Experimental and Theoretical Study on the Internal Convective and Radiative Heat Transfer Coefficients for a Vertical Wall in a Residential Building
Abstract
:1. Introduction
2. Materials and Methods
2.1. Introduction
2.2. Experimental Setup
2.3. Calculation Procedure
2.4. Uncertainty Analysis
2.5. Selected Correlations for CHTC Calculations
2.6. Statistical Analysis
3. Results and Discussion
3.1. Radiative Heat Transfer Coefficient
3.1.1. Introduction
3.1.2. Uncertainty Analysis
3.2. Convective Heat Transfer Coefficient
3.2.1. Introduction
3.2.2. Uncertainty Analysis
- calibration uncertainty given by the manufacturer: <3% (k = 2),
- non-stability uncertainty: <1% for every year of operation,
- correction of the resistance error,
- correction of the deflection error,
- error from the temperature dependence: <0.1% per 1 °C deviation from the 20 °C.
3.2.3. Comparison with Other Models
4. Conclusions
Funding
Conflicts of Interest
Symbols
hc | convective heat transfer coefficient, W/m2K |
hm | measured value of heat transfer coefficient, W/m2K |
hp | predicted (by the certain correlation) value of heat transfer coefficient, W/m2K |
hr | radiative heat transfer coefficient, W/m2K |
k | coverage factor, — |
m | the total number of measurement samples, — |
qc | convective heat flux density, W/m2 |
qr | radiative heat flux density, W/m2 |
qw | wall conductive heat flux density, W/m2 |
uc | combined uncertainty, — |
R2 | coefficient of determination, — |
Ti | internal air temperature, °C |
Tr | mean radiant temperature, °C |
Ts | wall surface temperature, °C |
U | expanded uncertainty, — |
ε | surface emissivity, — |
σ | Stefan–Boltzmann constant, σ = 5.6697 · 10−8 W/m2K4 |
AAE | average absolute error, % |
ABE | average biased error, % |
MAE | mean absolute error, W/m2K |
MBE | mean bias error, W/m2K |
References
- Zaim, A.; Aissa, A.; Mebarek-Oudina, F.; Mahanthesh, B.; Lorenzini, G.; Sahnoun, M.; El Ganaoui, M. Galerkin finite element analysis of magneto-hydrodynamic natural convection of Cu-water nanoliquid in a baffled U-shaped enclosure. Propuls. Power Res. 2020, 9, 383–393. [Google Scholar] [CrossRef]
- Abo-Dahab, S.M.; Abdelhafez, M.A.; Mebarek-Oudina, F.; Bilal, S.M. MHD Cassonnanofluid flow over nonlinearly heated porous medium in presence of extending surface effect with suction/injection. Indian J. Phys. 2021, 1–15. [Google Scholar] [CrossRef]
- Shafiq, A.; Mebarek-Oudina, F.; Sindhu, T.N.; Abidi, A. A study of dual stratification on stagnation point Walters’B nanofluid flow via radiative Riga plate: A statistical approach. Eur. Phys. J. Plus 2021, 136, 407. [Google Scholar] [CrossRef]
- Palacio-Caro, I.D.; Alvarado-Torres, P.N.; Cardona-Sepúlveda, L.F. Numerical Simulation of the Flow and Heat Transfer in an Electric Steel Tempering Furnace. Energies 2020, 13, 3655. [Google Scholar] [CrossRef]
- Markiewicz-Zahorski, P.; Rucińska, J.; Fedorczak-Cisak, M.; Zielina, M. Building Energy Performance Analysis after Changing Its Form of Use from an Office to a Residential Building. Energies 2021, 14, 564. [Google Scholar] [CrossRef]
- Kwiatkowski, J.; Rucińska, J. Estimation of Energy Efficiency Class Limits for Multi-Family Residential Buildings in Poland. Energies 2020, 13, 6234. [Google Scholar] [CrossRef]
- Kalema, T.; Haapala, T. Effect of interior heat transfer coefficients on thermal dynamics and energy consumption. Energy Build. 1995, 22, 101–113. [Google Scholar] [CrossRef]
- Lomas, K.J. The U.K. applicability study: An evaluation of thermal simulation programs for passive solar house design. Build. Environ. 1996, 31, 197–206. [Google Scholar] [CrossRef]
