Model of Choice Photovoltaic Panels Considering Customers’ Expectations
Abstract
:1. Introduction
2. Literature Review
3. Model
- Efficiency in normalization values in any range;
- Possibility of normalization of criteria characterized by negative, equal to zero, and positive values;
- Normalization of equality of length and boundaries of intervals for all standardized criteria and obtaining positive or equal to zero values of criteria after normalization.
- Effective for matching several of the criteria of the product, where these criteria are independent of each other;
- Effective in estimating the product quality based on the normalized quality of criteria;
- Allows estimation of product quality considering criteria weighting.
- Allowing for the combination of the product quality with actual cost of its purchase;
- Supports making determinations about the product preferred by customers based on product quality level and cost of its purchase;
- This method allows the inclusion of product quality estimations by any method, where quality has ranges from 0 to 1.
3.1. Adopting a Purpose of Analysis
3.2. Initial Selection of Photovoltaic Panels
3.3. Determination of the Technical Criteria of Photovoltaic Panels
3.4. Determination of Photovoltaic Panels Criteria Expected by Customer
3.5. Determination of Photovoltaic Panels Criteria Weighting
3.6. Transformation Customer Expectations into Technical Requirements
3.6.1. Transformation of Customer Criteria into Technical Criteria
3.6.2. Transformation of Customer Criteria Weighting into Technical Criteria Weighting
3.7. Assessment of Quality of Photovoltaic Panels Criteria
3.7.1. Characterization of Photovoltaic Panels Criteria
3.7.2. Initial Estimate of the Quality of the Technical Criteria
3.7.3. Normalization of the Quality of Technical Criteria
3.8. Calculation of the Quality Level of Photovoltaic Panels
3.9. Calculation of Qualitative-Cost Indicator of Photovoltaic Panels
3.9.1. Determination of Photovoltaic Panels Quality
3.9.2. Determination Cost of Purchase of Photovoltaic Panels
3.9.3. Calculation of the Cost–Quality Index
3.9.4. Estimation of the Relative Cost
3.9.5. Estimation of the Cost–Quality Proportionality Index
3.9.6. Estimation of the Decision Function Index
3.9.7. Estimation of the Relative Cost Index
3.9.8. Estimation of the Settlement Index for Technical Preference
3.9.9. Estimation of the Settlement Index for Economic Preference
3.9.10. Estimation of the Decision Settlement Index
3.10. Classification and Choice of Photovoltaic Panel
4. Results
4.1. Adopting Purpose of Analysis
4.2. Initial Selection of Photovoltaic Panels
4.3. Determination of Technical Criteria of Photovoltaic Panels
- Electrical criteria: rated power (Wp), short-circuit current (A), maximum current (A), idle voltage (V), maximum voltage (V), efficiency (%);
- Application criteria: maximum system voltage (VDC), color, warranty period (years);
- Temperature criteria: temperature coefficient of intensity (%/°C), temperature coefficient of voltage (%/°C), temperature power factor (%/°C);
- Mechanical criteria: length (mm), width (mm), thickness (mm), weight (kg);
- Construction criteria: windshield (mm), frame, type of cells, number of cells, kind of cells, kinematics.
