Recent Advances in Ammonia Combustion Technology in Thermal Power Generation System for Carbon Emission Reduction
Abstract
:1. Introduction
2. Researches on Fundamental Combustion Characteristics of Fuel Ammonia
2.1. Apparent Observation on Ammonia Flame
2.2. Laminar Reacting Flow of Ammonia Flame
2.3. Turbulent Reacting Flow of Ammonia Flame
2.4. Effect of Ammonia-Hydrogen and -Methane Mixture on the Combustion Characteristics
2.5. Oxygen Enrichment and Plasma Application for Ammonia-Flame Enhancement
3. R&D Activities on Gas Turbine System
3.1. Lab-Scale Model Burner for Ammonia-Rich Mixture Combustion
3.2. 50 kW Small-Scale System
3.3. 2 MW Medium-Scale System
3.4. Developmet Plan of Commercial Large-Scale System
4. R&D Activities on Coal-fired Power System
4.1. Fundamental Coal-Ammonia Combustion Characteristics
4.2. MW Medium-Scale System Experiment
4.3. Commercial Large-Scale System Demonstration
5. Ammonia Combustion Experiments in Korea Institute of Energy Research
5.1. Experimental Appratus and Method
5.2. Flame Observation on Gaseous Ammonia and Co-Fired with Coal Particles
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biennial Update Report submissions from Non-Annex I Parties. Available online: https://unfccc.int/BURs (accessed on 30 July 2021).
- Olivier, J.; Peters, J. Trends in Global CO2 and Total Greenhouse Gas Emissions: 2020 Report; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2020. [Google Scholar]
- Global Energy Review 2021 CO2 Emissions. Available online: https://www.iea.org/reports/global-energy-review-2021/co2-emissions (accessed on 9 July 2021).
- SIP-Energy Carriers. Available online: https://www.jst.go.jp/sip/k04.html (accessed on 5 August 2021).
- Feasibility Study under NEDO Program on Ammonia Co-Firing in Thermal Power Generation Facility. Available online: https://www.jera.co.jp/english/information/20200327_479 (accessed on 5 August 2021).
- Sanchez, A.; Castellano, E.; Martin, M.; Vega, P. Evaluating ammonia as green fuel for power generation: A thermos-chemical perspective. Appl. Energy 2021, 293, 116956. [Google Scholar] [CrossRef]
- Yapicioglu, A.; Dincer, I. A review on clean ammonia as a potential fuel for power generators. Renew. Sustain. Energy Rev. 2019, 103, 96–108. [Google Scholar] [CrossRef]
- Dreizler, A.; Pitsch, H.; Scherer, V.; Schulz, C.; Janicka, J. The role of combustion science and technology in low and zero impact energy transformation processes. Appl. Energy Combust. Sci. 2021, 7, 100040. [Google Scholar]
- Zamfirescu, C.; Dincer, I. Using ammonia as a sustainable fuel. J. Power Sources 2008, 185, 459–465. [Google Scholar] [CrossRef]
- Verkamp, F.; Hardin, M.; Williams, J. Ammonia combustion properties and performance in gas-turbine burners. Proc. Combust. Inst. 1967, 11, 985–992. [Google Scholar] [CrossRef]
- Chiong, M.; Chong, C.; Ng, J.; Mashruk, S.; Chong, W.; Samiran, N.; Mong, G.; Valera-Medina, A. Advancements of combustion technologies in the ammonia-fuelled engines. Energy Convers. Manag. 2021, 244, 114460. [Google Scholar] [CrossRef]
- Dimitriou, P.; Javaid, R. A review of ammonia as a compression ignition engine fuel. Int. J. Hydrogen Energy 2020, 45, 7098–7118. [Google Scholar] [CrossRef]
- Martins, J.; Brito, F. Alternative fuels for internal combustion engines. Energies 2020, 13, 4086. [Google Scholar] [CrossRef]
- Cardoso, J.; Silva, V.; Rocha, R.; Hall, M.; Costa, M.; Eusebio, D. Ammonia as an energy vector: Current and future prospects for low-carbon fuel applications in internal combustion engines. J. Clean. Prod. 2021, 296, 126562. [Google Scholar] [CrossRef]