- Domínguez-Muñoz, F.; Cejudo-López, J.M.; Carrillo-Andrés, A. Uncertainty in peak cooling load calculations. Energy Build. 2010, 42, 1010–1018. [Google Scholar] [CrossRef]
- Obyn, S.; van Moeseke, G. Variability and impact of internal surfaces convective heat transfer coefficients in the thermal evaluation of office buildings. Appl. Therm. Eng. 2015, 87, 258–272. [Google Scholar] [CrossRef]
- Michalak, P.; Szczotka, K.; Szymiczek, J. Energy Effectiveness or Economic Profitability? A Case Study of Thermal Modernization of a School Building. Energies 2021, 14, 1973. [Google Scholar] [CrossRef]
- Walikewitz, N.; Janicke, B.; Langner, M.; Meier, F.; Endlicher, W. The difference between the mean radiant temperature and the air temperature within indoor environments: A case study during summer conditions. Build. Environ. 2015, 84, 151–161. [Google Scholar] [CrossRef]
- Filippín, C.; Beascochea, A. Performance assessment of low-energy buildings in central Argentina. Energy Build. 2007, 39, 546–557. [Google Scholar] [CrossRef]
- Bueno, B.; Norford, L.; Pigeon, G.; Britter, R. A resistance-capacitance network model for the analysis of the interactions between the energy performance of buildings and the urban climate. Build. Environ. 2012, 54, 116–125. [Google Scholar] [CrossRef]
- Herwig, H. What Exactly is the Nusselt Number in Convective Heat Transfer Problems and are There Alternatives? Entropy 2016, 18, 198. [Google Scholar] [CrossRef] [Green Version]
- Bienvenido-Huertas, D.; Bermúdez, J.; Moyano, J.J.; Marín, D. Influence of ICHTC correlations on the thermal characterization of façades using the quantitative internal infrared thermography method. Build. Environ. 2019, 149, 515–525. [Google Scholar] [CrossRef]
- Saunders, O.A. The effect of pressure upon natural convection in air. Proc. R. Soc. Lond. 1936, 157, 278–291. [Google Scholar] [CrossRef]
- Saunders, O.A. Natural convection in liquids. Proc. R. Soc. Lond. 1939, 172, A17255–A17271. [Google Scholar] [CrossRef]
- Fishenden, M.; Saunders, O.A. An Introduction to Heat Transfer; Clarendon Press: Oxford, UK, 1950. [Google Scholar]
- McAdams, W.H. Heat Transmission; McGraw-Hill: New York, NY, USA, 1954. [Google Scholar]
- Lewandowski, W.M.; Kubski, P. Effect of the use of the balance and gradient methods as a result of experimental investigations of natural convection action with regard to the conception and construction of measuring apparatus. Wärme- Und Stoffübertragung 1984, 18, 247–256. [Google Scholar] [CrossRef]
- Lewandowski, W.M. Natural convection heat transfer from plates of finite dimensions. Int. J. Heat Mass Transf. 1991, 34, 875–885. [Google Scholar] [CrossRef]
- Fujii, T.; Imura, H. Natural-convection heat transfer from a plate with arbitrary inclination. Int. J. Heat Mass Transf. 1972, 15, 755–767. [Google Scholar] [CrossRef]
- Churchill, S.W.; Usagi, R. A general expression for the correlation of rates of transfer and other phenomena. AiChE J. 1972, 18, 1121–1128. [Google Scholar] [CrossRef]
- Khalifa, A.J.N.; Marshall, R.H. Validation of heat transfer coefficients on interior building surfaces using a real-sized indoor test cell. Int. J. Heat Mass Transf. 1990, 33, 2219–2236. [Google Scholar] [CrossRef]
- Alamdari, F.; Hammond, G.P. Improved data correlations for buoyancy-driven convection in rooms. Build. Serv. Eng. Res. Technol. 1983, 4, 106–112. [Google Scholar] [CrossRef]
- Awbi, H.B.; Hatton, A. Natural convection from heated room surfaces. Energy Build. 1999, 30, 233–244. [Google Scholar] [CrossRef]
- Delaforce, S.R.; Hitchin, E.R.; Watson, D.M.T. Convective heat transfer at internal surfaces. Build. Environ. 1993, 28, 211–220. [Google Scholar] [CrossRef]
