Investigation of Water Injection Influence on Cloud Cavitating Vortical Flow for a NACA66 (MOD) Hydrofoil
Abstract
:1. Introduction
2. Research Objectives
2.1. Introduction to the Water Injection Method
2.2. Simulation Setup
2.3. Mesh Arrangement
3. Numerical Methods
3.1. Turbulence Model
3.2. Cavitation Model
3.3. Vortex Identification Methods
4. Simulation Validation
5. Results and Discussion
5.1. Vortex Performance
5.2. Re-Entrant Jet Behavior
5.3. Relationship between Cavity and Re-Entrant Jet
5.4. Suppressing Mechanism
6. Conclusions
- The water injection reduces the area of the low-pressure (<1940 Pa) region on the hydrofoil suction surface, thus suppressing the cavitation occurrence and development. The maximum range of low pressure is approximately 0.02C to 0.86C for H0 and 0.02C to 0.4C for H1, which is decreased by 54.76%. In the near-wall region of H1, the vapor–water mixing region II (αv < 0.7) shrinks significantly, and free cavity region III is no longer found.
- The vortexes are observed both inside the attached cavitation and the shedding cloud cavitation, and the water injection makes the vortex region shrink. The vortex structures above the suction surface of H1 are only distributed near the leading edge and trailing edge. Compared with H0, the λ2 values coupled on the vortex lines of H1 are relatively higher, indicating that the swirling strength is weakened.
- The water injection produces the FPGs locally, which hinders the propagation of the re-entrant jet and weakens its strength. For H0, the area of the re-entrant jet covers the entire suction surface at certain moments; For H1, when the re-entrant jet propagates to about 0.2C, it begins to retract. Compared with H0, the intensity of the re-entrant jet on the H1 suction surface is reduced by 46.98%. The water injected from jet holes itself has momentum, thus generating FPG. The water injection provides energy to the boundary layer, and hence steadiness the flow field; therefore, flow separation is suppressed.
- The vortex causes flow instability, and the water injection suppresses vortexes in the near-wall region, thus stabilizing the boundary layer. The Q distribution in the near-wall region indicates that vortexes are generated near the jet holes. For H0, the large vortexes are widely distributed from the leading edge to the trailing edge, and there are almost no vortexes in the range of 0.4–1.0C for H1.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ji, B.; Cheng, H.; Huang, B.; Luo, X.; Peng, X.; Long, X. Research Progresses and Prospects of Unsteady Hydrodynamics Characteristics for Cavitation. Adv. Mech. 2019, 49, 428–479. [Google Scholar] [CrossRef]
- Lei, T.; Shan, Z.B.; Liang, C.S.; Chuan, W.Y.; Bin Bin, W. Numerical simulation of unsteady cavitation flow in a centrifugal pump at off-design conditions. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2013, 228, 1994–2006. [Google Scholar] [CrossRef]
- Tan, L.; Zhu, B.; Wang, Y.; Cao, S.; Gui, S. Numerical study on characteristics of unsteady flow in a centrifugal pump volute at partial load condition. Eng. Comput. 2015, 32, 1549–1566. [Google Scholar] [CrossRef]
- Li, D.-Q.; Grekula, M.; Lindell, P. Towards numerical prediction of unsteady sheet cavitation on hydrofoils. J. Hydrodyn. 2010, 22, 699–704. [Google Scholar] [CrossRef]
- Usta, O.; Korkut, E. Prediction of cavitation development and cavitation erosion on hydrofoils and propellers by Detached Eddy Simulation. Ocean Eng. 2019, 191, 106512. [Google Scholar] [CrossRef]
- Luo, X.-W.; Ji, B.; Tsujimoto, Y. A review of cavitation in hydraulic machinery. J. Hydrodyn. 2016, 28, 335–358. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, L.; Wang, B. A Review of Tip Clearance in Propeller, Pump and Turbine. Energies 2018, 11, 2202. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Tan, L. Method of T shape tip on energy improvement of a hydrofoil with tip clearance in tidal energy. Renew. Energy 2019, 149, 42–54. [Google Scholar] [CrossRef]
- Timoshevskiy, M.V.; Zapryagaev, I.I.; Pervunin, K.S.; Maltsev, L.I.; Markovich, D.M.; Hanjalić, K. Manipulating cavitation by a wall jet: Experiments on a 2D hydrofoil. Int. J. Multiph. Flow 2018, 99, 312–328. [Google Scholar] [CrossRef]
- Che, B.; Cao, L.; Chu, N.; Likhachev, D.; Wu, D. Effect of obstacle position on attached cavitation control through response surface methodology. J. Mech. Sci. Technol. 2019, 33, 4265–4279. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, M.; Shao, X. Inhibition of cloud cavitation on a flat hydrofoil through the placement of an obstacle. Ocean Eng. 2018, 155, 1–9. [Google Scholar] [CrossRef]