- Zamfirescu, C.; Dincer, I. Ammonia as a green fuel and hydrogen source for vehicular applications. Fuel Process. Technol. 2009, 90, 729–737. [Google Scholar] [CrossRef]
- Miura, D.; Tezuka, T. A comparative study of ammonia energy systems as a future energy carrier, with particular reference to vehicle use in Japan. Energy 2014, 68, 428–436. [Google Scholar] [CrossRef]
- Kroch, E. Ammonia–A fuel for motor buses. J. Inst. Pet. 1945, 213–223. [Google Scholar]
- Kong, S.; Reiter, A. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel. Fuel 2011, 90, 87–97. [Google Scholar]
- Kong, S.; Gross, C. Performance characteristics of a compression-ignition engine using direct-injection ammonia-DME mixtures. Fuel 2013, 103, 1069–1079. [Google Scholar]
- Lhuillier, C.; Brequigny, P.; Contino, F.; Mounaim-Rousselle, C. Experimental investigation on ammonia combustion behavior in a spark-ignition engine by means of laminar and turbulent expanding flames. Proc. Combust. Inst. 2021, 38, 5859–5868. [Google Scholar] [CrossRef]
- Oh, S.; Park, C.; Kim, S.; Kim, Y.; Choi, Y.; Kim, C. Natural gas-ammonia dual-fuel combustion in spark-ignited engine with various air-fuel ratios and split ratios of ammonia under part load condition. Fuel 2021, 290, 120095. [Google Scholar] [CrossRef]
- Issayev, G.; Giri, B.; Elbaz, A.; Shrestha, K.; Mauss, F.; Roberts, W.; Farooq, A. Combustion behavior of ammonia blended with diethyl ether. Proc. Combust. Inst. 2021, 38, 499–506. [Google Scholar] [CrossRef]
- Boretti, A. Novel dual fuel diesel-ammonia combustion system in advanced TDI engines. Int. J. Hydrogen Energy 2017, 42, 7071–7076. [Google Scholar] [CrossRef]
- Grannell, S. The Operating Features of a Stoichiometric, Ammonia and Gasoline Dual Fueled Spark Ignition engine. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2008. [Google Scholar]
- Jang, J.; Woo, Y.; Yoon, H.; Kim, J.; Lee, Y.; Kim, J. Combustion characteristics of ammonia-gasoline dual-fuel system in one liter engine. J. Korean Inst. Gas 2015, 19, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Al-Aboosi, F.; El-Halwagi, M.; Moore, M.; Nielsen, R. Renewable ammonia as an alternative fuel for the shipping industry. Curr. Opin. Chem. Eng. 2021, 31, 100670. [Google Scholar] [CrossRef]
- Mckinlay, C.; Turnock, S.; Hudson, D. Route to zero emission shipping: Hydrogen, ammonia or methanol? Int. J. Hydrogen Energy 2021, 46, 28282–28297. [Google Scholar] [CrossRef]
- MAN Energy Solutions is Developing a Fuel-Flexible, Two-Stroke Ammonia Engine as a Key Technology in the Maritime Energy Transition. Available online: https://www.man-es.com/discover/two-stroke-ammonia-engine (accessed on 12 August 2021).
- World’s First Full Scale Ammonia Engine Test—An Important Step towards Carbon Free Shipping. Available online: https://www.wartsila.com/media/news/30-06-2020-world-s-first-full-scale-ammonia-engine-test---an-important-step-towards-carbon-free-shipping-2737809 (accessed on 12 August 2021).
- Daewoo Wins Approval for Ammonia-Fired Ship from Lloyd’s Register. Available online: http://www.koreaherald.com/view.php?ud=20201006000301 (accessed on 12 August 2021).
- Samsung Heavy Gets Nod for Ammonia-Fueled Ships from Lloyd’s Register. Available online: https://en.yna.co.kr/view/AEN20200924003200320 (accessed on 12 August 2021).
- Hyundai Mipo Gets Approval for Ammonia-Fueled Ships from Lloyd’s Register. Available online: https://en.yna.co.kr/view/AEN20200723004600320 (accessed on 12 August 2021).