- Sukamto, D.; Siroux, M.; Gloriant, F. Hot Box Investigations of a Ventilated Bioclimatic Wall for NZEB Building Façade. Energies 2021, 14, 1327. [Google Scholar] [CrossRef]
- Shinoda, J.; Kazanci, O.B.; Tanabe, S.; Olesen, B.W. A review of the surface heat transfer coefficients of radiant heating and cooling systems. Build. Environ. 2019, 159, 106156. [Google Scholar] [CrossRef]
- Cholewa, T.; Rosiński, M.; Spik, Z.; Dudzińska, M.R.; Siuta-Olcha, A. On the heat transfer coefficients between heated/cooled radiant floor and room. Energy Build. 2013, 66, 599–606. [Google Scholar] [CrossRef]
- Cholewa, T.; Anasiewicz, R.; Siuta-Olcha, A.; Skwarczynski, M.A. On the heat transfer coefficients between heated/cooled radiant ceiling and room. Appl. Therm. Eng. 2017, 117, 76–84. [Google Scholar] [CrossRef]
- Acikgoz, O.; Kincay, O. Experimental and numerical investigation of the correlation between radiative and convective heat-transfer coefficients at the cooled wall of a real-sized room. Energy Build. 2015, 108, 257–266. [Google Scholar] [CrossRef]
- Koca, A.; Gemici, Z.; Topacoglu, Y.; Cetin, G.; Acet, R.C.; Kanbur, B.B. Experimental investigation of heat transfer coefficients between hydronic radiant heated wall and room. Energy Build. 2014, 82, 211–221. [Google Scholar] [CrossRef]
- Guo, R.; Heiselberg, P.; Hu, Y.; Johra, H.; Zhang, C.; Jensen, R.L.; Jønsson, K.T.; Peng, P. Experimental investigation of convective heat transfer for night cooling with diffuse ceiling ventilation. Build. Environ. 2021, 193, 107665. [Google Scholar] [CrossRef]
- Guo, R.; Heiselberg, P.; Hu, Y.; Johra, H.; Zhang, C.; Jensen, R.L.; Jønsson, K.T.; Peng, P. Experimental investigation of convective heat transfer for night ventilation in case of mixing ventilation. Build. Environ. 2021, 193, 107670. [Google Scholar] [CrossRef]
- Peeters, L.; Beausoleil-Morrison, I.; Novoselac, A. Internal convective heat transfer modeling: Critical review and discussion of experimentally derived correlations. Energy Build. 2011, 43, 2227–2239. [Google Scholar] [CrossRef]
- Camci, M.; Karakoyun, Y.; Acikgoz, O.; Dalkilic, A.S. A comparative study on convective heat transfer in indoor applications. Energy Build. 2021, 242, 110985. [Google Scholar] [CrossRef]
- Khalifa, A.J.N. Natural convective heat transfer coefficient–A review: I. Isolated vertical and horizontal surfaces. Energy Convers. Manag. 2001, 42, 491–504. [Google Scholar] [CrossRef]
- Khalifa, A.J.N. Natural convective heat transfer coefficient–A review: II. Surfaces in two- and three-dimensional enclosures. Energy Convers. Manag. 2001, 42, 505–517. [Google Scholar] [CrossRef]
- Dagtekin, I.; Oztop, H.F. Natural convection heat transfer by heated partitions within enclosure. Int. Commun. Heat Mass Transf. 2001, 28, 823–834. [Google Scholar] [CrossRef]
- Vollaro, A.D.L.; Galli, G.; Vallati, A. CFD Analysis of Convective Heat Transfer Coefficient on External Surfaces of Buildings. Sustainability 2015, 7, 9088–9099. [Google Scholar] [CrossRef] [Green Version]
- Zhong, W.; Zhang, T.; Tamura, T. CFD Simulation of Convective Heat Transfer on Vernacular Sustainable Architecture: Validation and Application of Methodology. Sustainability 2019, 11, 4231. [Google Scholar] [CrossRef] [Green Version]
- Berrabah, S.; Moussa, M.O.; Bakhouya, M. 3D Modeling of the Thermal Transfer through Precast Buildings Envelopes. Energies 2021, 14, 3751. [Google Scholar] [CrossRef]
- Maragkos, G.; Beji, T. Review of Convective Heat Transfer Modelling in CFD Simulations of Fire-Driven Flows. Appl. Sci. 2021, 11, 5240. [Google Scholar] [CrossRef]
