Adsorption of Reactive Dye onto Uçá Crab Shell (Ucides cordatus): Scale-Up and Comparative Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Materials
2.2. Characterization and Analysis of Materials
2.2.1. Particle Size Analysis
2.2.2. Fourier Transform Infrared Spectroscopy (FT-IR) and Data Analysis
2.2.3. Energy-Dispersive X-ray Spectroscopy (EDX) Analysis
2.2.4. Scanning Electron Microscopy (SEM)
2.2.5. Point of Zero Charge (PCZ)—Salt Addition Method
2.2.6. Physical Adsorption of N2
2.2.7. Spectrophotometric Method
2.3. Description of Systems
2.4. Adsorption Kinetics
2.5. Adsorption Isotherms
3. Results
3.1. Characterization and Analysis of Materials
3.2. Adsorption Kinetics
3.3. Adsorption Isotherms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Queiroz, M.T.A.; Queiroz, C.A.; Alvim, L.B.; Sabará, M.G.; Leão, M.M.D.; de Amorim, C.C. Restructuring in the flow of textile wastewater treatment and its relationship with water quality in Doce River, MG, Brazil. Gest. Prod. 2019, 26. [Google Scholar] [CrossRef]
- Kajjumba, G.W.; Emik, S.; Öngen, A.; Kurtulus Özcan, H.; Aydın, S. Modelling of Adsorption Kinetic Processes—Errors, Theory and Application. In Advanced Sorption Process Applications; IntechOpen: London, UK, 2019. [Google Scholar]
- Freire, L.F.A.; Formiga, W.J.F.; Lagden, M.G.; De, A.S. Avaliação da Adsorção de Efluente Têxtil por Compósitos de Quitosana Artigos Convidados. Rev. Process. Químicos 2018, 12, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Kunz, A.; Peralta-Zamora, P.; De Moraes, S.G.; Durán, N. Novas tendências no tratamento de efluentes têxteis. Quim. Nova 2002, 25, 78–82. [Google Scholar] [CrossRef]
- Vitali, V.M.V.; Ballaminut, N.; Matheus, D.R. Decolorization of CI Reactive Blue 222 by immobilized basidiomycetes in response to different carbon and nitrogen inputs. Hoehnea 2018, 45, 352–360. [Google Scholar] [CrossRef]
- Alam, M.Z.; Khan, M.J.H.; Kabbashi, N.A.; Sayem, S.M.A. Development of an Effective Biosorbent by Fungal Immobilization Technique for Removal of Dyes. Waste Biomass Valorization 2018, 9, 681–690. [Google Scholar] [CrossRef]
- Alardhi, S.M.; Albayati, T.M.; Alrubaye, J.M. A hybrid adsorption membrane process for removal of dye from synthetic and actual wastewater. Chem. Eng. Process. Process Intensif. 2020, 157, 108113. [Google Scholar] [CrossRef]
- Kadhim, R.J.; Al-Ani, F.H.; Al-Shaeli, M.; Alsalhy, Q.F.; Figoli, A. Removal of dyes using graphene oxide (Go) mixed matrix membranes. Membranes 2020, 10, 366. [Google Scholar] [CrossRef]
- Mukimin, A.; Vistanty, H.; Zen, N. Oxidation of textile wastewater using cylinder Ti/β-PbO2 electrode in electrocatalytic tube reactor. Chem. Eng. J. 2015, 259, 430–437. [Google Scholar] [CrossRef]
- Cotillas, S.; Llanos, J.; Cañizares, P.; Clematis, D.; Cerisola, G.; Rodrigo, M.A.; Panizza, M. Removal of Procion Red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation. Electrochim. Acta 2018, 263, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Shokoohi, R.; Torkshavand, Z.; Mahmoudi, M.M.; Behgoo, A.M.; Ghaedrahmati, E.; Hosseini, F.M. Effective Removal of Azo Dye Reactive Blue 222 from Aqueous Solutions Using Modified Magnetic Nanoparticles with Sodium Alginate/Hydrogen Peroxide. Environ. Prog. Sustain. Energy 2019, 38, S205–S213. [Google Scholar] [CrossRef]