4.4. Determination of Photovoltaic Panels Criteria Expected by Customer
4.5. Determination of Photovoltaic Panels Criteria Weighting
4.6. Transformation of Customer Expectations into Technical Requirements
4.7. Assessment of Quality of Photovoltaic Panels Criteria
4.8. Calculation Quality Level of Photovoltaic Panels
4.9. Calculation of Qualitative-Cost Indicator of Photovoltaic Panels
4.10. Classification and Choice of Photovoltaic Panel
5. Discussion
- The precise choice of photovoltaic panel considering customer expectations;
- The possibility of choice of the photovoltaic panel, simultaneously taking into account quality of photovoltaic panel and cost of purchase;
- The predicting customer satisfaction from qualitative-cost indicator of photovoltaic panel;
- The possibility estimate product quality level for photovoltaic panel criteria which are important for customer;
- The systematic reduction in multiple technical criteria for photovoltaic panels to criteria which are important and expected for customer;
- Additionally, the proposed model has business benefits, i.e.:
- A low-cost instrument to support the entity (bidder, broker, expert) to choose a photovoltaic panel with criteria expected by the customer;
- Supporting customers in determining their requirements and expectations about photovoltaic panel;
- The possibility to verify a photovoltaic panel and its criteria;
- The increase in customer satisfaction with the products offered;
- Obtaining information about customer requirements to predict the expected photovoltaic panels.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siwiec, D.; Pacana, A. Model Supporting Development Decisions by Considering Qualitative–Environmental Aspects. Sustainability 2021, 13, 9067. [Google Scholar] [CrossRef]
- Pacana, A.; Siwiec, D.; Bednárová, L. Analysis of the incompatibility of the product with fluorescent method. Metalurgija 2019, 3–4, 337–340. [Google Scholar]
- Eitan, A. Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel. Sustainability 2021, 13, 3170. [Google Scholar] [CrossRef]
- Ulewicz, R.; Siwiec, D.; Pacana, A.; Tutak, M.; Brodny, J. Multi-Criteria Method for the Selection of Renewable Energy Sources in the Polish Industrial Sector. Energies 2021, 14, 2386. [Google Scholar] [CrossRef]
- The Intergovernmental Panel on Climate Change (IPCC). Available online: https://www.ipcc.ch/2020/07/31/energy-climatechallenge/ (accessed on 11 September 2021).
- Race to Net Zero: Carbon Neutral Goals by Country. Available online: https://www.visualcapitalist.com/race-to-net-zero-carbon-neutral-goals-by-country/ (accessed on 12 September 2021).
- Węgierek, P.; Pastuszak, J.; Dziadosz, K.; Turek, M. Influence of Substrate Type and Dose of Implanted Ions on the Electrical Parameters of Silicon in Terms of Improving the Efficiency of Photovoltaic Cells. Energies 2020, 13, 6708. [Google Scholar] [CrossRef]
- Liczmańska-Kopcewicz, K.; Pypłacz, P.; Wiśniewska, A. Resonance of Investments in Renewable Energy Sources in Industrial Enterprises in the Food Industry. Energies 2020, 13, 4285. [Google Scholar] [CrossRef]
- Kumar, M. Social, Economic, and Environmental Impacts of Renewable Energy Resources. In Wind Solar Hybrid Renewable Energy System; IntechOpen Limited: London, UK, 2020; pp. 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jie, Y.; Ji, X.; Yue, A.; Chen, J.; Deng, Y.; Chen, J.; Zhang, Y. Combined Multi-Layer Feature Fusion and Edge Detection Method for Distributed Photovoltaic Power Station Identification. Energies 2020, 13, 6742. [Google Scholar] [CrossRef]
- Solaun, K.; Cerda, E. Climate change impacts on renewable energy generation. A review of quantitative projections. Renew. Sustain. Energy Rev. 2019, 116, 109415. [Google Scholar] [CrossRef]
- Energy from Renewable Sources in 2019. Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/energia/energia-ze-zrodel-odnawialnych-w-2019-roku,3,14.html (accessed on 23 August 2021).
- Pacana, A.; Siwiec, D. Analysis of the Possibility of Used of the Quality Management Techniques with Non-Destructive Testing. Tech. Gaz. 2021, 28, 45–51. [Google Scholar] [CrossRef]
- International Energy Agency. Renewables 2019. 2019. Available online: https://www.iea.org/reports/renewables-2019 (accessed on 23 August 2021).
