Improved Air-Conditioning Demand Response of Connected Communities over Individually Optimized Buildings
Abstract
:1. Introduction
- Effectiveness of a high-resolution demand planning control scheme for air-conditioning demand response for a range of building zone flexibilities;
- Theoretical demand reduction improvement potential of connected communities over individual BEMS for a range of building zone flexibilities;
- Theoretical nodal cost reduction improvement potential of connected communities over individual BEMS for a range of building zone flexibilities.
2. Materials and Methods
2.1. Description of Simulation Data
2.2. Control Strategy
2.3. Mathematical Formulation
2.3.1. Peak Demand Minimization
2.3.2. Energy Cost Minimization
3. Results
3.1. Peak Demand Minimization
3.2. Energy Cost Minimization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lievrouw, L.A.; Farb, S.E. Information and equity. Annu. Rev. Inf. Sci. Technol. 2003, 37, 499–540. [Google Scholar] [CrossRef]
- Mai, T.; Sandor, D.; Wiser, R.; Schneider, T. Renewable Electricity Futures Study. Executive Summary (No. NREL/TP-6A20-52409-ES); National Renewable Energy Lab. (NREL): Golden, CO, USA, 2012.
- Lu, N. Grid friendly TM appliances-load-side solution for congestion management. In Proceedings of the 2005/2006 IEEE/PES Transmission and Distribution Conference and Exhibition, Dallas, TX, USA, 21–24 May 2006; IEEE: New York, NY, USA, 2006; pp. 1269–1273. [Google Scholar]
- Xie, Q.; Hui, H.; Ding, Y.; Ye, C.; Lin, Z.; Wang, P.; Song, Y.; Ji, L.; Chen, R. Use of demand response for voltage regulation in power distribution systems with flexible resources. Iet Gener. Transm. Distrib. 2020, 14, 883–892. [Google Scholar] [CrossRef]
- U.S. Department of Energy, Energy Information Administration, Independent Statistics & Analysis. Annual Energy Outlook 2020. 13 March 2020. Available online: https://www.eia.gov/outlooks/aeo/ (accessed on 10 September 2021).
- Lakshmanan, V.; Marinelli, M.; Kosek, A.M.; Nørgård, P.B.; Bindner, H.W. Impact of thermostatically controlled loads’ demand response activation on aggregated power: A field experiment. Energy 2016, 94, 705–714. [Google Scholar] [CrossRef] [Green Version]
- Hao, H.; Sanandaji, B.M.; Poolla, K.; Vincent, T.L. Aggregate flexibility of thermostatically controlled loads. IEEE Trans. Power Syst. 2014, 30, 189–198. [Google Scholar] [CrossRef]
- Zhang, W.; Kalsi, K.; Fuller, J.; Elizondo, M.; Chassin, D. Aggregate model for heterogeneous thermostatically controlled loads with demand response. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; IEEE: New York, NY, USA, 2012; pp. 1–8. [Google Scholar]
- Koch, S.; Mathieu, J.L.; Callaway, D.S. Modeling and control of aggregated heterogeneous thermostatically controlled loads for ancillary services. In Proceedings of the PSCC 2011, Stockholm, Sweden, 22–26 August 2011; pp. 1–7. [Google Scholar]
- Kundu, S.; Sinitsyn, N.; Backhaus, S.; Hiskens, I. Modeling and control of thermostatically controlled loads. arXiv 2011, arXiv:1101.2157. [Google Scholar]
- Perfumo, C.; Kofman, E.; Braslavsky, J.H.; Ward, J.K. Load management: Model-based control of aggregate power for populations of thermostatically controlled loads. Energy Convers. Manag. 2012, 55, 36–48. [Google Scholar] [CrossRef]
- Lu, N.; Chassin, D.P.; Widergren, S.E. Modeling uncertainties in aggregated thermostatically controlled loads using a state queueing model. IEEE Trans. Power Syst. 2005, 20, 725–733. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Energy, Energy Information Administration, Independent Statistics & Analysis, Form EIA-861. Electric Power Annual Industry Report. 21 October 2020. Available online: https://www.eia.gov/electricity/data.php (accessed on 10 September 2021).