- Boretti, A. Novel heavy duty engine concept for operation duel fuel H2-NH3. Int. J. Hydrogen Energy 2012, 37, 7869–7876. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Liu, L. Theoretical investigation of the combustion performance of ammonia/hydrogen mixtures on a marine diesel engine. Int. J. Hydrogen Energy 2021, 46, 14805–14812. [Google Scholar] [CrossRef]
- Morch, C.; Bjerre, A.; Gottrup, M.; Sorenson, S.; Schramm, J. Ammonia/hydrogen mixtures in an SI-engine: Engine performance and analysis of a proposed fuel system. Fuel 2011, 90, 854–864. [Google Scholar] [CrossRef]
- Kim, K.; Roh, G.; Kim, W.; Chun, K. A preliminary study on an alternative ship propulsion system fueled by ammonia: Environmental and economic assessments. J. Mar. Sci. Eng. 2020, 8, 183. [Google Scholar] [CrossRef] [Green Version]
- Bouman, E.; Lindstad, E.; Rialland, A.; Stromman, A. State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping—A review. Transp. Res. Part D 2017, 52, 408–421. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Ashik, U.; Daud, W.; Abbas, H. Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane—A review. Renew. Sustain. Energy Rev. 2015, 44, 221–256. [Google Scholar] [CrossRef] [Green Version]
- Chehade, G.; Dincer, I. Progress in green ammonia production as potential carbon-free fuel. Fuel 2021, 299, 120845. [Google Scholar] [CrossRef]
- Pawar, N.; Heinrichs, H.; Winkler, C.; Heuser, P.; Ryberg, S.; Robinius, M.; Stolten, D. Potential of green ammonia production in India. Int. J. Hydrogen Energy 2021, 46, 27247–27267. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Van herle, J.; Marechal, F.; Desideri, U. Techno-economic comparison of green ammonia production processes. Appl. Energy 2020, 259, 114135. [Google Scholar] [CrossRef]
- IEA, The Future of Hydrogen: Seizing Today’s Opportunities (Report Prepared by the IEA for the G20, Japan). Available online: https://www.iea.org/corrections/ (accessed on 1 July 2019).
- Brown, T. Ammonia: Zero-Carbon Fertiliser, Fuel and Energy Store; The Royal Society: London, UK, 2020; Available online: https://www.ammoniaenergy.org/articles/royal-society-publishes-green-ammonia-policy-briefing/ (accessed on 20 February 2020).
- Garcia, M. Hydrogen Economy Outlook: Key Messages. BloombergNEF. Available online: https://data.bloomberglp.com/professional/sites/24/BNEF-Hydrogen-Economy-Outlook-Key-Messages-30-Mar-2020.pdf (accessed on 30 March 2020).
- Wijayanta, A.; Oda, T.; Purnomo, C.; Kashiwagi, T.; Aziz, M. Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: Comparison review. Int. J. Hydrogen Energy 2019, 44, 15026–15044. [Google Scholar] [CrossRef]
- Cesaro, Z.; Ives, M.; Nayak-Luke, R.; Mason, M.; Banares-Alcantara, R. Ammonia to power: Forecasting the levelized cost of electricity from green ammonia in large-scale power plants. Appl. Energy 2021, 282, 116009. [Google Scholar] [CrossRef]
- Rouwenhorst, K.; Van der Ham, A.; Mul, G.; Kersten, S. Islanded ammonia power systems: Technology review & conceptual process design. Renew. Sustain. Energy Rev. 2019, 114, 109339. [Google Scholar]
- Aziz, M.; Wijayanta, A.; Nandiyanto, A. Ammonia as effective hydrogen storage: A review on production, storage and utilization. Energies 2020, 13, 3062. [Google Scholar] [CrossRef]
- Makepeace, J.; He, T.; Weidenthaler, C.; Jensen, T.; Chang, F.; Vegge, T.; Ngene, P.; Kojima, Y.; Jongh, P.; Chen, P.; et al. Reversible ammonia-based and liquid organic hydrogen carriers for high-density hydrogen storage: Recent progress. Int. J. Hydrogen Energy 2019, 44, 7746–7767. [Google Scholar] [CrossRef]