- Kaminska, A. Impact of Heating Control Strategy and Occupant Behavior on the Energy Consumption in a Building with Natural Ventilation in Poland. Energies 2019, 12, 4304. [Google Scholar] [CrossRef] [Green Version]
- Lundström, L.; Akander, J.; Zambrano, J. Development of a Space Heating Model Suitable for the Automated Model Generation of Existing Multifamily Buildings—A Case Study in Nordic Climate. Energies 2019, 12, 485. [Google Scholar] [CrossRef] [Green Version]
- EN 1264. Water Based Surface Embedded Heating and Cooling Systems; SIST: Bratislava, Slovakia, 2011. [Google Scholar]
- ISO 11855. Building Environment Design—Design, Dimensioning, Installation and Control of Embedded Radiant Heating and Cooling Systems; ISO: Geneva, Switzerland, 2012. [Google Scholar]
- EN ISO 6946. Building Components and Building Elements—Thermal Resistance and Thermal Transmittance–Calculation Methods; ISO: Geneva, Switzerland, 2007. [Google Scholar]
- ASHRAE. Handbook HVAC Fundamentals; ASHRAE: New York, NY, USA, 2009. [Google Scholar]
- François, A.; Ibos, L.; Feuillet, V.; Meulemans, J. Novel in situ measurement methods of the total heat transfer coefficient on building walls. Energy Build. 2020, 219, 110004. [Google Scholar] [CrossRef]
- Wallentén, P. Convective heat transfer coefficients in a full-scale room with and without furniture. Build. Environ. 2001, 36, 743–751. [Google Scholar] [CrossRef]
- Helm, I.; Jalukse, L.; Leito, I. Measurement Uncertainty Estimation in Amperometric Sensors: A Tutorial Review. Sensors 2010, 10, 4430–4455. [Google Scholar] [CrossRef] [Green Version]
- Ohlsson, K.E.A.; Östin, R.; Olofsson, T. Accurate and robust measurement of the external convective heat transfer coefficient based on error analysis. Energy Build. 2016, 117, 83–90. [Google Scholar] [CrossRef]
- Chen, J.; Chen, C. Uncertainty Analysis in Humidity Measurements by the Psychrometer Method. Sensors 2017, 17, 368. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-H.; Chen, J.; Chen, C. Effect of Environmental Measurement Uncertainty on Prediction of Evapotranspiration. Atmosphere 2018, 9, 400. [Google Scholar] [CrossRef] [Green Version]
- Jing, H.; Quan, Z.; Zhao, Y.; Wang, L.; Ren, R.; Liu, Z. Thermal Performance and Energy Saving Analysis of Indoor Air–Water Heat Exchanger Based on Micro Heat Pipe Array for Data Center. Energies 2020, 13, 393. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Cocchi, L.; Picchi, A.; Facchini, B. Experimental Determination of the Heat Transfer Coefficient of Real Cooled Geometry Using Linear Regression Method. Energies 2021, 14, 180. [Google Scholar] [CrossRef]
- Ficker, T. Virtual emissivities of infrared thermometers. Infrared Phys. Technol. 2021, 114, 103656. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Chen, C. Determining the emissivity and temperature of building materials by infrared thermometer. Constr. Build. Mater. 2016, 126, 130–137. [Google Scholar] [CrossRef]
- Höser, D.; Wallimann, R.; von Rohr, P.R. Uncertainty Analysis for Emissivity Measurement at Elevated Temperatures with an Infrared Camera. Int. J. Thermophys. 2016, 37, 14. [Google Scholar] [CrossRef]
- Zribi, A.; Barthès, M.; Bégot, S.; Lanzetta, F.; Rauch, J.Y.; Moutarlier, V. Design, fabrication and characterization of thin film resistances for heat flux sensing application. Sens. Actuators A Phys. 2016, 245, 26–39. [Google Scholar] [CrossRef]
- Heat Flux Plate/Heat Flux Sensor HFP01 & HFP03. User Manual. Hukseflux Manual v1721. Available online: https://www.hukseflux.com/uploads/product-documents/HFP01_HFP03_manual_v1721.pdf (accessed on 25 August 2021).