- Behrouz, B.; Appadoo, S.S.; Thavaneswaran, A.; Hoque, M.E. Modeling of Short-Term Electricity Demand and Comparison of Machine Learning Approaches for Load Forecasting. In Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 13–17 July 2020; IEEE: Madrid, Spain, 2020; pp. 1302–1307. [Google Scholar] [CrossRef]
- Grębosz-Krawczyk, M.; Zakrzewska-Bielawska, A.; Glinka, B.; Glińska-Neweś, A. Why Do Consumers Choose Photovoltaic Panels? Identification of the Factors Influencing Consumers’ Choice Behavior regarding Photovoltaic Panel Installations. Energies 2021, 14, 2674. [Google Scholar] [CrossRef]
- Wolniak, R.; Saniuk, S.; Grabowska, S.; Gajdzik, B. Identification of Energy Efficiency Trends in the Context of the Development of Industry 4.0 Using the Polish Steel Sector as an Example. Energies 2020, 13, 2867. [Google Scholar] [CrossRef]
- Ferreira, A.C.; Silva, A.; Teixeira, J.C.; Teixeira, S. Multi-Objective Optimization of Solar Thermal Systems Applied to Portuguese Dwellings. Energies 2020, 13, 6739. [Google Scholar] [CrossRef]
- Tawalbeh, M.; Al-Othman, A.; Kafiah, F.; Abdelsalam, E.; Almomani, F.; Alkasrawi, M. Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Sci. Total Environ. 2021, 759, 143528. [Google Scholar] [CrossRef] [PubMed]
- Shaito, A.; Hammoud, M.; Kawtharani, F.; Kawtharani, A.; Reda, H. Power Enhancement of a PV Module Using Different Types of Phase Change Materials. Energies 2021, 14, 5195. [Google Scholar] [CrossRef]
- Yildirim, M.A.; Nowak-Ocłoń, M. Modified Maximum Power Point Tracking Algorithm under Time-Varying Solar Irradiation. Energies 2020, 13, 6722. [Google Scholar] [CrossRef]
- Report Extract. Outlook for Electricity. Available online: https://www.iea.org/reports/world-energy-outlook-2020/outlook-for-electricity (accessed on 12 September 2021).
- Li, C.; Huang, Q.; Wang, Y. Effect of Color Coating of Cover Plate on Thermal Behavior of Flat Plate Solar Collector. Energies 2020, 13, 6696. [Google Scholar] [CrossRef]
- Swayne, T.; Barton, D. Photovoltaic Distributed Generation Impact Analysis—A Rural Electric Cooperative Case Study. In Proceedings of the 2017 IEEE Rural Electric Power Conference (REPC), Columbus, OH, USA, 23–26 April 2017; IEEE: Columbus, OH, USA, 2017; pp. 73–81. [Google Scholar] [CrossRef]
- Siudek, A.; Klepacka, A.M.; Florkowski, W.J.; Gradziuk, P. Renewable Energy Utilization in Rural Residential Housing: Economic and Environmental Facets. Energies 2020, 13, 6637. [Google Scholar] [CrossRef]
- Fernández, G.; Galan, N.; Marquina, D.; Martínez, D.; Sanchez, A.; López, P.; Bludszuweit, H.; Rueda, J. Photovoltaic Generation Impact Analysis in Low Voltage Distribution Grids. Energies 2020, 13, 4347. [Google Scholar] [CrossRef]
- Horvath, D.; Szabo, R. Evolution of photovoltaic business models: Overcoming the main barriers of distributed energy deployment. Renew. Sustain. Energy Rev. 2018, 90, 623–635. [Google Scholar] [CrossRef]
- Balo, F.; SAgbansua, L. The Selection of the Best Solar Panel for the Photovoltaic System Design by Using AHP. Energy Procedia 2016, 100, 50–53. [Google Scholar] [CrossRef] [Green Version]
- Hartvigsson, E.; Odenberger, M.; Chen, P.; Nyholm, E. Estimating national and local low-voltage grid capacity for residential solar photovoltaic in Sweden, UK and Germany. Renew. Energy 2021, 171, 915–926. [Google Scholar] [CrossRef]