- Ruthven, D.M. Principles of Adsorption and Adsorption Processes; John Wiley: Hoboken, NJ, USA, 1984; ISBN 978-0-471-86606-0. [Google Scholar]
- Sulyman, M.; Al-Marog, S.; Al-Azabi, K. Greener Cleaner: Liquid-Phase Adsorption of Dye Using Macroalgae Based Biosorbent Materials. Acta Sci. Agric. 2019, 3, 30–38. [Google Scholar] [CrossRef]
- Chin, J.Y.; Chng, L.M.; Leong, S.S.; Yeap, S.P.; Yasin, N.H.M.; Toh, P.Y. Removal of Synthetic Dye by Chlorella vulgaris Microalgae as Natural Adsorbent. Arab. J. Sci. Eng. 2020, 45, 7385–7395. [Google Scholar] [CrossRef]
- Kumar, S.; Ahluwalia, A.S.; Charaya, M.U. Adsorption of Orange-G dye by the dried powdered biomass of Chlorella vulgaris Beijerinck. Curr. Sci. 2019, 116, 604–611. [Google Scholar] [CrossRef]
- Wei, H.; Sun, J.; Zhang, B.; Liu, R. Comparative study of cationic dye adsorption using industrial latex sludge with sulfonate and pyrolysis treatment. Sustainability 2020, 12, 10048. [Google Scholar] [CrossRef]
- Sari, I.P.; Simarani, K. Decolorization of selected azo dye by Lysinibacillus fusiformis W1B6: Biodegradation optimization, isotherm, and kinetic study biosorption mechanism. Adsorpt. Sci. Technol. 2019, 37, 492–508. [Google Scholar] [CrossRef] [Green Version]
- Roy, U.; Sengupta, S.; Das, P.; Bhowal, A.; Datta, S. Integral approach of sorption coupled with biodegradation for treatment of azo dye using Pseudomonas sp.: Batch, toxicity, and artificial neural network. 3 Biotech 2018, 8, 192. [Google Scholar] [CrossRef]
- Vithanage, A.H.; Madhushanka, A.K.D.N.; Ariyadasa, T.; Gunavardena, S.H.P. Textile Dye Removal in Wastewater Using Chitosan. Annu. Sess. IESL 2015, 283–289. [Google Scholar]
- Murcia-Salvador, A.; Pellicer, J.A.; Fortea, M.I.; Gómez-López, V.M.; Rodríguez-López, M.I.; Núñez-Delicado, E.; Gabaldón, J.A. Adsorption of Direct Blue 78 using chitosan and cyclodextrins as adsorbents. Polymers 2019, 11, 1003. [Google Scholar] [CrossRef] [Green Version]
- do Vale, D.A.; Vieira, C.B.; Vidal, M.F.; Claudino, R.L.; Andrade, F.K.; Sousa, J.R.; Souza Filho, M.D.S.M.; da Silva, A.L.C.; de Souza, B.W.S. Chitosan-Based Edible Films Produced from Crab-Uçá (Ucides cordatus) Waste: Physicochemical, Mechanical and Antimicrobial Properties. J. Polym. Environ. 2021, 29, 694–706. [Google Scholar] [CrossRef]
- Francis, A.O.; Zaini, M.A.A.; Muhammad, I.M.; Abdulsalam, S.; El-Nafaty, U.A. Adsorption dynamics of dye onto crab shell chitosan/neem leaf composite. Water Pract. Technol. 2020, 15, 673–682. [Google Scholar] [CrossRef]
- Rao, T.M.; Rao, V.V.B. Biosorption of congo red from aqueous solution by crab shell residue: A comprehensive study. Springerplus 2016, 5, 537. [Google Scholar] [CrossRef] [Green Version]
- Vijayaraghavan, K.; Palanivelu, K.; Velan, M. Crab shell-based biosorption technology for the treatment of nickel-bearing electroplating industrial effluents. J. Hazard. Mater. 2005, 119, 251–254. [Google Scholar] [CrossRef]