- Smart Electric Power Alliance. 2019 Utility Demand Response Market Snapshot. Available online: https://sepapower.org/resource/2019-utility-demand-response-market-snapshot/ (accessed on 14 August 2021).
- Erdinc, O.; Taşcıkaraoğlu, A.; Paterakis, N.G.; Eren, Y.; Catalão, J.P. End-user comfort oriented day-ahead planning for responsive residential HVAC demand aggregation considering weather forecasts. IEEE Trans. Smart Grid 2016, 8, 362–372. [Google Scholar] [CrossRef]
- Campbell, N.A.; Peinado-Guerrero, M.A.; Phelan, P.E.; Villalobos, J.R. A Comprehensive Framework for Distributed Energy Resource Aggregators. In ASME Power Conference; American Society of Mechanical Engineers: New York, NY, USA, 2020; Volume 83747, p. V001T10A011. [Google Scholar]
- Olazo-Gómez, Y.; Herrada, H.; Castaño, S.; Arce, J.; Xamán, J.P.; Jiménez, M.J. Data-Based RC Dynamic Modelling to Assessing the In-Situ Thermal Performance of Buildings. Analysis of Several Key Aspects in a Simplified Reference Case toward the Application at On-Board Monitoring Level. Energies 2020, 13, 4800. [Google Scholar] [CrossRef]
- Zhou, D.P.; Hu, Q.; Tomlin, C.J. Quantitative comparison of data-driven and physics-based models for commercial building HVAC systems. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; IEEE: New York, NY, USA, 2017; pp. 2900–2906. [Google Scholar]
- Guille, C.; Gross, G. A conceptual framework for the vehicle-to-grid (V2G) implementation. Energy Policy 2009, 37, 4379–4390. [Google Scholar] [CrossRef]
- Mammoli, A.; Robinson, M.; Ayon, V.; Martínez-Ramón, M.; Chen, C.F.; Abreu, J.M. A behavior-centered framework for real-time control and load-shedding using aggregated residential energy resources in distribution microgrids. Energy Build. 2019, 198, 275–290. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Keypour, R.; Bak-Jensen, B.; Pillai, J.R. A multi-agent based optimization of residential and industrial demand response aggregators. Int. J. Electr. Power Energy Syst. 2019, 107, 472–485. [Google Scholar] [CrossRef]
- Mahmoudi, N.; Heydarian-Forushani, E.; Shafie-khah, M.; Saha, T.K.; Golshan, M.H.; Siano, P. A bottom-up approach for demand response aggregators’ participation in electricity markets. Electr. Power Syst. Res. 2017, 143, 121–129. [Google Scholar] [CrossRef]
- Starke, M.; Munk, J.; Zandi, H.; Kuruganti, T.; Buckberry, H.; Hall, J.; Leverette, J. Agent-based system for transactive control of smart residential neighborhoods. In Proceedings of the 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; IEEE: New York, NY, USA, 2019; pp. 1–5. [Google Scholar]
- Ghofrani, A.; Nazemi, S.D.; Jafari, M.A. HVAC load synchronization in smart building communities. Sustain. Cities Soc. 2019, 51, 101741. [Google Scholar] [CrossRef]
- Perez, K.X.; Baldea, M.; Edgar, T.F. Integrated HVAC management and optimal scheduling of smart appliances for community peak load reduction. Energy Build. 2016, 123, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Chinthavali, S.; Lee, S.; Starke, M.; Chae, J.; Tansakul, V.; Munk, J.; Zandi, H.; Kuruganti, T.; Buckberry, H.; Bhandari, M.; et al. Data Analysis Approach for Large Data Volumes in a Connected Community. In Proceedings of the 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 17–20 February 2021; IEEE: New York, NY, USA, 2021; pp. 1–5. [Google Scholar]
- Building Energy Codes Program. Available online: www.energycodes.gov/development/commercial/prototype_models (accessed on 5 January 2021).