- Capurso, T.; Menchise, G.; Caramia, G.; Camporeale, S.; Fortunato, B.; Torresi, M. Investigation of a passive control system for limiting cavitation inside turbomachinery under different operating conditions. Energy Procedia 2018, 148, 416–423. [Google Scholar] [CrossRef]
- Kadivar, E.; Timoshevskiy, M.V.; Pervunin, K.S.; el Moctar, O. Cavitation control using Cylindrical Cavitating-bubble Generators (CCGs): Experiments on a benchmark CAV2003 hydrofoil. Int. J. Multiph. Flow 2019, 125, 103186. [Google Scholar] [CrossRef]
- Kadivar, E.; el Moctar, O.; Javadi, K. Stabilization of cloud cavitation instabilities using Cylindrical Cavitating-bubble Generators (CCGs). Int. J. Multiph. Flow 2019, 115, 108–125. [Google Scholar] [CrossRef]
- Che, B.; Wu, D. Study on Vortex Generators for Control of Attached Cavitation. In Fluids Engineering Division Summer Meeting; American Society of Mechanical Engineers: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Schmidt, S.J.; Likhachev, D. Control effect of micro vortex generators on leading edge of attached cavitation. Phys. Fluids 2019, 31, 044102. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, L. Influence of C groove on suppressing vortex and cavitation for a NACA0009 hydrofoil with tip clearance in tidal energy. Renew. Energy 2019, 148, 907–922. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, L. Method of C groove on vortex suppression and energy performance improvement for a NACA0009 hydrofoil with tip clearance in tidal energy. Energy 2018, 155, 448–461. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Liu, M.; Ji, X. Influence of water injection on broadband noise and hydrodynamic performance for a NACA66 (MOD) hydrofoil under cloud cavitation condition. Appl. Ocean Res. 2021, 115, 102858. [Google Scholar] [CrossRef]
- Wang, C.Z. Cavity Flow Mechanism Analysis and Passive Flow Control Technology Research; Dalian University of Technology: Dalian, China, 2013. [Google Scholar]
- Maltsev, L.I.; Dimitrov, V.D.; Milanov, E.M.; Zapryagaev, I.I.; Timoshevskiy, M.V.; Pervunin, K.S. Jet Control of Flow Separation on Hydrofoils: Performance Evaluation Based on Force and Torque Measurements. J. Eng. Thermophys. 2020, 29, 424–442. [Google Scholar] [CrossRef]
- De Giorgi, M.G.; Ficarella, A.; Fontanarosa, D. Active Control of Unsteady Cavitating Flows in Turbomachinery. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Timoshevskiy, M.V.; Zapryagaev, I.I. Generation of a Wall Jet to Control Unsteady Cavitation over a 2D Hydrofoil: Visualization and Hydroacoustic Signal Analysis. Proc. J. Phys. Conf. Ser. 2017, 899, 32021. [Google Scholar] [CrossRef] [Green Version]
- Timoshevskiy, M.; Zapryagaev, I.; Pervunin, K.; Markovich, D.M. Cavitation control on a 2D hydrofoil through a continuous tangential injection of liquid: Experimental study. In Proceedings of the AIP Conference Proceedings; Fomin, V., Ed.; American Institute of Physics: Melville, NY, USA, 2016; Volume 1770, p. 030026. [Google Scholar]
- Timoshevskiy, M.V.; Zapryagaev, I.I.; Pervunin, K.S.; Markovich, D.M. Cavitating flow control through continuous tangential mass injection on a 2D hydrofoil at a small attack angle. MATEC Web Conf. 2016, 84, 00039. [Google Scholar] [CrossRef] [Green Version]
- Timoshevskiy, M.V.; Zapryagaev, I.I.; Pervunin, K.S.; Maltsev, L.I.; Markovich, D.M.; Hanjalic, K. Cavitation Control on a Two-Dimensional Hydrofoil by Means of Continuous Tangential Injection. In Proceedings of the Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering; AIP Publishing LLC: Melville, NY, USA, 2016; Volume 327, pp. 75–90. [Google Scholar]
- Lu, S.; Wang, W.; Hou, T.; Zhang, M.; Jiao, J.; Zhang, Q.; Wang, X. Experiment Research on Cavitation Control by Active Injection. In Proceedings of the 10th International Symposium on Cavitation (CAV2018); ASME Press: New York, NY, USA, 2019; pp. 363–368. [Google Scholar]
- Wang, W.; Tang, T.; Zhang, Q.D.; Wang, X.F.; An, Z.Y.; Tong, T.H.; Li, Z.J. Effect of water injection on the cavitation control:experiments on a NACA66 (MOD) hydrofoil. Acta Mech. Sin. 2020, 36, 999–1017. [Google Scholar] [CrossRef]
- Lee, C.-S.; Ahn, B.-K.; Han, J.-M.; Kim, J.-H. Propeller tip vortex cavitation control and induced noise suppression by water injection. J. Mar. Sci. Technol. 2017, 23, 453–463. [Google Scholar] [CrossRef]