- Wu, F.C.; Tseng, R.L.; Juang, R.S. Enhanced abilities of highly swollen chitosan beads for color removal and tyrosinase immobilization. J. Hazard. Mater. 2001, 81, 167–177. [Google Scholar] [CrossRef]
- Porpino, K.K.P.; Barreto, M.d.C.S.; Cambuim, K.B.; Carvalho Filho, J.R.; Toscano, I.A.S. Fe (II) Adsorption on Ucides cordatus crab shells. Quim. Nova 2011, 34, 928–932. [Google Scholar] [CrossRef] [Green Version]
- Chong, K.Y.; Chia, C.H.; Zakaria, S.; Sajab, M.S. Vaterite calcium carbonate for the adsorption of Congo red from aqueous solutions. J. Environ. Chem. Eng. 2014, 2, 2156–2161. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, Z.; Mei, X.; Chen, Z.; Lv, X.; Zhou, K. Preparation of core—Shell structured CaCO 3 microspheres as rapid and recyclable adsorbent for anionic dyes. R. Soc. Open Sci. 2017, 4, 170697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathur, N.K.; Narang, C.K. Chitin and chitosan, versatile polysaccharides from marine animals. J. Chem. Educ. 1990, 67, 938–942. [Google Scholar] [CrossRef]
- Chattopadhyay, D.P. Chemistry of Dyeing; Woodhead Publishing Limited: Cambridge, UK, 2011; Volume 1, ISBN 9780857093974. [Google Scholar]
- Ewing, G.W. Métodos Instrumentais de Análise Química; BLUCHER: São Paulo, Brazil, 1972; Volume 2, ISBN 9788521201250. [Google Scholar]
- Mahmood, T.; Saddique, M.T.; Naeem, A.; Westerhoff, P.; Mustafa, S.; Alum, A. Comparison of different methods for the point of zero charge determination of NiO. Ind. Eng. Chem. Res. 2011, 50, 10017–10023. [Google Scholar] [CrossRef]
- Órfão, J.J.M.; Silva, A.I.M.; Pereira, J.C.V.; Barata, S.A.; Fonseca, I.M.; Faria, P.C.C.; Pereira, M.F.R. Adsorption of a reactive dye on chemically modified activated carbons—Influence of pH. J. Colloid Interface Sci. 2006, 296, 480–489. [Google Scholar] [CrossRef]
- Giacomni, F.; Menegazzo, M.A.B.; da Silva, M.G.; da Silva, A.B.; de Barros, M.A.S.D. Importância da determinação do ponto de carga zero como característica de tingimento de fibras proteicas. Rev. Mater. 2017, 22. [Google Scholar] [CrossRef] [Green Version]
- Pouretedal, H.R.; Sadegh, N. Effective removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood. J. Water Process Eng. 2014, 1, 64–73. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef] [PubMed]
- Lagergren, S. About the theory of so-called adsorption of soluble substances. Sven. Vetensk. Handingarl 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; Wase, D.A.J.; Forster, C.F. Removal of lead ions from aqueous solution using sphagnum moss peat as absorbent. Water SA 1996, 22, 219–224. [Google Scholar]
- McCabe, W.L.; Smith, J.C.; Harriott, P. Unit Operations of Chemical Engineering; McGraw Hill: New York, NY, USA, 2001. [Google Scholar]
- Armbruster, M.H.; Austin, J.B. The Adsorption of Gases on Plane Surfaces of Mica. J. Am. Chem. Soc. 1938, 60, 467–475. [Google Scholar] [CrossRef]
- Chakravorti, R.K.; Weber, T.W. Pore and Solid Diffusion Models for fixed-bed adsorbers. AIChE J. 1974, 20, 228–238. [Google Scholar]
