Impact of Artificial Infiltration on the Removal of Nonsteroidal Anti-Inflammatory Drugs during Treatment of Surface Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Installation
2.2. Analytical Methods
3. Results
4. Interpretation and Discussion of Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taylor, D. The Pharmaceutical Industry and the Future of Drug Development. In Pharmaceuticals in the Environment; Royal Society of Chemistry: London, UK, 2015; pp. 1–33. [Google Scholar]
- Kot-Wasik, A.; Dębska, J.; Wasik, A.; Namieśnik, J. Detremination of nonsteroidal antiinflammatory drugs in natural waters using off-line and on-line SPE followed by LC coupled with DAD-MS. Chromatographia 2006, 64, 13–21. [Google Scholar] [CrossRef]
- Santos, L.H.M.L.M.; Araújo, A.N.; Fachini, A.; Pena, A.; Delerue-Matos, C.; Montenegro, M.C.B.S.M. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J. Hazard. Mater. 2010, 175, 45–95. [Google Scholar] [CrossRef] [Green Version]
- Rocca, L.M.; Gentili, A.; Caretti, F.; Curini, R.; Pérez-Fernández, V. Occurrence of non-steroidal antiinflammatory drugs in surface waters of Central Italy by liquid chromatography–tandem mass spectrometry. Int. J. Environ. Anal. Chem. 2015, 95, 685–697. [Google Scholar] [CrossRef]
- Hamman, E.; Stuyfzanw, P.J.; Greskowiak, J.; Timmer, H.; Massmann, G. The fate of organic micropollutants during long- term/ long- distance river bank filtration. Sci. Total Environ. 2016, 545/546, 629–640. [Google Scholar] [CrossRef]
- Kovačević, S.; Radišić, M.; Laušević, M.; Dimkić, M. Occurrence and behavior of selected pharmaceutical during riverbank filtration in The Republic of Serbia. Environ. Sci. Pollut. Res. 2017, 24, 2075–2088. [Google Scholar] [CrossRef]
- Szymonik, A.; Lach, J. Zagrożenia środowiska wodnego obecnością środków farmaceutycznych. Inżynieria i Ochrona Środowiska 2012, 15, 249–263. [Google Scholar]
- Kruć, R.; Dragon, K.; Górski, J. Pharmaceuticals in River and bank filtrate water in Krajkowo (Poland). Biul. PIG 2019, 475, 109–116. [Google Scholar] [CrossRef]
- Caban, M.; Lis, E.; Kumirska, J.; Stepnowski, P. Determination of pharmaceutical residues in drinking water in Poland using a new SPE-GC-MS (SIM) method based on Speedisk extraction disks and DIMETRIS derivatization. Sci. Total Environ. 2015, 538, 402–411. [Google Scholar] [CrossRef]
- Zając, A.; Zembrzuska, J.; Kruszelnicka, I.; Ginter-Kramarczyk, D. Methods for removing pharmaceuticals and their metabolites from water and wastewater. Przem. Chem. 2015, 94, 76–80. [Google Scholar]
- Fent, K. Effects of pharmaceuticals on aquatic organisms. In Pharmaceuticals in the Environment; Springer: Berlin/Heidelberg, Germany, 2008; pp. 175–203. [Google Scholar]
- Okońska, M.; Marciniak, M.; Zembrzuska, J.; Kaczmarek, M. Laboratory investigations of diclofenac migration in saturated porous media—A case study. Geologos 2019, 25, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, L.; Fiorentino, A.; Grassi, M.; Attanasio, D.; Guida, M. Advanced treatment of urban wastewater by sand filtration and graphene adsorption for wastewater reuse: Effect on a mixture of pharmaceuticals and toxicity. J. Environ. Chem. Eng. 2015, 3, 122–128. [Google Scholar] [CrossRef]
