Heat Transfer Analysis for Non-Contacting Mechanical Face Seals Using the Variable-Order Derivative Approach
Abstract
:1. Introduction
2. Mathematical Model
3. Boundary Conditions
4. Problem Solution
5. Operating Conditions
6. Results and Discussion
7. Validation of Results
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Zheng, L.; Zhang, X.; Chen, G. Flow and heat transfer of a generalized Maxwell fluid with modified fractional Fourier’s law and Darcy’s law. Comput. Fluids 2016, 125, 25–38. [Google Scholar] [CrossRef]
- Bartosik, A. Application of Rheological Models in Prediction of Turbulent Slurry Flow. Flow Turbul. Combust. 2010, 84, 277–293. [Google Scholar] [CrossRef]
- Kozior, T. The Influence of Selected Selective Laser Sintering Technology Process Parameters on Stress Relaxation, Mass of Models, and Their Surface Texture Quality. 3D Print. Addit. Manuf. 2020, 7, 126–138. [Google Scholar] [CrossRef]
- Bochnia, J.; Blasiak, S. Fractional relaxation model of materials obtained with selective laser sintering technology. Rapid Prototyp. J. 2019, 25, 76–86. [Google Scholar] [CrossRef]
- Warbhe, S.D.; Tripathi, J.J.; Deshmukh, K.C.; Verma, J. Fractional Heat Conduction in a Thin Circular Plate with Constant Temperature Distribution and Associated Thermal Stresses. J. Heat Transf. 2017, 139, 44502. [Google Scholar] [CrossRef]
- Povstenko, Y.; Kyrylych, T. Fractional heat conduction in solids connected by thin intermediate layer: Nonperfect thermal contact. Contin. Mech. 2019, 31, 1719–1731. [Google Scholar] [CrossRef] [Green Version]
- Kaczorek, T. Selected Problems of Fractional Systems Theory; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2011; ISBN 9783642205026. [Google Scholar]
- Laski, P.A. Fractional-order feedback control of a pneumatic servo-drive. Bull. Pol. Acad. Sci.-Tech. Sci. 2019, 67, 53–59. [Google Scholar] [CrossRef]
- Zmarzly, P.; Gogolewski, D.; Kozior, T. Design guidelines for plastic casting using 3D printing. J. Eng. Fibers Fabr. 2020, 15. [Google Scholar] [CrossRef]
- Adamczak, S.; Zmarzly, P.; Kozior, T.; Gogolewski, D. Assessment of Roundness and Waviness Deviations of Elements Produced by Selective Laser Sintering Technology. In Engineering Mechanics 2017; ACAD SCI Czech Republic, INST Thermomechanics: Prague, Czech Republic; ISBN 978-80-214-5497-2.
- Takosoglu, J.E.; Laski, P.A.; Blasiak, S. Innovative Modular Pneumatic Valve Terminal with Self-Diagnosis, Control and Network Communications. In Engineering Mechanics 2014; Fuis, V., Ed.; ACAD SCI Czech Republic, INST Thermomechanics: Prague, Czech Republic; pp. 644–647. ISBN 978-80-214-4871-1.
- Nowacki, W. Problems of thermoelasticity. Prog. Aerosp. Sci. 1970, 10, 1–63. [Google Scholar] [CrossRef]
- Nowacki, W. Dynamic Problems of Thermoelasticity; Noordhoof International: Leyden, CO, USA, 1976; ISBN 978-90-286-0045-4. [Google Scholar]
- Nowacki, W. Thermoelasticity, 2nd ed.; Elsevier Science: Kent, UK, 2014; ISBN 978-1-4831-6248-5. [Google Scholar]
- Povstenko, Y.Z. Fundamental Solutions to Time-Fractional Advection Diffusion Equation in a Case of Two Space Variables. Math. Probl. Eng. 2014, 2014, 705364. [Google Scholar] [CrossRef]
- Povstenko, Y. Fractional Heat Conduction in an Infinite Medium with a Spherical Inclusion. Entropy 2013, 15, 4122–4133. [Google Scholar] [CrossRef] [Green Version]
- Povstenko, Y. Fractional heat conduction in a semi-infinite composite body. Commun. Appl. Ind. Math. 2014, 6. [Google Scholar] [CrossRef]
- Raslan, W.E. Application of fractional order theory of thermoelasticity to a 1D problem for a spherical shell. J. Theor. Appl. Mech. 2016, 54, 295–304. [Google Scholar] [CrossRef]
- Liu, J.-G.; Yang, X.-J.; Feng, Y.-Y. On integrability of the time fractional nonlinear heat conduction equation. J. Geom. Phys. 2019, 144, 190–198. [Google Scholar] [CrossRef]
- Koca, I. Modeling the heat flow equation with fractional-fractal differentiation. Chaos Solitons Fractals 2019, 128, 83–91. [Google Scholar] [CrossRef]
- Lotfy, K. Analytical solution of fractional order heat equation under the effects of variable thermal conductivity during photothermal excitation of spherical cavity of semiconductor medium. Waves Random Complex Medium 2021, 31, 239–254. [Google Scholar] [CrossRef]