- Chatterji, E.; Bazilian, D. Smart Meter Data to Optimize Combined Roof-Top Solar and Battery Systems Using a Stochastic Mixed Integer Programming Model. IEEE Access 2020, 8, 133843–133853. [Google Scholar] [CrossRef]
- Seker, S.; Kahraman, C. Socio-economic evaluation model for sustainable solar PV panels using a novel integrated MCDM methodology: A case in Turkey. Socio-Econ. Plan. Sci. 2021, 77, 100998. [Google Scholar] [CrossRef]
- Vasseur, V.; Kemp, R. A segmentation analysis: The case of photovoltaic in the Netherlands. Energy Effic. 2015, 8, 1105–1123. [Google Scholar] [CrossRef] [Green Version]
- Haktanir, E.; Kahraman, C. A novel interval-valued Pythagorean fuzzy QFD method and its application to solar photovoltaic technology development. Comput. Ind. Eng. 2019, 132, 361–372. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, P.; Goel, L.; Ding, Y. Evaluation of nodal reliability risk in a deregulated power system with photovoltaic power penetration. IET Gener. Transm. Distrib. 2014, 8, 421–430. [Google Scholar] [CrossRef]
- Polo López, C.S.; Lucchi, E.; Leonardi, E.; Durante, A.; Schmidt, A.; Curtis, R. Risk-Benefit Assessment Scheme for Renewable Solar Solutions in Traditional and Historic Buildings. Sustainability 2021, 13, 5246. [Google Scholar] [CrossRef]
- Kukuła, K.; Bogocz, D. Zero unitarization method and its application in ranking research in agriculture. Econ. Reg. Stud. 2014, 3, 5–13. [Google Scholar] [CrossRef]
- Zadrąg, R.; Kniaziewicz, T. Utilization of the zero unitarization method for the building of a ranking for diagnostic marine engine parameters. Combust. Engines 2017, 171, 44–50. [Google Scholar] [CrossRef]
- Kiselakova, D.; Stec, M.; Grzebyk, M.; Sofrankova, B. A Multidimensional Evaluation of the Sustainable Development of European Union Countries—An Empirical Study. J. Compet. 2020, 12, 56–73. [Google Scholar] [CrossRef]
- Kryk, B.; Guzowska, M.K. Implementation of Climate/Energy Targets of the Europe 2020 Strategy by the EU Member States. Energies 2021, 14, 2711. [Google Scholar] [CrossRef]
- Normalizacja Kryteriów Oceny Dostaw w Systemach Zaopatrzenia. Available online: https://docplayer.pl/58180323-Normalizacja-kryteriow-oceny-dostaw-w-systemach-zaopatrzenia.html (accessed on 23 August 2021).
- Kolios, A.; Mytilinou, V.; Lozano-Minguez, E.; Salonitis, K. A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs. Energies 2016, 9, 566. [Google Scholar] [CrossRef] [Green Version]
- Tscheikner-Gratl, F.; Egger, P.; Rauch, W.; Kleidorfer, M. Comparison of Multi-Criteria Decision Support Methods for Integrated Rehabilitation Prioritization. Water 2017, 9, 68. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-N.; Chen, Y.-T.; Tung, C.-C. Evaluation of Wave Energy Location by Using an Integrated MCDM Approach. Energies 2021, 14, 1840. [Google Scholar] [CrossRef]
- Gupta, A.; Slebi-Acevedo, C.J.; Lizasoain-Arteaga, E.; Rodriguez-Hernandez, J.; Castro-Fresno, D. Multi-Criteria Selection of Additives in Porous Asphalt Mixtures Using Mechanical, Hydraulic, Economic, and Environmental Indicators. Sustainability 2021, 13, 2146. [Google Scholar] [CrossRef]
- Joshi, A.; Kale, S.; Chandel, S.; Pal, D.K. Likert Scale: Explored and Explained. Curr. J. Appl. Sci. Technol. 2015, 7, 396–403. [Google Scholar] [CrossRef]
- Sullivan, G.; Artino, A. Analyzing and Interpreting Data from Likert-Type Scales. J. Grad. Med. Educ. 2013, 5, 541–542. [Google Scholar] [CrossRef] [Green Version]
- Pacana, A.; Siwiec, D.; Bednárová, L. Method of Choice: A Fluorescent Penetrant Taking into Account Sustainability Criteria. Sustainability 2020, 12, 5854. [Google Scholar] [CrossRef]