- Huang, B.; Zhao, Y.; Wang, G. Large Eddy Simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows. Comput. Fluids 2014, 92, 113–124. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, K.; You, Y.; Sheng, L. Bouncing Behaviors of a Buoyancy-Driven Bubble on a Horizontal Solid Wall. Lixue Xuebao/Chin. J. Theor. Appl. Mech. 2019, 51, 1285–1295. [Google Scholar] [CrossRef]
- Johansen, S.T.; Wu, J.; Shyy, W. Filter-based unsteady RANS computations. Int. J. Heat Fluid Flow 2004, 25, 10–21. [Google Scholar] [CrossRef]
- Emvin, P.; Davidson, L.; Coutier-Delgosha, O.; Reboud, J.L.; Delannoy, Y. A local mesh refinement algorithm applied to turbulent flow. Int. J. Numer. Methods Fluids 1997, 24, 519–530. [Google Scholar] [CrossRef]
- Huang, B.; Wang, G.-Y.; Zhao, Y. Numerical simulation unsteady cloud cavitating flow with a filter-based density correction model. J. Hydrodyn. 2014, 26, 26–36. [Google Scholar] [CrossRef]
- Yu, A.; Ji, B.; Huang, R.; Zhang, Y.; Zhang, Y.; Luo, X. Cavitation shedding dynamics around a hydrofoil simulated using a filter-based density corrected model. Sci. China Ser. E Technol. Sci. 2015, 58, 864–869. [Google Scholar] [CrossRef]
- Cheng, H.; Long, X.-P.; Ji, B.; Liu, Q.; Bai, X.-R. 3-D Lagrangian-based investigations of the time-dependent cloud cavitating flows around a Clark-Y hydrofoil with special emphasis on shedding process analysis. J. Hydrodyn. 2018, 30, 122–130. [Google Scholar] [CrossRef]
- Long, X.; Cheng, H.; Ji, B.; Arndt, R.E. Numerical investigation of attached cavitation shedding dynamics around the Clark-Y hydrofoil with the FBDCM and an integral method. Ocean Eng. 2017, 137, 247–261. [Google Scholar] [CrossRef]
- Zwart, P.J.; Gerber, A.G.; Belamri, T. A Two-Phase Flow Model for Predicting Cavitation Dynamics. In Proceedings of the Fifth International Conference on Multiphase Flow, Yokohama, Japan, 30 May–4 June 2004; Volume 152, p. 152. [Google Scholar]
- Kawanami, Y.; Kato, H.; Yamaguchi, H.; Tanimura, M.; Tagaya, Y. Mechanism and Control of Cloud Cavitation. J. Fluids Eng. 1997, 119, 788–794. [Google Scholar] [CrossRef]
- Callenaere, M.; Franc, J.-P.; Michel, J.-M.; Riondet, M. The cavitation instability induced by the development of a re-entrant jet. J. Fluid Mech. 2001, 444, 223–256. [Google Scholar] [CrossRef]
- Ji, B.; Luo, X.; Wu, Y.; Peng, X.; Duan, Y. Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil. Int. J. Multiph. Flow 2013, 51, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Huang, B.; Zhang, M.; Wang, G.; Zhao, X. Experimental and numerical investigation of ventilated cavitating flow structures with special emphasis on vortex shedding dynamics. Int. J. Multiph. Flow 2018, 98, 79–95. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, K.; Xian, H.; Du, X. A review of methods for vortex identification in hydroturbines. Renew. Sustain. Energy Rev. 2018, 81, 1269–1285. [Google Scholar] [CrossRef]
- Ji, B.; Luo, X.; Arndt, R.E.; Peng, X.; Wu, Y. Large Eddy Simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil. Int. J. Multiph. Flow 2015, 68, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-C.; Huang, B.; Wang, G.-Y.; Duan, Z.-P.; Ji, B. Numerical simulation of transient turbulent cavitating flows with special emphasis on shock wave dynamics considering the water/vapor compressibility. J. Hydrodyn. 2018, 30, 573–591. [Google Scholar] [CrossRef]
- Ganesh, H.; Makiharju, S.; Ceccio, S.L. Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities. J. Fluid Mech. 2016, 802, 37–78. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Huang, B.; Wang, G.; Zhang, M.; Ding, N. Unsteady pressure fluctuation characteristics in the process of breakup and shedding of sheet/cloud cavitation. Int. J. Heat Mass Transf. 2017, 114, 769–785. [Google Scholar] [CrossRef]
- Yakhot, V.; Orszag, S.A.; Thangam, S.; Gatski, T.B.; Speziale, C.G. Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A Fluid Dyn. 1992, 4, 1510–1520. [Google Scholar] [CrossRef] [Green Version]
- Coutier-Delgosha, O.; Fortes-Patella, R.; Reboud, J.L. Evaluation of the Turbulence Model Influence on the Numerical Simu-lations of Unsteady Cavitation. Proc. ASME Fluids Eng. Div. Summer Meet. 2003, 1, 341–346. [Google Scholar]
- Jeong, J.; Hussain, F. On the identification of a vortex. J. Fluid Mech. 1995, 285, 69–94. [Google Scholar] [CrossRef]
- Hunt, J.C.R.; Wray, A.A.; Moin, P. Eddies, Streams, and Convergence Zones in Turbulent Flows. Stud. Turbul. Using Numer. Simul. Databases-I1 1988, 193, 193–208. Available online: https://web.stanford.edu/group/ctr/Summer/201306111537.pdf (accessed on 12 August 2021).