- Ishimoto, Y.; Voldsund, M.; Neksa, P.; Roussanaly, S.; Berstad, D.; Gardarsdottir, S. Large-scale production and transport of hydrogen from Norway to Europe and Japan: Value chain analysis and comparison of liquid hydrogen and ammonia as energy carriers. Int. J. Hydrogen Energy 2020, 45, 32865–32883. [Google Scholar] [CrossRef]
- Hasan, M.; Mahlia, T.; Mofijur, M.; Fattah, I.; Handayani, F.; Ong, H.; Silitonga, A. A comprehensive review on the recent development of ammonia as a renewable energy carrier. Energies 2021, 14, 3732. [Google Scholar] [CrossRef]
- Wan, Z.; Tao, Y.; Shao, J.; Zhang, Y.; You, H. Ammonia as an effective hydrogen carrier and a clean fuel for solid oxide fuel cells. Energy Convers. Manag. 2021, 228, 113729. [Google Scholar] [CrossRef]
- Smith, C.; Hill, A.; Torrente-Murciano, L. Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 2020, 13, 331–344. [Google Scholar] [CrossRef]
- Kobayashi, H.; Hayakawa, A.; Somarathne, K.; Okafor, E. Science and technology of ammonia combustion. Proc. Combust. Inst. 2019, 37, 109–133. [Google Scholar] [CrossRef]
- Valera-Medina, A.; Xiao, H.; Owen-Jones, M.; David, W.; Bowen, P. Ammonia for power. Prog. Energy Combust. 2018, 69, 63–102. [Google Scholar] [CrossRef]
- Erdemir, D.; Dincer, I. A perspective on the use of ammonia as a clean fuel: Challenges and solutions. Int. J. Energy Res. 2020, 45, 4827–4834. [Google Scholar] [CrossRef]
- Hayakawa, A.; Arakawa, Y.; Mimoto, R.; Somarathne, K.; Kudo, T.; Kobayashi, H. Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor. Int. J. Hydrogen Energy 2017, 42, 14010–14018. [Google Scholar] [CrossRef]
- Hayakawa, A.; Goto, T.; Mimoto, R.; Kudo, T.; Kobayashi, H. NO formation/reduction mechanisms of ammonia/air premixed flames at various equivalence ratios and pressures. Mech. Eng. J. 2015, 2, 14-00402. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, A.; Goto, T.; Mimoto, R.; Arakawa, Y.; Kudo, T.; Kobayashi, H. Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures. Fuel 2015, 159, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Ichimura, R.; Hadi, K.; Hashimoto, N.; Hayakawa, A.; Kobayashi, H.; Fujita, O. Extinction limits of an ammonia/air flame propagating in a turbulent field. Fuel 2019, 246, 178–186. [Google Scholar] [CrossRef]
- Ichikawa, A.; Hayakawa, A.; Kitagawa, Y.; Somarathne, K.; Kudo, T.; Kobayashi, H. Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures. Int. J. Hydrogen Energy 2015, 40, 9570–9578. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, A.; Naito, Y.; Hayakawa, A.; Kudo, T.; Kobayashi, H. Burning velocity and flame structure of CH4/NH3/air turbulent premixed flames at high pressure. Int. J. Hydrogen Energy 2019, 44, 6991–6999. [Google Scholar] [CrossRef]
- Ku, J.; Ahn, Y.; Kim, H.; Kim, Y.; Kwon, O. Propagation and emissions of premixed methane-ammonia/air flames. Energy 2020, 201, 117632. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.; Kwon, O. Effects of ammonia substitution on hydrogen/air flame propagation and emissions. Int. J. Hydrogen Energy 2010, 35, 11332–11341. [Google Scholar] [CrossRef]
- Joo, J.; Lee, S.; Kwon, O. Effects of ammonia substitution on combustion stability limits and NOx emission of premixed hydrogen-air flames. Int. J. Hydrogen Energy 2012, 37, 6933–6941. [Google Scholar] [CrossRef]
- Um, D.; Joo, J.; Lee, S.; Kwon, O. Combustion stability limits and NOx emissions of nonpremixed ammonia-substituted hydrogen-air flames. Int. J. Hydrogen Energy 2013, 38, 14854–14865. [Google Scholar] [CrossRef]