- Siwiec, D.; Bednarova, L.; Pacana, A.; Zawada, M.; Rusko, M. Decision support in the production of packaging films by cost-quality analysis. Przem. Chem. 2019, 98, 1594–1596. [Google Scholar] [CrossRef]
- Pacana, A.; Ulewicz, R. Analysis of causes and effects of implementation of the quality management system com-pliant with ISO 9001. Pol. J. Manag. Stud. 2020, 21, 283–296. [Google Scholar] [CrossRef]
- Kosacka, M.; Golinska-Dawson, P.; Mierzwiak, R. Sustainability Classification for SMEs from the Remanufacturing Sector. Chiang Mai Univ. J. Nat. Sci. 2015, 14, 321–338. [Google Scholar] [CrossRef]
- Lawlor, K.B.; Hornyak, M.J. Smart Goals: How the Application of Smart Goals Can Contribute to Achievement of Student Learning Outcomes. Dev. Bus. Simul. Exp. Learn. 2012, 39, 259–267. [Google Scholar]
- Lescauskiene, I.; Bausys, R.; Zavadskas, E.K.; Juodagalviene, B. VASMA Weighting: Survey-Based Criteria Weighting Methodology that Combines ENTROPY and WASPAS-SVNS to Reflect the Psychometric Features of the VAS Scales. Symmetry 2020, 12, 1641. [Google Scholar] [CrossRef]
- Lucchi, E.; Polo Lopez, C.S.; Franco, G. A conceptual framework on the integration of solar energy systems in heritage sites and buildings. IOP Conf. Ser. Mater. Sci. Eng. 2020, 949, 012113. [Google Scholar] [CrossRef]
- Biyik, E.; Araz, M.; Hepbasli, A.; Shahrestani, M.; Yao, R.; Shao, L.; Essahb, E.; Oliveirac, A.C.; Cañod, T.; Rico, E.; et al. A key review of building integrated photovoltaic (BIPV) systems. Eng. Sci. Technol. Int. J. 2017, 20, 833–858. [Google Scholar] [CrossRef]
- Kumar, N.; Sudhakar, K.; Samykano, M. Performance comparison of BAPV and BIPV systems with c-Si, CIS and CdTe photovoltaic technologies under tropical weather conditions. Case Stud. Therm. Eng. 2019, 13, 100374. [Google Scholar] [CrossRef]
- Hansen, E.; Bush, R.J. Understanding customer quality requirements—Model and application. Ind. Mark. Manag. 1999, 28, 119–130. [Google Scholar] [CrossRef]
- Huang, Y.M. On the general evaluation of customer requirements during conceptual design. J. Mech. Des. 1999, 121, 92–97. [Google Scholar] [CrossRef]
- Roder, B.; Heidl, M.J.; Birkhofer, H. Pre-Acquisition Clustering Of Requirements—Helping Customers To Realize What They Want. Des. Harmon. 2013, 7, 407–416. [Google Scholar]
- Zhang, C.; Liu, F. Research on method of expression and analysis for customer’s requirements. In Proceedings of the SKG 2009—5th International Conference on Semantics, Knowledge, and Grid, Zhuhai, China, 12–14 October 2009; pp. 454–455. [Google Scholar] [CrossRef]
- Koomsap, P. Design by customer: Concept and applications. J. Intell. Manuf. 2013, 24, 295–311. [Google Scholar] [CrossRef]
- Stylidis, K.; Rossi, M.; Wickman, C.; Söderberg, R. The Communication Strategies and Customer’s Requirements Definition at the Early Design Stages: An Empirical Study on Italian Luxury Automotive Brands. Procedia CIRP 2016, 50, 553–558. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Pantoja, N.; Vidal, R.; Pastor, M.C. EU-Funded Projects with Actual Implementation of Renewable Energies in Cities. Analysis of Their Concern for Aesthetic Impact. Energies 2021, 14, 1627. [Google Scholar] [CrossRef]
- Enabling Framework for the Development of BIPV. Available online: https://iea-pvps.org/research-tasks/enabling-framework-for-the-development-of-bipv/ (accessed on 11 September 2021).