- Soubrier, M.; Rosenbaum, D.; Tatar, Z.; Lahayea, C.; Dubost, J.-J.; Mathieu, S. Vascular effects of nonsteroidal antiinflammatory drugs. Jt. Bone Spine 2013, 80, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Arfe, A.; Scotti, L.; Varas-Lorenzo, C.; Nicotra, F.; Zambon, A.; Kollhorst, B.; Schink, T.; Garbe, E.; Herings, R.; Straatman, H.; et al. Non-steroidal anti-inflammatory drugs and risk of heart failure in four European countries: Nested case-control study. Br. Med. J. 2016, 354, 4857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EU. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy; EU: Maastricht, The Netherland, 2013. [Google Scholar]
- Bohdziewicz, J.; Kudlek, E.; Dudziak, M. Influence of the catalyst type (TiO2 and ZnO) on the photocatalytic oxidation of pharmaceuticals in the aquatic environment. Desalination Water Treat. 2016, 57, 1552–1563. [Google Scholar] [CrossRef]
- Ibrahim, N.; Aziz, H.A.; Suffian, Y.M. River Bank Filtration: Study of Langat River Water and Borehole Water Quality. Mech. Mater. 2015, 773–774, 1194–1198. [Google Scholar] [CrossRef] [Green Version]
- Nagy-Kovács, Z.; László, B.; Fleit, E.; Czihat-Mártonné, K.; Till, G.; Börnick, H.; Adomat, Y.; Grischek, T. Behavior of Organic Micropollutants during River Bank Filtration in Budapest, Hungary. Water 2018, 10, 1861. [Google Scholar] [CrossRef] [Green Version]
- Rose, A.K.; Fabbro, L.; Kinnear, S. Cyanobacteria breakthrough: Effects of Limnothrix redekei contamination in an artificial bank filtration on a regional water supply. Harmful Algae 2018, 76, 1–10. [Google Scholar] [CrossRef]
- Dillon, P.J.; Miller, M.; Fallowfield, H.; Hutson, J. The potential of riverbank filtration for drinking water supplies in relation to microsystin removal in brackish aquifers. J. Hydrol. 2002, 266, 209–221. [Google Scholar] [CrossRef]
- Cierniak, D.; Dymaczewski, Z.; Jeż-Walkowiak, J.; Makała, A.; Wyrwas, B. Impact of artificial infiltration on removal of surfactants in surface water treatment process. Desalination Water Treat. 2020, 199, 241–251. [Google Scholar] [CrossRef]
- Grünheida, S.; Amy, G.; Jekel, M. Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge. Water Res. 2005, 39, 3219–3228. [Google Scholar] [CrossRef]
- Weiss, W.J.; Bouwer, E.J.; Aboytes, R.; LeChevallier, M.W.; O’melia, C.R.; Le, B.T.; Schwab, K.J. Riverbank filtration for control of microorganisms: Results from field monitoring. Water Res. 2005, 39, 1990–2001. [Google Scholar] [CrossRef]
- Maeng, S.K.; Ameda, E.; Sharma, S.K.; Grutzmacher, G.; Amy, G.L. Organic micropollutant removal from wastewater effluent- impacted drinking water sources during bank filtration and artificial recharge. Water Res. 2010, 44, 4003–4014. [Google Scholar] [CrossRef]