- Liu, S.; Feng, L. An Inverse Problem for a Two-Dimensional Time-Fractional Sideways Heat Equation. Math. Probl. Eng. 2020, 2020, 5865971. [Google Scholar] [CrossRef] [Green Version]
- Povstenko, Y. Time-fractional radial heat conduction in a cylinder and associated thermal stresses. Arch. Appl. Mech. 2012, 82, 345–362. [Google Scholar] [CrossRef] [Green Version]
- Povstenko, Y.Z. Axisymmetric Solutions to Time-Fractional Heat Conduction Equation in a Half-Space under Robin Boundary Conditions. Int. J. Differ. Equ. 2012, 2012, 154085. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Xu, M. The time fractional heat conduction equation in the general orthogonal curvilinear coordinate and the cylindrical coordinate systems. Phys. A 2010, 389, 3368–3374. [Google Scholar] [CrossRef]
- Povstenko, Y. Fractional Thermoelasticity; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-15334-6. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; Imperial College Press: London, UK; Hackensack, NJ, USA, 2010; ISBN 978-1-84816-329-4. [Google Scholar]
- Blasiak, M.; Blasiak, S. Application of Fractional Calculus in Harmonic Oscilator. In Engineering Mechanics 2017; ACAD SCI Czech Republic, INST Thermomechanics: Prague, Czech Republic, 2017; pp. 146–149. ISBN 978-80-214-5497-2. [Google Scholar]
- Blasiak, M.; Blasiak, S. The Application of Integral Transforms to Solving Partial Differential Equations of the Fractional Order. In Engineering Mechanics 2017; ACAD SCI Czech Republic, INST Thermomechanics: Prague, Czech Republic, 2017; pp. 150–153. ISBN 978-80-214-5497-2. [Google Scholar]
- Li, Z.L.; Sun, D.G.; Han, B.H.; Sun, B.; Zhang, X.; Meng, J.; Liu, F.X. Response of viscoelastic damping system modeled by fractional viscoelastic oscillator. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2017, 231, 3169–3180. [Google Scholar] [CrossRef]
- Qi, H.-T.; Xu, H.-Y.; Guo, X.-W. The Cattaneo-type time fractional heat conduction equation for laser heating. Comput. Math. Appl. 2013, 66, 824–831. [Google Scholar] [CrossRef]
- Blasiak, S. Time-fractional heat transfer equations in modeling of the non-contacting face seals. Int. J. Heat Mass Transf. 2016, 100, 79–88. [Google Scholar] [CrossRef]
- Tournerie, B.; Danos, J.C.; Frene, J. Three-Dimensional Modeling of THD Lubrication in Face Seals. J. Tribol. 2001, 123, 196–204. [Google Scholar] [CrossRef]
- Ghonge, B.E.; Ghadle, K.P. Deflection of transient thermoelastic circular plate by Marchi-Zgrablich and Laplace integral transform technique. Appl. Mech. Lett. 2012, 2, 21004. [Google Scholar] [CrossRef] [Green Version]
- Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag-Leffler Functions and Their Applications. J. Appl. Math. 2011, 2011, 298628. [Google Scholar] [CrossRef] [Green Version]
- Rogosin, S. The Role of the Mittag-Leffler Function in Fractional Modeling. Mathematics 2015, 3, 368–381. [Google Scholar] [CrossRef]
Properties | Density ρ (kg/m3) | Poisson’s Ratio ν | Thermal Conductivity λ (W/mK) | Thermal Expansion | Specific Heat Cp (J/kgK) |
---|---|---|---|---|---|
Material | |||||
Silicon carbide | 3100 | 0.18 | 130 | 5 · 10−6 | 750 |
Resin-impregnated carbon | 1860 | 0.20 | 15 | 4 · 10−6 | – |
Seal Geometry | Seal Performance | ||
---|---|---|---|
Inner radius ri (m) | 0.050 | Convection coefficient (water) αf (W/m2 K) | 18,000 |
Outer radius ro (m) | 0.055 | Temperature of the surrounding fluid To (°C) | 20 |
Rotor/Stator thickness L (m) | 0.010 | Angular speed ω (rad/s) | 800 |
Gap height h (m) | 2 · 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blasiak, S. Heat Transfer Analysis for Non-Contacting Mechanical Face Seals Using the Variable-Order Derivative Approach. Energies 2021, 14, 5512. https://doi.org/10.3390/en14175512
Blasiak S. Heat Transfer Analysis for Non-Contacting Mechanical Face Seals Using the Variable-Order Derivative Approach. Energies. 2021; 14(17):5512. https://doi.org/10.3390/en14175512
Chicago/Turabian StyleBlasiak, Slawomir. 2021. "Heat Transfer Analysis for Non-Contacting Mechanical Face Seals Using the Variable-Order Derivative Approach" Energies 14, no. 17: 5512. https://doi.org/10.3390/en14175512
APA StyleBlasiak, S. (2021). Heat Transfer Analysis for Non-Contacting Mechanical Face Seals Using the Variable-Order Derivative Approach. Energies, 14(17), 5512. https://doi.org/10.3390/en14175512