- Evangelisti, L.; Guattari, C.; Gori, P.; de LietoVollaro, R.; Asdrubali, F. Experimental investigation of the influence of convective and radiative heat transfers on thermal transmittance measurements. Int. Commun. Heat Mass Transf. 2016, 78, 214–223. [Google Scholar] [CrossRef]
- Bienvenido-Huertas, D.; Moyano, J.; Rodríguez-Jiménez, C.E.; Muñoz-Rubio, A.; Bermúdez Rodríguez, F.J. Quality Control of the Thermal Properties of Superstructures in Accommodation Spaces in Naval Constructions. Sustainability 2020, 12, 4194. [Google Scholar] [CrossRef]
- Fohanno, S.; Polidori, G. Modelling of natural convective heat transfer at an internal surface. Energy Build. 2006, 38, 548–553. [Google Scholar] [CrossRef]
- Musy, M.; Wurtz, E.; Winkelmann, F.; Allard, F. Generation of a zonal model to simulate natural convection in a room with a radiative/convective heater. Build. Environ. 2001, 36, 589–596. [Google Scholar] [CrossRef]
- Rogers, G.F.C.; Mayhew, Y.R. Engineering Thermodynamics. Work and Heat Transfer; Pearson Education Ltd.: London, UK, 1992. [Google Scholar]
- Michalak, P. The development and validation of the linear time varying Simulink-based model for the dynamic simulation of the thermal performance of buildings. Energy Build. 2017, 141, 333–340. [Google Scholar] [CrossRef]
- Yin, C.-Y. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 2011, 90, 1128–1132. [Google Scholar] [CrossRef] [Green Version]
- Qian, X.; Lee, S.; Soto, A.-M.; Chen, G. Regression Model to Predict the Higher Heating Value of Poultry Waste from Proximate Analysis. Resources 2018, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Lauster, M.; Teichmann, J.; Fuchs, M.; Streblow, R.; Mueller, D. Low order thermal network models for dynamic simulations of buildings on city district scale. Build. Environ. 2014, 73, 223–231. [Google Scholar] [CrossRef]
- Cui, Y.; Xie, J.; Liu, J.; Xue, P. Experimental and Theoretical Study on the Heat Transfer Coefficients of Building External Surfaces in the Tropical Island Region. Appl. Sci. 2019, 9, 1063. [Google Scholar] [CrossRef] [Green Version]
- Gaši, M.; Milovanović, B.; Gumbarević, S. Comparison of Infrared Thermography and Heat Flux Method for Dynamic Thermal Transmittance Determination. Buildings 2019, 9, 132. [Google Scholar] [CrossRef] [Green Version]
- Samardzioska, T.; Apostolska, R. Measurement of Heat-Flux of New Type Façade Walls. Sustainability 2016, 8, 1031. [Google Scholar] [CrossRef] [Green Version]
- De Rubeis, T.; Muttillo, M.; Nardi, I.; Pantoli, L.; Stornelli, V.; Ambrosini, D. Integrated Measuring and Control System for Thermal Analysis of Buildings Components in Hot Box Experiments. Energies 2019, 12, 2053. [Google Scholar] [CrossRef] [Green Version]