- Tang, G.; Jin, P.; Bao, Y.; Chai, W.; Zhou, L. Experimental investigation of premixed combustion limits of hydrogen and methane additives in ammonia. Int. J. Hydrogen Energy 2021, 46, 20765–20776. [Google Scholar] [CrossRef]
- Zhang, M.; An, Z.; Wang, L.; Wei, X.; Jianayihan, B.; Wang, J.; Huang, Z.; Tan, H. The regulation effect of methane and hydrogen on the emission characteristics of ammonia/air combustion in a model combustor. Int. J. Hydrogen Energy 2021, 46, 21013–21025. [Google Scholar] [CrossRef]
- Xiao, H.; Valera-Medina, A.; Bowen, P. Study on premixed combustion characteristics of co-firing ammonia/methane fuels. Energy 2017, 140, 125–135. [Google Scholar] [CrossRef]
- Shu, T.; Xue, Y.; Zhou, Z.; Ren, Z. An experimental study of laminar ammonia/methane/air premixed flames using expanding spherical flames. Fuel 2021, 290, 120003. [Google Scholar] [CrossRef]
- Zhu, X.; Khateeb, A.; Roberts, W.; Guiberti, T. Chemiluminescence signature of premixed ammonia-methane-air flames. Combust. Flame 2021, 231, 111508. [Google Scholar] [CrossRef]
- Khateeb, A.; Guiberti, T.; Zhu, X.; Younes, M.; Jamal, A.; Roberts, W. Stability limits and exhaust NO performances of ammonia-methane-air swirl flames. Exp. Therm. Fluid Sci. 2020, 114, 110058. [Google Scholar] [CrossRef]
- Okafor, E.; Naito, Y.; Colson, S.; Ichikawa, A.; Kudo, T.; Hayakawa, A.; Kobayashi, H. Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism. Combust. Flame 2019, 204, 162–175. [Google Scholar] [CrossRef]
- Hashimoto, G.; Hadi, K.; Xia, Y.; Hamid, A.; Hashimoto, N.; Hayakawa, A.; Kobayashi, H.; Fujita, O. Turbulent flame propagation limits of ammonia/methane/air premixed mixture in a constant volume vessel. Proc. Combust. Inst. 2021, 38, 5171–5180. [Google Scholar] [CrossRef]
- Li, J.; Huang, H.; Deng, L.; He, Z.; Osaka, Y.; Kobayashi, N. Effect of hydrogen addition on combustion and heat release characteristics of ammonia flame. Energy 2019, 175, 604–617. [Google Scholar] [CrossRef]
- Lhuillier, C.; Brequigny, P.; Lamoureux, N.; Contino, F.; Mounaim-Rousselle, C. Experimental investigation on laminar burning velocities of ammonia/hydrogen/air mixtures at elevated temperatures. Fuel 2020, 263, 116653. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Huang, S.; Zhang, Z.; Li, T.; Yi, P.; Wu, D.; Chen, G. Laminar burning characteristics of ammonia/hydrogen/air mixtures with laser ignition. Int. J. Hydrogen Energy 2021, in press. [Google Scholar]
- Zhu, X.; Khateeb, A.; Guiberti, T.; Roberts, W. NO and OH* emission characteristics of very-lean to stoichiometric ammonia-hydrogen-air swirl flames. Proc. Combust. Inst. 2021, 38, 5155–5162. [Google Scholar] [CrossRef]
- Mei, B.; Ma, S.; Zhang, Y.; Zhang, X.; Li, W.; Li, Y. Exploration on laminar flame propagation of ammonia and syngas mixtures up to 10 atm. Combust. Flame 2020, 220, 368–377. [Google Scholar] [CrossRef]
- Chai, W.; Bao, Y.; Jin, P.; Tang, G.; Zhou, L. A review on ammonia, ammonia-hydrogen and ammonia-methane fuels. Renew. Sustain. Energ. Rev. 2021, 147, 111254. [Google Scholar] [CrossRef]
- Wang, D.; Ji, C.; Wang, Z.; Wang, S.; Zhang, T.; Yang, J. Measurement of oxy-ammonia laminar burning velocity at normal and elevated temperatures. Fuel 2020, 279, 118425. [Google Scholar] [CrossRef]
- Wang, S.; Elbaz, A.; Wang, Z.; Roberts, W. The effect of oxygen content on the turbulent flame speed of ammonia/oxygen/nitrogen expanding flames under elevated pressures. Combust. Flame 2021, 232, 111521. [Google Scholar] [CrossRef]