- Sips, R. On the structure of a catalyst surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Assis, O.B.G.; da Silva, V.L. Caracterização estrutural e da capacidade de absorção de água em filmes finos de quitosana processados em diversas concentrações. Polímeros 2003, 13, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Abreu, F.O.M.; Cavalcante, L.G.; Doudement, P.V.; Castro, A.M.; Nascimento, A.P.; Matos, J.E.X. Development of new method to obtain chitosan from the exoskeleton of Crabs using microwave radiation|Propriedades e Características da Quitosana Obtida a Partir do Exoesqueleto de Caranguejo-Uçá Utilizando Radiação de Microondas. Polimeros 2013, 23, 630–635. [Google Scholar] [CrossRef]
- Bhattacharjee, B.N.; Mishra, V.K.; Rai, S.B.; Parkash, O.; Kumar, D. Structure of Apatite Nanoparticles Derived from Marine Animal (Crab) Shells: An Environment-Friendly and Cost-Effective Novel Approach to Recycle Seafood Waste. ACS Omega 2019, 4, 12753–12758. [Google Scholar] [CrossRef]
- Haryati, E.; Dahlan, K.; Togibasa, O.; Dahlan, K. Protein and Minerals Analyses of Mangrove Crab Shells (Scylla serrata) from Merauke as a Foundation on Bio-ceramic Components. J. Phys. Conf. Ser. 2019, 1204, 012031. [Google Scholar] [CrossRef]
- Roer, R.; Dillaman, R. The Structure and Calcification of the Crustacean Cuticle. Am. Zool. 1984, 24, 893–909. [Google Scholar] [CrossRef]
- Dillaman, R.; Hequembourg, S.; Gay, M. Early pattern of calcification in the dorsal carapace of the blue crab, Callinectes sapidus. J. Morphol. 2005, 263, 356–374. [Google Scholar] [CrossRef]
- Chen, P.Y.; Lin, A.Y.M.; McKittrick, J.; Meyers, M.A. Structure and mechanical properties of crab exoskeletons. Acta Biomater. 2008, 4, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Guaratini, C.C.I.; Zanoni, M.V.B. Revisão: Corantes têxteis. Quim. Nova 2000, 23, 71–78. [Google Scholar] [CrossRef]
- Guo, X.; Wang, J. A general kinetic model for adsorption: Theoretical analysis and modeling. J. Mol. Liq. 2019, 288, 111100. [Google Scholar] [CrossRef]
- McKay, G.; Otterburn, M.S.; Sweeney, A.G. The removal of colour from effluent using various adsorbents-III. Silica: Rate processes. Water Res. 1980, 14, 15–20. [Google Scholar] [CrossRef]
- Azizian, S. Kinetic models of sorption: A theoretical analysis. J. Colloid Interface Sci. 2004, 276, 47–52. [Google Scholar] [CrossRef] [PubMed]
Chemical Structure | |
Chemical Formula | C37H24N10Na6O22S7 |
Molecular Weight (g/mol) | 1,323,006 |
CAS Number | 93051-44-6 |
Maximum Wavelength (nm) | 614 |
Experimental Conditions | Dubnoff Shaker Bath (System 1—S1) | Mixing Reactor (System 2—S2) |
---|---|---|
Volume of solution (mL) | 25 | 300 |
Adsorbent material mass (g) | 0.5 | 6 |
Mesh | 42 | 42 |
pH | 5 | 5 |
Concentration (mg·L−1) | 100 | 100 |
Experimental Conditions | Dubnoff Shaker Bath (System 1—S1) | Mixing Reactor (System 2—S2) |
---|---|---|
Volume of solution (mL) | 25 | 300 |
Adsorbent material mass (g) | 0.5 | 6 |
Mesh | 42 | 42 |
pH | 5 | 5 |
Temperature (°C) | 25 | 25 |