- Lihakanga, R.; Ding, Y.; Medero, G.M.; Chapman, S.; Goussetis, G. A High-Resolution Open Source Platform for Building Envelope Thermal Performance Assessment Using a Wireless Sensor Network. Sensors 2020, 20, 1755. [Google Scholar] [CrossRef] [Green Version]
- Tejedor, B.; Gaspar, K.; Casals, M.; Gangolells, M. Analysis of the Applicability of Non-Destructive Techniques to Determine In Situ Thermal Transmittance in Passive House Façades. Appl. Sci. 2020, 10, 8337. [Google Scholar] [CrossRef]
- Ambrožová, K.; Hrbáček, F.; Láska, K. The Summer Surface Energy Budget of the Ice-Free Area of Northern James Ross Island and Its Impact on the Ground Thermal Regime. Atmosphere 2020, 11, 877. [Google Scholar] [CrossRef]
- Mosayebidorcheh, S.; Ganji, D.D.; Farzinpoor, M. Approximate solution of the nonlinear heat transfer equation of a fin with the power-law temperature-dependent thermal conductivity and heat transfer coefficient. Propuls. Power Res. 2014, 3, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Qian, X.; Xue, J.; Yang, Y.; Lee, S.W. Thermal Properties and Combustion-Related Problems Prediction of Agricultural Crop Residues. Energies 2021, 14, 4619. [Google Scholar] [CrossRef]
- Ficco, G.; Frattolillo, A.; Malengo, A.; Puglisi, G.; Saba, F.; Zuena, F. Field verification of thermal energy meters through ultrasonic clamp-on master meters. Measurement 2020, 151, 107152. [Google Scholar] [CrossRef]
- Ficco, G.; Iannetta, F.; Ianniello, E.; d’AmbrosioAlfano, F.R.; Dell’Isola, M. U-value in situ measurement for energy diagnosis of existing buildings. Energy Build. 2015, 104, 108–121. [Google Scholar] [CrossRef]
- Gil, B.; Rogala, Z.; Dorosz, P. Pool Boiling Heat Transfer Coefficient of Low-Pressure Glow Plasma Treated Water at Atmospheric and Reduced Pressure. Energies 2020, 13, 69. [Google Scholar] [CrossRef] [Green Version]
- Michalak, P. Annual Energy Performance of an Air Handling Unit with a Cross-Flow Heat Exchanger. Energies 2021, 14, 1519. [Google Scholar] [CrossRef]
- Kämpf, J.H.; Robinson, D. A simplified thermal model to support analysis of urban resource flows. Energy Build. 2007, 39, 445–453. [Google Scholar] [CrossRef]
- Ben-Nakhi, A.E.; Aasem, E.O. Development and integration of a user friendly validation module within whole building dynamic simulation. Energy Convers. Manag. 2003, 44, 53–64. [Google Scholar] [CrossRef]
- Mahdaoui, M.; Hamdaoui, S.; Ait Msaad, A.; Kousksou, T.; El Rhafiki, T.; Jamil, A.; Ahachad, M. Building bricks with phase change material (PCM): Thermal performances. Constr. Build. Mater. 2021, 269, 121315. [Google Scholar] [CrossRef]
- Dobrzycki, A.; Kurz, D.; Mikulski, S.; Wodnicki, G. Analysis of the Impact of Building Integrated Photovoltaics (BIPV) on Reducing the Demand for Electricity and Heat in Buildings Located in Poland. Energies 2020, 13, 2549. [Google Scholar] [CrossRef]
- Babiarz, B.; Szymański, W. Introduction to the Dynamics of Heat Transfer in Buildings. Energies 2020, 13, 6469. [Google Scholar] [CrossRef]