- Xia, Y.; Hashimoto, G.; Hadi, K.; Hashimoto, N.; Hayakawa, A.; Kobayashi, H.; Fujita, O. Turbulent burning velocity of ammonia/oxygen/nitrogen premixed flame in O2-enriched air condition. Fuel 2020, 268, 117383. [Google Scholar] [CrossRef]
- Mei, B.; Zhang, X.; Ma, S.; Cui, M.; Guo, H.; Cao, Z.; Li, Y. Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions. Combust. Flame 2019, 210, 236–246. [Google Scholar] [CrossRef]
- Shrestha, K.; Lhuillier, C.; Barbosa, A.; Brequigny, P.; Contino, F.; Mounaim-Rousselle, C.; Seidel, L.; Mauss, F. An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature. Proc. Combust. Inst. 2021, 38, 2163–2174. [Google Scholar] [CrossRef]
- Li, J.; Huang, H.; Kobayashi, N.; He, Z.; Osaka, Y.; Zeng, T. Numerical study on effect of oxygen content in combustion air on ammonia combustion. Energy 2015, 93, 2053–2068. [Google Scholar] [CrossRef]
- Jing, Q.; Huang, J.; Liu, Q.; Wang, D.; Chen, X.; Wang, Z.; Liu, C. The flame propagation characteristics and detonation parameters of ammonia/oxygen in a large-scale horizontal tube: As a carbon-free fuel and hydrogen-energy carrier. Int. J. Hydrogen Energy 2021, 46, 19158–19170. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, X.; Huang, J.; Shen, Y.; Zhang, Y.; Liu, Z. The characteristics of flame propagation in ammonia/oxygen mixtures. J. Hazard. Mater. 2019, 363, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Choe, J.; Sun, W.; Ombrello, T.; Carter, C. Plasma assisted ammonia combustion: Simultaneous NOx reduction and flame enhancement. Combust. Flame 2021, 228, 430–432. [Google Scholar] [CrossRef]
- Liao, Y.; Zhao, X. Plasma-assisted stabilization of lifted non-premixed jet flames. Energy Fuels 2018, 32, 3967–3974. [Google Scholar] [CrossRef]
- Ombrello, T.; Won, S.; Ju, Y. Lifted flame speed enhancement by plasma excitation of oxygen. In Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009. [Google Scholar]
- Kim, W.; Mungal, M.; Cappelli, M. Flame stabilization using a plasma discharge in a lifted jet flame. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005. [Google Scholar]
- Tagliante, F.; Malbec, L.; Bruneaux, G.; Pickett, L.; Angelberger, C. Experimental study of the stabilization mechanism of a lifted diesel-type flame using combined optical diagnostics and laser-induced plasma ignition. Combust. Flame 2018, 197, 215–226. [Google Scholar] [CrossRef]
- Giorgi, M.; Ficarella, A.; Fontanarosa, D.; Pescini, E.; Suma, A. Investigation of the effects of plasma discharge on methane decomposition for combustion enhancement of a lean flame. Energies 2020, 13, 1452. [Google Scholar] [CrossRef] [Green Version]
- Kong, C.; Li, Z.; Alden, M.; Ehn, A. Stabilization of a turbulent premixed flame by a plasma filament. Combust. Flame 2019, 208, 79–85. [Google Scholar] [CrossRef]
- Valera-Medina, A.; Gutesa, M.; Xiao, H.; Pugh, D.; Giles, A.; Goktepe, B.; Marsh, R.; Bowen, P. Premixed ammonia/hydrogen swirl combustion under rich fuel conditions for gas turbines operation. Int. J. Hydrogen Energy 2019, 44, 8615–8626. [Google Scholar] [CrossRef]
- Valera-Medina, A.; Marsh, R.; Runyon, J.; Pugh, D.; Beasley, P.; Hughes, T.; Bowen, P. Ammonia-methane combustion in tangential swirl burners for gas turbine power generation. Appl. Energy 2017, 185, 1362–1371. [Google Scholar] [CrossRef] [Green Version]