- Kim, N.K.; Shim, M.H.; Won, D. Building energy management strategy using an HVAC system and energy storage system. Energies 2018, 11, 2690. [Google Scholar] [CrossRef] [Green Version]
- Sehar, F.; Pipattanasomporn, M.; Rahman, S. An energy management model to study energy and peak power savings from PV and storage in demand responsive buildings. Appl. Energy 2016, 173, 406–417. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Chen, Q. Building energy management decision-making in the real world: A comparative study of HVAC cooling strategies. J. Build. Eng. 2021, 33, 101869. [Google Scholar] [CrossRef]
- Yan, C.; Xue, X.; Wang, S.; Cui, B. A novel air-conditioning system for proactive power demand response to smart grid. Energy Convers. Manag. 2015, 102, 239–246. [Google Scholar] [CrossRef]
- Li, W.; Yang, L.; Ji, Y.; Xu, P. Estimating demand response potential under coupled thermal inertia of building and air-conditioning system. Energy Build. 2019, 182, 19–29. [Google Scholar] [CrossRef]
- Vlachos, A.G.; Biskas, P.N. Demand response in a real-time balancing market clearing with pay-as-bid pricing. IEEE Trans. Smart Grid 2013, 4, 1966–1975. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, L.; Fu, Y. Real-time price-based demand response management for residential appliances via stochastic optimization and robust optimization. IEEE Trans. Smart Grid 2012, 3, 1822–1831. [Google Scholar] [CrossRef]
- Zhao, Z.; Lee, W.C.; Shin, Y.; Song, K.B. An optimal power scheduling method for demand response in home energy management system. IEEE Trans. Smart Grid 2013, 4, 1391–1400. [Google Scholar] [CrossRef]
- Morais, H.; Kádár, P.; Faria, P.; Vale, Z.A.; Khodr, H.M. Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming. Renew. Energy 2010, 35, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Sou, K.C.; Weimer, J.; Sandberg, H.; Johansson, K.H. Scheduling smart home appliances using mixed integer linear programming. In Proceedings of the 2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, 12–15 December 2011; IEEE: New York, NY, USA, 2011; pp. 5144–5149. [Google Scholar]
- Chang, G.W.; Aganagic, M.; Waight, J.G.; Medina, J.; Burton, T.; Reeves, S.; Christoforidis, M. Experiences with mixed integer linear programming based approaches on short-term hydro scheduling. IEEE Trans. Power Syst. 2001, 16, 743–749. [Google Scholar] [CrossRef] [Green Version]
- Amini, M.H.; Frye, J.; Ilić, M.D.; Karabasoglu, O. Smart residential energy scheduling utilizing two stage mixed integer linear programming. In Proceedings of the 2015 North American Power Symposium (NAPS), Charlotte, NC, USA, 4–6 October 2015; IEEE: New York, NY, USA, 2015; pp. 1–6. [Google Scholar]
- Garcia-Gonzalez, J.; Castro, G.A. Short-term hydro scheduling with cascaded and head-dependent reservoirs based on mixed-integer linear programming. In Proceedings of the 2001 IEEE Porto Power Tech Proceedings (Cat. No. 01EX502), Porto, Portugal, 10–13 September 2001; IEEE: New York, NY, USA, 2001; Volume 3, p. 6. [Google Scholar]
- Sanandaji, B.M.; Vincent, T.L.; Poolla, K. Ramping rate flexibility of residential HVAC loads. IEEE Trans. Sustain. Energy 2015, 7, 865–874. [Google Scholar] [CrossRef]
- Amasyali, K.; Olama, M.; Perumalla, A. A Machine Learning-based Approach to Predict the Aggregate Flexibility of HVAC Systems. In Proceedings of the 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 17–20 February 2020; IEEE: New York, NY, USA, 2020; pp. 1–5. [Google Scholar]
- Maasoumy, M.; Rosenberg, C.; Sangiovanni-Vincentelli, A.; Callaway, D.S. Model predictive control approach to online computation of demand-side flexibility of commercial buildings hvac systems for supply following. In Proceedings of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014; IEEE: New York, NY, USA, 2014; pp. 1082–1089. [Google Scholar]
