 |
Vėžaičiai | 0.1 | 1.0 | 0.3 | −4.5 | −4.3 | −7.5 | 1.0 | 0.1 | −1.7 |
Vilnius | 0.0 | 0.6 | 0.5 | −3.7 | −4.2 | −6.7 | 0.6 | −0.9 | −2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankevičienė, J.; Kanapickas, A. Projected Near-Surface Wind Speed Trends in Lithuania. Energies 2021, 14, 5425. https://doi.org/10.3390/en14175425
Jankevičienė J, Kanapickas A. Projected Near-Surface Wind Speed Trends in Lithuania. Energies. 2021; 14(17):5425. https://doi.org/10.3390/en14175425
Chicago/Turabian StyleJankevičienė, Justė, and Arvydas Kanapickas. 2021. "Projected Near-Surface Wind Speed Trends in Lithuania" Energies 14, no. 17: 5425. https://doi.org/10.3390/en14175425
APA StyleJankevičienė, J., & Kanapickas, A. (2021). Projected Near-Surface Wind Speed Trends in Lithuania. Energies, 14(17), 5425. https://doi.org/10.3390/en14175425