- Mashruk, S.; Xiao, H.; Valera-Medina, A. Rich-quench-lean model comparison for the clean use of humidified ammonia/hydrogen combustion systems. Int. J. Hydrogen Energy 2021, 46, 4472–4484. [Google Scholar] [CrossRef]
- Bozo, M.; Vigueras-Zuniga, M.; Buffi, M.; Seljak, T.; Valera-Medina, A. Fuel rich ammonia-hydrogen injection for humidified gas turbines. Appl. Energy 2019, 251, 113334. [Google Scholar] [CrossRef]
- Iki, N.; Kurata, O.; Matsunuma, T.; Inoue, T.; Suzuki, M.; Tsujimura, T.; Furutani, H.; Kobayashi, H.; Hayakawa, A.; Arakawa, Y.; et al. Micro gas turbine firing ammonia. In Proceedings of the 12th Annual NH3 Fuel Conference, Chicago, IL, USA, 20–23 September 2015. [Google Scholar]
- Iki, N.; Kurata, O.; Matsunuma, T.; Inoue, T.; Tsujimura, T.; Furutani, H.; Kobayashi, H.; Hayakawa, A.; Arakawa, Y.; Ichikawa, A. Micro gas turbine firing ammonia. In Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, Korea, 13–17 June 2016. [Google Scholar]
- Iki, N.; Kurata, O.; Matsunuma, T.; Inoue, T.; Tsujimura, T.; Furutani, H.; Kobayashi, H.; Hayakawa, A. Operation and flame observation of micro gas turbine firing ammonia. In Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, Charlotte, NC, USA, 26–30 June 2017. [Google Scholar]
- Iki, N.; Kurata, O.; Matsunuma, T.; Inoue, T.; Tsujimura, T.; Furutani, H.; Kobayashi, H.; Hayakawa, A.; Okafor, E. NOx reduction in a swirl combustor firing ammonia for a micro gas turbine. In Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Oslo, Norway, 11–15 June 2018. [Google Scholar]
- Okafor, E.; Somarathne, K.; Hayakawa, A.; Kudo, T.; Kurata, O.; Iki, N.; Kobayashi, H. Toward the development of an efficient low-NOx ammonia combustor for a micro gas turbine. Proc. Combust. Inst. 2019, 37, 4597–4606. [Google Scholar] [CrossRef]
- Okafor, E.; Somarathne, K.; Ratthanan, R.; Hayakawa, A.; Kudo, T.; Kurata, O.; Iki, N.; Tsujimura, T.; Furutani, H.; Kobayashi, H. Control of NOx and other emissions in micro gas turbine combustors fuelled with mixtures of methane and ammonia. Combust. Flame 2020, 211, 406–416. [Google Scholar] [CrossRef]
- Okafor, E.; Kurata, O.; Yamashita, H.; Inoue, T.; Tsujimura, T.; Iki, N.; Hayakawa, A.; Ito, S.; Uchida, M.; Kobayashi, H. Liquid ammonia spray combustion in two-stage micro gas turbine combustors at 0.25 MPa; Relevance of combustion enhancement to flame stability and NOx control. Appl. Energy Combust. Sci. 2021, 7, 100038. [Google Scholar]
- Ito, S.; Uchida, M.; Suda, T.; Fujimori, T. Development of ammonia gas turbine co-generation technology. IHI Eng. Rev. 2020, 53, 1–6. [Google Scholar]
- Uchida, M.; Ito, S.; Suda, T.; Fujimori, T. Performance of ammonia/natural gas co-fired gas turbine with two-stage combustor. In Proceedings of the AIChE annual meeting, Orlando, FL, USA, 10–15 November 2019. [Google Scholar]
- IHI Becomes World’s First to Attain 70% Liquid Ammonia Co-Firing Ratio on 2000-Kilowatt-Class Gas Turbine. Available online: https://www.ihi.co.jp/en/all_news/2020/resources_energy_environment/1197060_2032.html (accessed on 9 July 2021).
- Mitsubishi Power Commences Development of World’s First Ammonia-Fired 40 MW Class Gas Turbine System–Targets to Expand Lineup of Carbon-Free Power Generation Options, with Commercialization around 2025. Available online: https://power.mhi.com/news/20210301.html (accessed on 9 July 2021).
- GE and IHI Sign Agreement to Develop Ammonia Fuels Roadmap across Asia. Available online: https://www.ge.com/news/press-releases/ge-and-ihi-sign-agreement-to-develop-ammonia-fuels-roadmap-across-asia (accessed on 9 July 2021).