- Lasagna, M.; Deluca, D.A.; Franchino, E. Nitrates contamination of groundwater in the western Po Plain (Italy): The effects of groundwater and surface water interactions. Environ. Earth Sci. 2016, 75, 240. [Google Scholar] [CrossRef]
- Zając, A. Skuteczność Usuwania Wybranych Niesteroidowych Leków Przeciwzapalnych ze Ścieków Metodą Osadu Czynnego. Ph.D. Thesis, Poznan University of Technology, Poznan, Poland, 2017; pp. 1–189. [Google Scholar]
- Jeż-Walkowiak, J.; Dymaczewski, Z. Effectiveness of oxidative filter materials for manganese removal from groundwater. J. Water Supply Res. Technol. AQUA 2012, 61, 364–371. [Google Scholar] [CrossRef]
- Dymaczewski, Z.; Falkowska, J.; Frąckowiak, A.; Jeż-Walkowiak, J.; Nawrot, J.; Dudek, L.; Topór, T. The impact of microstructure of filtration materials on its auto-activation for manganese removal from groundwater. Minerals 2020, 10, 502. [Google Scholar] [CrossRef]
- Wandzik, I. Materiały Pomocnicze do Przedmiotu “Związki Biologicznie Aktywne” dla Studentów Specjalności Chemia Bioorganiczna; Silesian Univeristy of Technology Publishing House: Gliwice, Poland, 2013. [Google Scholar]
- Lin, A.Y.; Lin, C.A.; Tung, H.H.; Chary, N.S. Potential for biodegradation and sorption of acetaminophen, caffeine, propanololacebutolol in lab-scale aqueous environments. J. Hazard. Mater. 2010, 183, 242–250. [Google Scholar] [CrossRef]
- Guzik, U.; Hupert-Kocurek, K.; Mazur, A.; Wojcieszyńska, D. Biotransformacja wybranych niesteroidowych leków przeciwzapalnych w środowisku. Bromatol. Chem. Toksykol. 2013, 1, 105–112. [Google Scholar]
- Domagała, M.; Wanot, B. Zanieczyszczenie wody hormonami i innymi farmaceutykami oraz ich degradacja. Technol. Wod. 2019, 4, 30–34. [Google Scholar]
- Rezka, P.; Balcerzak, W. Occurrence of antibiotics in the environment. Tech. Trans. 2016, 1-Ś, 133–143. [Google Scholar]
Compound | Precursor Ion [M-H]- m/z | Declus- Tering Potential (V) | MRM 1 Transitions—Quantitation Ion (Precursor Ion m/z → Product Ion m/z) | Collision Energy (V) | MRM 2 Transitions—Confirmation Ion (Precursor Ion m/z → Product Ion m/z) | Collision Energy (V) |
---|---|---|---|---|---|---|
Paracetamol | 150 | −20 | 150 → 107 | −24 | 150 → 60 | −14 |
Ketoprofen | 253 | −50 | 253 → 209 | −12 | 253 → 197 | −10 |
Sampling Points (Figure 1) | Distance from Pond Bank (m) | Retention Time (Days) |
---|---|---|
PP-1 | 18.00 | 26.0 |
PP-2 | 45.50 | 54.5 |
PP-3 | 62.90 | 62.0 |
S-48 well | 85.90 | 86.0 |
Paracetamol (ng/L) | Ketoprofen (ng/L) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Date of Sampling | Pond | PP-1 Retention 26 Days | PP-2 Retention 54.5 Days | PP-3 Retention 62 Days | Well Retention 86 Days | Pond | PP-1 Retention 26 Days | PP-2 Retention 54.5 Days | PP-3 Retention 62 Days | Well Retention 86 Days |
29 March 2019 | 7.276 | 7.587 | 7.201 | 7.260 | 7.077 | 1.149 | 2.767 | 4.893 | 1.382 | 0.633 |
16 April 2019 | 7.310 | 7.525 | 6.632 | 7.225 | 6.528 | 0.649 | 3.271 | 2.625 | 0.151 | 0.945 |
14 May 2019 | 7.115 | 7.510 | 7.393 | 6.324 | 3.098 | 6.497 | 13.041 | 0.525 | 0.835 | 5.500 |