Time (min) | 300 | 300 |
1/nF | Meaning |
---|---|
0 < 1/nF < 1 | Favorable adsorption |
1/nF > 1 | Unfavorable adsorption |
1/nF = 1 | Irreversible and unfavorable adsorption |
Mesh | Retained Material Mass (g) | Retained Material Fraction (%) |
---|---|---|
24 | 200,231 | 20,174 |
42 | 523,112 | 52,704 |
60 | 123,023 | 12,395 |
80 | 70,853 | 7139 |
100 | 30,344 | 3057 |
200 | 10,071 | 1015 |
tray | 34,9032 | 3517 |
Composition | (%) |
---|---|
(CaO) | 84.3 |
MgO | 8.47 |
P2O5 | 4.02 |
SO3 | 1.51 |
SrO | 1.45 |
Fe2O3 | 0.16 |
TiO2 | 0.09 |
CuO | 0.02 |
Br | 0.02 |
Systems | Kinetic Models | |||||||
---|---|---|---|---|---|---|---|---|
Pseudo-First-Order (PFO) | Pseudo-Second-Order (PSO) | |||||||
k1 (min−1) | qeexp 1 (mg/g) | qecalc 2 (mg/g) | R2 | k2 (g.mg−1.min−1) | qeexp 1 (mg/g) | qecalc 2 (mg/g) | R2 | |
System 1 (S1) | 0.01283 | 3.623 | 3.633 | 0.9689 | 0.003746 | 3.623 | 4.179 | 0.9839 |
System 2 (S2) | 0.02551 | 4.191 | 4.042 | 0.8441 | 0.01174 | 4.191 | 4.240 | 0.8987 |
Models | Parameters | System 1—S1 | System 2—S2 |
---|---|---|---|
Langmuir | (mg·g−1) | 40.12 | 19.67 |
KL (L.mg−1) | 0.002147 | 0.006399 | |
R2 | 0.9392 | 0.8424 | |
Freundlich | nF | 1.066 | 1.091 |
KF | 0.09979 | 0.1407 | |
R2 | 0.9406 | 0.8397 | |
Sips | (mg·g−1) | 66.94 | 2.953 |
KS | 0.001436 | 2.004 × 10−7 | |
nS | 0.9595 | 6.681 | |
R2 | 0.9398 | 0.9457 |
Systems | Initial Concent. (mg·L−1) | RL | nF |
---|---|---|---|
System 1—S1 | 10 | 0.978980004 | 0.938 |
20 | 0.958825495 | ||
30 | 0.939484099 | ||
40 | 0.920907582 | ||
50 | 0.903051451 | ||
60 | 0.885874599 | ||
70 | 0.869338989 | ||
80 | 0.853409371 | ||
90 | 0.83805303 | ||
100 | 0.823239569 | ||
System 2—S2 | 16 | 0.90713 | 0.917 |
28 | 0.8480604 | ||
40 | 0.7962135 | ||
52 | 0.7503407 | ||
76 | 0.6728141 | ||
88 | 0.6397633 | ||
100 | 0.6098076 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pessoa, M.E.A.; de Sousa, K.S.M.G.; Clericuzi, G.Z.; Ferreira, A.L.d.O.; Soares, M.C.d.S.; Neto, J.C.d.Q. Adsorption of Reactive Dye onto Uçá Crab Shell (Ucides cordatus): Scale-Up and Comparative Studies. Energies 2021, 14, 5876. https://doi.org/10.3390/en14185876
Pessoa MEA, de Sousa KSMG, Clericuzi GZ, Ferreira ALdO, Soares MCdS, Neto JCdQ. Adsorption of Reactive Dye onto Uçá Crab Shell (Ucides cordatus): Scale-Up and Comparative Studies. Energies. 2021; 14(18):5876. https://doi.org/10.3390/en14185876
Chicago/Turabian StylePessoa, Maria Eduarda Araújo, Karla Silvana Menezes Gadelha de Sousa, Genaro Zenaide Clericuzi, Andrea Lopes de Oliveira Ferreira, Maria Clara de Souza Soares, and José Cavalcante de Queiroz Neto. 2021. "Adsorption of Reactive Dye onto Uçá Crab Shell (Ucides cordatus): Scale-Up and Comparative Studies" Energies 14, no. 18: 5876. https://doi.org/10.3390/en14185876
APA StylePessoa, M. E. A., de Sousa, K. S. M. G., Clericuzi, G. Z., Ferreira, A. L. d. O., Soares, M. C. d. S., & Neto, J. C. d. Q. (2021). Adsorption of Reactive Dye onto Uçá Crab Shell (Ucides cordatus): Scale-Up and Comparative Studies. Energies, 14(18), 5876. https://doi.org/10.3390/en14185876