- Xia, Y.; Hadi, K.; Hashimoto, G.; Hashimoto, N.; Fujita, O. Effect of ammonia/oxygen/nitrogen equivalence ratio on spherical turbulent flame propagation of pulverized coal/ammonia co-combustion. Proc. Combust. Inst. 2021, 38, 4043–4052. [Google Scholar] [CrossRef]
- Hadi, K.; Ichimura, R.; Hashimoto, G.; Xia, Y.; Hashimoto, N.; Fujita, O. Effect of fuel ratio of coal on the turbulent flame speed of ammonia/coal particle cloud co-combustion at atmospheric pressure. Proc. Combust. Inst. 2021, 38, 4131–4139. [Google Scholar] [CrossRef]
- Yamamoto, A.; Kimoto, M.; Ozawa, Y.; Hara, S. Basic co-firing characteristics of ammonia with pulverized coal in a single burner test furnace. In Proceedings of the 15th Annual NH3 Fuel Conference, Pittsburgh, PA, USA, 31 October–1 November 2018. [Google Scholar]
- Ito, T.; Ishii, H.; Zhang, J.; Ishihara, S.; Suda, T. New technology of the ammonia co-firing with pulverized coal to reduce the NOx emission. In Proceedings of the 16th Annual NH3 Fuel Conference, Orlando, FL, USA, 10–15 November 2019. [Google Scholar]
- Nakamura, H.; Shindo, M. Effects of radiation heat loss on laminar premixed ammonia/air flames. Proc. Combust. Inst. 2019, 37, 1741–1748. [Google Scholar] [CrossRef]
- Yoshizaki, T. Test of the co-firing of ammonia and coal at Mizushima power station. J. Combust. Jpn. 2019, 61, 309–312. [Google Scholar]
- JERA and IHI to Start a Demonstration Project Related to Ammonia Co-Firing at a Large-Scale Commercial Coal-Fired Power Plant. Available online: https://www.jera.co.jp/english/information/20210524_677 (accessed on 9 July 2021).
- Beer, J.; Chigier, N. Combustion Aerodynamics; John Wiley & Sons, Inc.: New York, NY, USA, 1972. [Google Scholar]
- Kim, Y.; Lee, D.; Kim, Y. Experimental study on combustion instability and attenuation characteristics in the lab-scale gas turbine combustor with a sponge-like porous medium. J. Mech. Sci. Technol. 2018, 32, 1879–1887. [Google Scholar] [CrossRef]
- Lee, H.; Choi, S. An observation of combustion behavior of a single coal particle entrained into hot gas flow. Combust. Flame 2015, 162, 2610–2620. [Google Scholar] [CrossRef]
- Lee, H.; Choi, S. Motion of single pulverized coal particles in a hot gas flow field. Combust. Flame 2016, 169, 63–71. [Google Scholar] [CrossRef]
- Lee, H.; Choi, S. Volatile flame visualization of single pulverized fuel particles. Powder Technol. 2018, 333, 353–363. [Google Scholar] [CrossRef]
NH3 | H2 | CH4 | C3H8 | |
---|---|---|---|---|
Boiling temperature at 1 atm [°C] | −33.4 | −253 | −161 | −42.1 |
Condensation pressure at 25 °C [atm] | 9.9 | n/a | n/a | 9.4 |
Lower heating value [MJ/kg] | 18.6 | 120 | 50 | 46.4 |
Flammability limit [Equivalence ratio] | 0.63–1.4 | 0.1–7.1 | 0.5–1.7 | 0.51–2.5 |
Adiabatic flame temperature [°C] | 1800 | 2110 | 1950 | 2000 |
Maximum laminar burning velocity [m/s] | 0.07 | 2.91 | 0.37 | 0.43 |
Minimum auto ignition temperature [°C] | 650 | 520 | 630 | 450 |
Rank | Proximate (Air-Dried) (wt%) | Ultimate (Air-Dried) (wt%) | Heating Value (MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
W | V.M. | F.C. | Ash | C | H | O | N | S | ||
Bituminous | 2.38 | 35.32 | 49.62 | 12.68 | 70.38 | 4.65 | 7.91 | 1.48 | 0.52 | 27.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Lee, M.-J. Recent Advances in Ammonia Combustion Technology in Thermal Power Generation System for Carbon Emission Reduction. Energies 2021, 14, 5604. https://doi.org/10.3390/en14185604
Lee H, Lee M-J. Recent Advances in Ammonia Combustion Technology in Thermal Power Generation System for Carbon Emission Reduction. Energies. 2021; 14(18):5604. https://doi.org/10.3390/en14185604
Chicago/Turabian StyleLee, Hookyung, and Min-Jung Lee. 2021. "Recent Advances in Ammonia Combustion Technology in Thermal Power Generation System for Carbon Emission Reduction" Energies 14, no. 18: 5604. https://doi.org/10.3390/en14185604
APA StyleLee, H., & Lee, M. -J. (2021). Recent Advances in Ammonia Combustion Technology in Thermal Power Generation System for Carbon Emission Reduction. Energies, 14(18), 5604. https://doi.org/10.3390/en14185604