- Wall, M.; Probst, M.C.M.; Roecker, C.; Dubois, M.C.; Horvat, M.; Jørgensen, O.B.; Kappel, K. Achieving Solar Energy in Architecture-IEA SHC Task 41. Energy Procedia 2012, 30, 1250–1260. [Google Scholar] [CrossRef] [Green Version]
- Odu, G. Weighting methods for multi-criteria decision making technique. J. Appl. Sci. Environ. Manag. 2019, 23, 1449. [Google Scholar] [CrossRef] [Green Version]
- van Til, J.; Groothuis-Oudshoorn, C.; Lieferink, M.; Dolan, J.; Goetghebeur, M. Does technique matter; a pilot study exploring weighting techniques for a multi-criteria decision support framework. Cost Eff. Resour. Alloc. 2014, 12, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manikandan, S. Measures of central tendency: The mean. J. Pharmacol. Pharmacother. 2011, 2, 140–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siwiec, D.; Pacana, A. A Pro-Environmental Method of Sample Size Determination to Predict the Quality Level of Products Considering Current Customers’ Expectations. Sustainability 2021, 13, 5542. [Google Scholar] [CrossRef]
- Pačaiová, H.; Sinay, J.; Turisová, R.; Hajduová, Z.; Markulik, Š. Measuring the qualitative factors on copper wire surface. Measurement 2017, 109, 359–365. [Google Scholar] [CrossRef]
- Ostasz, G.; Czerwinska, K.; Pacana, A. Quality management of aluminum pistons with the use of quality control points. Manag. Syst. Prod. Eng. 2020, 28, 771–773. [Google Scholar] [CrossRef] [Green Version]
- Siderska, J. Analysis of the possibilities of using artificial neural networks to model social capital values in IT companies. Econ. Manag. 2013, 1, 84–97. [Google Scholar]
Technical Criterion with Alternative Name | Definition |
---|---|
rated power (Wp) (installed power) | determines the value of potential size of electricity obtainable by photovoltaic installation, i.e., disposition energy of devices |
short-circuit current (A) (current at maximum load, Impp) | current flowing at short circuit of cell, i.e., in a moment of maximum load |
maximum current (A) (maximum output current) | current, which can deliver PV to load |
idle voltage (V) (voltage without load or open circuit, Voc) | voltage achieve in situation when module is not connected to any load |
maximum voltage (V) (critical voltage, Vmpp) | voltage in maximum power point (MPP); this voltage is when PV works in Standard Test Conditions (STC) |
efficiency (%) | efficiency informs how effectively the PV will change power solar radiation into electricity, where the higher the value of this parameter—the better; this value is given by producer |
maximum system voltage (VDC) | maximum impassable possible voltage, which can be in installation circuit of PV; limits number of PV which can be combined in one chain |
maximum power (MPP) | the value has maximum power achieved by photocell, this power is available in standard test condition (STC), i.e., solar radiation power 1000 W/m2, spectrum density AM 1,5, cell temperature 25 °C); it is output parameter for most investors by choice of PV |
module efficiency | it is a percent of solar energy, which the PV can processed to electricity; efficiency of total module is lower than a single link, because not the entire surface of module process solar energy to electricity; on efficiency of total module has also impact way of linking cells |