- Arakeri, V.H.; Acosta, A.J. Viscous Effects in the Inception of Cavitation on Axisymmetric Bodies; ASME Pap: New York, NY, USA, 1973. [Google Scholar]
- Belahadji, B.; Franc, J.-P.; Michel, J.-M. Cavitation in the rotational structures of a turbulent wake. J. Fluid Mech. 1995, 287, 383–403. [Google Scholar] [CrossRef]
- Huang, B.; Wang, G. Experimental and numerical investigation of unsteady cavitating flows through a 2D hydrofoil. Sci. China Ser. E Technol. Sci. 2011, 54, 1801–1812. [Google Scholar] [CrossRef]
- Wang, G.; Wu, Q.; Huang, B. Dynamics of Cavitation–Structure Interaction. Acta Mech. Sin. 2017, 33, 685–708. [Google Scholar] [CrossRef]
- Huang, B.; Young, Y.L.; Wang, G.; Shyy, W.; Huang, B. Combined Experimental and Computational Investigation of Unsteady Structure of Sheet/Cloud Cavitation. J. Fluids Eng. 2013, 135, 071301. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, X.; Gong, Z.; Li, J.; Lu, C. Numerical investigation on the dynamic behavior of sheet/cloud cavitation regimes around hydrofoil. Appl. Math. Model. 2016, 40, 5835–5857. [Google Scholar] [CrossRef]
Mesh Type | Nodes | Cl | Cd | K | |
---|---|---|---|---|---|
Mesh 1 | Coarse | 7,659,400 | 0.7133 | 0.1433 | 4.9976 |
Mesh 2 | Medium | 11,129,600 | 0.7386 | 0.1123 | 6.6963 |
Mesh 3 | Dense | 16,223,500 | 0.7374 | 0.1127 | 6.6915 |
Turbulence & Cavitation Model | Time Step | Cavity Shedding Period T | Cavity Area S/S0 | Error T | Error S/S0 | |
---|---|---|---|---|---|---|
FBDCM | ZGB | 0.5 ms | 54.3 ms | 0.6468 | −6.4% | −1.8% |
FBDCM | ZGB | 0.1 ms | 55.1 ms | 0.6739 | −5.0% | 2.3% |
Experiment [27] | 58.0 ms | 0.6587 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wang, W.; Ji, X.; Wang, X. Investigation of Water Injection Influence on Cloud Cavitating Vortical Flow for a NACA66 (MOD) Hydrofoil. Energies 2021, 14, 5973. https://doi.org/10.3390/en14185973
Li Z, Wang W, Ji X, Wang X. Investigation of Water Injection Influence on Cloud Cavitating Vortical Flow for a NACA66 (MOD) Hydrofoil. Energies. 2021; 14(18):5973. https://doi.org/10.3390/en14185973
Chicago/Turabian StyleLi, Zhijian, Wei Wang, Xiang Ji, and Xiaofang Wang. 2021. "Investigation of Water Injection Influence on Cloud Cavitating Vortical Flow for a NACA66 (MOD) Hydrofoil" Energies 14, no. 18: 5973. https://doi.org/10.3390/en14185973
APA StyleLi, Z., Wang, W., Ji, X., & Wang, X. (2021). Investigation of Water Injection Influence on Cloud Cavitating Vortical Flow for a NACA66 (MOD) Hydrofoil. Energies, 14(18), 5973. https://doi.org/10.3390/en14185973