- Taşcıkaraoğlu, A.; Paterakis, N.G.; Erdinç, O.; Catalão, J.P. Combining the flexibility from shared energy storage systems and DLC-based demand response of HVAC units for distribution system operation enhancement. IEEE Trans. Sustain. Energy 2018, 10, 137–148. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Z.; Xu, P.; Li, W.; Sha, H.; Yang, Z.; Li, G.; Hu, C. Quantification of electricity flexibility in demand response: Office building case study. Energy 2019, 188, 116054. [Google Scholar] [CrossRef]
- Cui, B.; Joe, J.; Munk, J.; Sun, J.; Kuruganti, T. Load Flexibility Analysis of Residential HVAC and Water Heating and Commercial Refrigeration (No. ORNL/SPR-2019/1210); Oak Ridge National Lab (ORNL): Oak Ridge, TN, USA, 2019. [Google Scholar]
- Mocanu, E.; Mocanu, D.C.; Nguyen, P.H.; Liotta, A.; Webber, M.E.; Gibescu, M.; Slootweg, J.G. On-line building energy optimization using deep reinforcement learning. IEEE Trans. Smart Grid 2018, 10, 3698–3708. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Chong, A.; Pan, Y.; Zhang, C.; Lu, S.; Lam, K.P. A deep reinforcement learning approach to using whole building energy model for hvac optimal control. In Proceedings of the 2018 Building Performance Analysis Conference and SimBuild, Chicago, IL, USA, 26–28 September 2018; Volume 3, pp. 22–23. [Google Scholar]
- Mason, K.; Grijalva, S. A review of reinforcement learning for autonomous building energy management. Comput. Electr. Eng. 2019, 78, 300–312. [Google Scholar] [CrossRef] [Green Version]
- Deltetto, D.; Coraci, D.; Pinto, G.; Piscitelli, M.S.; Capozzoli, A. Exploring the Potentialities of Deep Reinforcement Learning for Incentive-Based Demand Response in a Cluster of Small Commercial Buildings. Energies 2021, 14, 2933. [Google Scholar] [CrossRef]
Building Type | Zones per Building | Buildings in Model | Total Zones |
---|---|---|---|
Full-service Restaurant | 2 | 3 | 6 |
Small Office | 5 | 7 | 35 |
Medium Office | 3 | 1 | 3 |
Large Office | 4 | 1 | 4 |
Strip Mall | 10 | 1 | 10 |
Hospital | 8 | 1 | 8 |
Large Hotel | 10 | 2 | 20 |
Secondary School | 9 | 1 | 9 |
Total | 17 | 69 |
Demand (kW) | |||||
---|---|---|---|---|---|
Building Type | Baseline | C.C. | BEMS | C.C. | BEMS |
( ) | ( ) | ( ) | ( ) | ||
Full-service Restaurant | 129 | 99 | 84 | 96 | 72 |
Small Office | 56 | 56 | 49 | 56 | 42 |
Medium Office | 79 | 81 | 72 | 81 | 57 |
Large Office | 85 | 109 | 83 | 109 | 75 |
Strip Mall | 71 | 55 | 50 | 55 | 41 |
Hospital | 350 | 373 | 321 | 372 | 258 |
Large Hotel | 178 | 198 | 120 | 198 | 96 |
Secondary School | 289 | 292 | 232 | 292 | 190 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campbell, N.A.; Phelan, P.E.; Peinado-Guerrero, M.; Villalobos, J.R. Improved Air-Conditioning Demand Response of Connected Communities over Individually Optimized Buildings. Energies 2021, 14, 5926. https://doi.org/10.3390/en14185926
Campbell NA, Phelan PE, Peinado-Guerrero M, Villalobos JR. Improved Air-Conditioning Demand Response of Connected Communities over Individually Optimized Buildings. Energies. 2021; 14(18):5926. https://doi.org/10.3390/en14185926
Chicago/Turabian StyleCampbell, Nicolas A., Patrick E. Phelan, Miguel Peinado-Guerrero, and Jesus R. Villalobos. 2021. "Improved Air-Conditioning Demand Response of Connected Communities over Individually Optimized Buildings" Energies 14, no. 18: 5926. https://doi.org/10.3390/en14185926
APA StyleCampbell, N. A., Phelan, P. E., Peinado-Guerrero, M., & Villalobos, J. R. (2021). Improved Air-Conditioning Demand Response of Connected Communities over Individually Optimized Buildings. Energies, 14(18), 5926. https://doi.org/10.3390/en14185926