solar cell efficiency | it is efficiency of a single cell included in module |
Technical Criteria/Customer Criteria | High Power | High Efficiency | Long Warranty Period | Ability to Change the Setting | High Temperature Resistance | Availability of Various Shapes | Color |
---|---|---|---|---|---|---|---|
Rated power (Wp) | X | 0 | 0 | 0 | 0 | 0 | 0 |
Short-circuit current (A) | X | 0 | X | 0 | X | X | 0 |
Maximum current (A) | X | X | 0 | 0 | 0 | 0 | 0 |
Idle voltage (V) | 0 | X | 0 | 0 | X | X | 0 |
Maximum voltage (V) | X | X | X | 0 | 0 | 0 | 0 |
Efficiency (%) | X | X | X | 0 | X | X | 0 |
Maximum system voltage (VDC) | X | X | 0 | X | 0 | 0 | X |
Temperature coefficient of intensity (%/°C) | 0 | 0 | X | 0 | X | X | 0 |
Temperature coefficient of voltage (%/°C) | 0 | 0 | X | 0 | X | X | 0 |
Temperature power factor (%/°C) | X | 0 | X | 0 | X | X | 0 |
Length (mm) | X | X | 0 | 0 | 0 | 0 | 0 |
Width (mm) | X | X | 0 | 0 | 0 | 0 | 0 |
Thickness (mm) | X | X | 0 | 0 | 0 | 0 | 0 |
Weight (kg) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Windshield (mm) | 0 | 0 | X | 0 | X | X | X |
Frame | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Type of cells | X | X | X | 0 | X | X | 0 |
Number of cells | X | 0 | 0 | 0 | 0 | 0 | 0 |
Kind of cells | X | X | X | 0 | X | X | 0 |
Kinematics | 0 | X | X | X | 0 | 0 | 0 |
Color | 0 | 0 | 0 | 0 | 0 | 0 | X |
Warranty period | 0 | 0 | X | 0 | 0 | 0 | 0 |
Weight/Customer Criteria | High Power | High Efficiency | Long Warranty Period | Ability to Change the Setting | High Temperature Resistance | Availability of Various Shapes | Color |
---|---|---|---|---|---|---|---|
Weight determined in points ( ) | 30 | 25 | 15 | 19 | 5 | 5 | 10 |
Weight determined in decimal form () | 0.3 | 0.25 | 0.15 | 0.19 | 0.05 | 0.05 | 0.1 |
Technical Criteria/Customer Criteria | High Power | High Efficiency | Long Warranty Period | Ability to Change the Setting | High Temperature Resistance | Availability of Various Shapes | Color | Average from Weights ( ) | Normalized Weight () |
---|---|---|---|---|---|---|---|---|---|
Rated power (Wp) | 0.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0.30 | 0.08 |
Short-circuit current (A) | 0.3 | 0 | 0.15 | 0 | 0.05 | 0.05 | 0 | 0.14 | 0.04 |
Maximum current (A) | 0.3 | 0.25 | 0 | 0 | 0 | 0 | 0 | 0.18 | 0.05 |
Idle voltage (V) | 0 | 0.25 | 0 | 0 | 0.05 | 0.05 | 0 | 0.12 | 0.03 |
Maximum voltage (V) | 0.3 | 0.25 | 0.15 | 0 | 0 | 0 | 0 | 0.23 | 0.06 |
Efficiency (%) | 0.3 | 0.25 | 0.15 | 0 | 0.05 | 0.05 | 0 | 0.16 | 0.04 |
Maximum system voltage (VDC) | 0.3 | 0.25 | 0 | 0.19 | 0 | 0 | 0.1 | 0.21 | 0.06 |
Temperature coefficient of intensity (%/°C) | 0 | 0 | 0.15 | 0 | 0.05 | 0.05 | 0 | 0.08 | 0.02 |
Temperature coefficient of voltage (%/°C) | 0 | 0 | 0.15 | 0 | 0.05 | 0.05 | 0 | 0.08 | 0.02 |
Temperature power factor (%/°C) | 0.3 | 0 | 0.15 | 0 | 0.05 | 0.05 | 0 | 0.14 | 0.04 |
Length (mm) | 0.3 | 0.25 | 0 | 0 | 0 | 0 | 0 | 0.28 | 0.08 |
Width (mm) | 0.3 | 0.25 | 0 | 0 | 0 | 0 | 0 | 0.28 | 0.08 |
Thickness (mm) | 0.3 | 0.25 | 0 | 0 | 0 | 0 | 0 | 0.28 | 0.08 |
Windshield (mm) | 0 | 0 | 0.15 | 0 | 0.05 | 0.05 | 0.1 | 0.09 | 0.02 |