05 June 2019 | 7.458 | 7.440 | 4.596 | 3.411 | 0.780 | 2.667 | 5.678 | 1.736 | 2.869 | 8.042 |
09 July 2019 | 7.366 | 3.894 | 0.832 | 0.746 | 0.837 | 4.816 | 5.600 | 3.283 | 3.650 | 3.154 |
27 August 2019 | 0.720 | 0.799 | 0.616 | 0.790 | 0.706 | 8.280 | 1.679 | 4.020 | 4.130 | 3.136 |
23 September 2019 | 0.660 | 0.666 | 0.806 | 0.715 | 0.642 | 7.780 | 2.005 | 3.188 | 3.939 | 3.164 |
28 October 2019 | 0.270 | 0.810 | 0.752 | 0.527 | 0.642 | 2.580 | 4.460 | 2.827 | 2.490 | 4.604 |
26 November 2019 | 0.700 | 0.743 | 0.724 | 0.609 | 0.707 | 4.400 | 3.347 | 2.951 | 2.166 | 6.888 |
08 January 2020 | 0.630 | 0.705 | 0.847 | 1.034 | 1.774 | 7.490 | 4.189 | 3.419 | 2.636 | 8.854 |
21 January 2020 | 3.648 | 0.707 | 1.237 | 1.455 | 2.223 | 6.752 | 4.974 | 4.097 | 3.799 | 9.211 |
Measuring Point | Season | pH | Oxygen (mg/L) | TOC (mg/L) | Temperature (°C) |
---|---|---|---|---|---|
Pond | Spring | 8.03 | 12.00 | 9.02 | 11.50 |
Summer | 7.83 | 5.50 | 4.66 | 21.40 | |
Fall | 8.06 | 8.30 | 6.51 | 16.30 | |
Winter | 8.09 | 11.50 | 6.31 | 6.00 | |
PP-1 | Spring | 7.62 | 4.40 | 4.89 | 8.40 |
Summer | 7.36 | 1.20 | 0.79 | 19.00 | |
Fall | 7.26 | 1.49 | 5.64 | 20.80 | |
Winter | 7.30 | 1.47 | 2.92 | 12.40 | |
PP-2 | Spring | 7.68 | 2.00 | 4.37 | 6.10 |
Summer | 7.40 | 0.90 | 1.54 | 16.30 | |
Fall | 7.30 | 1.03 | 5.82 | 20.40 | |
Winter | 7.32 | 0.83 | 3.07 | 15.50 | |
PP-3 | Spring | 7.60 | 2.00 | 4.29 | 6.20 |
Summer | 7.58 | 0.70 | 1.94 | 15.40 | |
Fall | 7.46 | 1.37 | 6.11 | 18.00 | |
Winter | 7.39 | 0.83 | 4.03 | 15.60 | |
S-48 | Spring | 7.57 | 0.80 | 4.94 | 6.90 |
Summer | 7.49 | 0.90 | 0.95 | 10.70 | |
Fall | 7.55 | 1.07 | 6.62 | 14.40 | |
Winter | 7.35 | 1.23 | 4.82 | 15.20 |
Paracetamol | Ketoprofen | |
---|---|---|
Efficiency % | 42.03 | 0.57 |
Molar mass * | 151.163 | 254.281 |
Hydrophilicity logP * | 0.46 | 3.12 |
Strength of an acid pKa * | 9.7 | 4.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makała, A.; Dymaczewski, Z.; Jeż-Walkowiak, J.; Strykowska, A.; Zembrzuska, J. Impact of Artificial Infiltration on the Removal of Nonsteroidal Anti-Inflammatory Drugs during Treatment of Surface Water. Energies 2021, 14, 8406. https://doi.org/10.3390/en14248406
Makała A, Dymaczewski Z, Jeż-Walkowiak J, Strykowska A, Zembrzuska J. Impact of Artificial Infiltration on the Removal of Nonsteroidal Anti-Inflammatory Drugs during Treatment of Surface Water. Energies. 2021; 14(24):8406. https://doi.org/10.3390/en14248406
Chicago/Turabian StyleMakała, Aleksandra, Zbysław Dymaczewski, Joanna Jeż-Walkowiak, Agnieszka Strykowska, and Joanna Zembrzuska. 2021. "Impact of Artificial Infiltration on the Removal of Nonsteroidal Anti-Inflammatory Drugs during Treatment of Surface Water" Energies 14, no. 24: 8406. https://doi.org/10.3390/en14248406
APA StyleMakała, A., Dymaczewski, Z., Jeż-Walkowiak, J., Strykowska, A., & Zembrzuska, J. (2021). Impact of Artificial Infiltration on the Removal of Nonsteroidal Anti-Inflammatory Drugs during Treatment of Surface Water. Energies, 14(24), 8406. https://doi.org/10.3390/en14248406