- Jezierski, W.; Sadowska, B.; Pawłowski, K. Impact of Changes in the Required Thermal Insulation of Building Envelope on Energy Demand, Heating Costs, Emissions, and Temperature in Buildings. Energies 2021, 14, 56. [Google Scholar] [CrossRef]
Sensor | Measured Variable | Measurement Range | Accuracy |
---|---|---|---|
Pt1000 platinum resistance sensor | Air temperature | −50 °C ÷ +150 °C | Class A 1 |
Pt1000 platinum resistance sensor | Wall surface temperature | −50°C ÷ +150 °C | Class A 1 |
TP875.1 with the Pt100 sensor | Radiant temperature | −30 °C ÷ +120 °C | ±0.2 °C |
CMP11 Kipp&Zonen | Solar irradiance | 0 ÷ 4000 W/m2 | Spectrally Flat Class A 2 |
HFP01 Hukseflux | Heat fluxdensity | −2000 ÷ 2000 W/m2 | ±3% |
Uncertainty | Value | Unit |
---|---|---|
u(ε) | 0.030 | — |
u(Tr) | 0.200 | K |
u(Ts) | 0.200 | K |
0.18033 | W/m2K | |
0.004788 | W/m2K2 | |
0.004788 | W/m2K2 |
Uncertainty | Value | Unit |
---|---|---|
u(qc) | 0.05224 | W/m2 |
u(Ti) | 0.200 | K |
u(Ts) | 0.200 | K |
0.81169 | W/m2K | |
0.65884 | W/m2K2 | |
0.65884 | W/m2K2 |
Model (Equation) | hc [W/m2K] | R2 [-] | AAE [%] | ABE [%] | MAE [W/m2K] | MBE [W/m2K] |
---|---|---|---|---|---|---|
24 | 3.328 | 0.0409 | 298 | 298 | 2.18 | 2.18 |
25 | 2.999 | 0.0426 | 258 | 258 | 1.86 | 1.86 |
26 | 1.305 | 0.0426 | 70 | 56 | 0.42 | 0.16 |
27 | 1.938 | 0.0409 | 132 | 132 | 0.80 | 0.79 |
28 | 2.153 | 0.0409 | 158 | 157 | 1.01 | 1.00 |
29 | 1.933 | 0.0437 | 131 | 131 | 0.81 | 0.79 |
30 | 1.692 | 0.0437 | 105 | 102 | 0.61 | 0.55 |
31 | 1.324 | 0.0415 | 72 | 58 | 0.42 | 0.18 |
33 | 1.271 | 0.0426 | 68 | 52 | 0.41 | 0.12 |
34 | 1.912 | 0.0437 | 129 | 128 | 0.79 | 0.77 |
35 | 1.829 | 0.0436 | 119 | 118 | 0.71 | 0.69 |
36 | 2.563 | 0.0421 | 206 | 206 | 1.42 | 1.42 |
37 | 2.738 | 0.0421 | 227 | 227 | 1.60 | 1.60 |
38 | 1.355 | 0.0426 | 74 | 62 | 0.43 | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalak, P. Experimental and Theoretical Study on the Internal Convective and Radiative Heat Transfer Coefficients for a Vertical Wall in a Residential Building. Energies 2021, 14, 5953. https://doi.org/10.3390/en14185953
Michalak P. Experimental and Theoretical Study on the Internal Convective and Radiative Heat Transfer Coefficients for a Vertical Wall in a Residential Building. Energies. 2021; 14(18):5953. https://doi.org/10.3390/en14185953
Chicago/Turabian StyleMichalak, Piotr. 2021. "Experimental and Theoretical Study on the Internal Convective and Radiative Heat Transfer Coefficients for a Vertical Wall in a Residential Building" Energies 14, no. 18: 5953. https://doi.org/10.3390/en14185953
APA StyleMichalak, P. (2021). Experimental and Theoretical Study on the Internal Convective and Radiative Heat Transfer Coefficients for a Vertical Wall in a Residential Building. Energies, 14(18), 5953. https://doi.org/10.3390/en14185953