Type of cells | 0.3 | 0.25 | 0.15 | 0 | 0.05 | 0.05 | 0 | 0.16 | 0.04 |
Number of cells | 0.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0.30 | 0.08 |
Kind of cells | 0.3 | 0.25 | 0.15 | 0 | 0.05 | 0.05 | 0 | 0.16 | 0.04 |
Kinematics | 0 | 0.25 | 0.15 | 0.19 | 0 | 0 | 0 | 0.20 | 0.05 |
Color | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0.10 | 0.03 |
Warranty period | 0 | 0 | 0.15 | 0 | 0 | 0 | 0 | 0.15 | 0.04 |
Technical Criterion | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 |
---|---|---|---|---|---|---|---|---|---|---|
Rated power (Wp) | 325 | 400 | 385 | 181 | 315 | 340 | 370 | 470 | 345 | 365 |
Short-circuit current (A) | 9.99 | 10.31 | 11.53 | 7.06 | 9.94 | 11.62 | 11.41 | 11.53 | 10.54 | 11.43 |
Maximum current (A) | 9.57 | 9.81 | 10.99 | 6.59 | 7.50 | 10.83 | 10.89 | 11.01 | 9.86 | 10.68 |
Idle voltage (V) | 40.99 | 48.75 | 39.38 | 35 | 40.6 | 38.1 | 41.21 | 50.31 | 39.09 | 38.0 |
Maximum voltage (V) | 33.97 | 40.83 | 32.96 | 27.5 | 33.7 | 31.4 | 33.98 | 42.69 | 32.61 | 34.2 |
Efficiency (%) | 19.43 | 19.77 | 20.7 | 20.0 | 19.0 | 19.4 | 19.8 | 21.2 | 20.5 | 19.5 |
Maximum system voltage (VDC) | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 |
Temperature coefficient of intensity (%/°C) | 0.045 | 0.045 | 0.044 | 0.042 | 0.057 | 0.057 | 0.044 | 0.044 | 0.044 | 0.048 |
Temperature coefficient of voltage (%/°C) | −0.276 | −0.276 | −0.272 | −0.323 | −0.286 | −0.286 | −0.272 | −0.272 | −0.272 | −0.270 |
Temperature power factor (%/°C) | −0.360 | −0.360 | −0.350 | −0.460 | −0.370 | −0.370 | −0.354 | −0.350 | −0.350 | −0.350 |
Length (mm) | 1665 | 1990 | 1769 | 1667 | 1672 | 1762 | 1774 | 2122 | 1689 | 1776 |
Width (mm) | 1005 | 1005 | 1052 | 994 | 991 | 994 | 1052 | 1053 | 996 | 1052 |
Thickness (mm) | 40 | 40 | 35 | 45 | 35 | 35 | 36 | 36 | 35 | 40 |
Windshield (mm) | 3.2 | 3.2 | 3.1 | 2.9 | 2.8 | 3.2 | 2.0 | 2.3 | 2.1 | 2.2 |
Type of cells | Mono | Mono | Mono | Mono | Mono | Mono | Mono | Mono | Mono | Mono |
Number of cells | 66 | 72 | 120 | 60 | 120 | 120 | 120 | 144 | 120 | 120 |
Kind of cells | A | A | A | A | A | A | A | A | A | A |
Kinematics | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Color | Black | White | Black | Black | Black | White | Silver | Silver | Black | Black |
Warranty period | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
Technical Criteria | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 |
---|---|---|---|---|---|---|---|---|---|---|
Rated power (Wp) | 4 | 2 | 3 | 5 | 4 | 4 | 3 | 1 | 4 | 3 |
Short-circuit current (A) | 4 | 3 | 2 | 5 | 4 | 2 | 2 | 2 | 3 | 2 |
Maximum current (A) | 3 | 3 | 4 | 2 | 2 | 4 | 4 | 5 | 3 | 4 |
Idle voltage (V) | 4 | 5 | 3 | 1 | 4 | 2 | 4 | 5 | 3 | 2 |
Maximum voltage (V) | 4 | 5 | 4 | 3 | 4 | 4 | 4 | 5 | 4 | 4 |
Efficiency (%) | 5 | 4 | 2 | 3 | 5 | 5 | 4 | 3 | 2 | 5 |
Temperature coefficient of intensity (%/°C) | 3 | 3 | 4 | 5 | 1 | 1 | 4 | 4 | 4 | 2 |
Temperature coefficient of voltage (%/°C) | 4 | 4 | 5 | 2 | 3 | 3 | 5 | 5 | 5 | 5 |
Temperature power factor (%/°C) | 4 | 4 | 5 | 2 | 3 | 3 | 5 | 5 | 5 | 5 |
Length (mm) | 5 | 2 | 3 | 5 | 4 | 3 | 3 | 1 | 4 | 3 |
Width (mm) | 4 | 4 | 3 | 5 | 5 | 5 | 3 | 2 | 5 | 3 |
Thickness (mm) | 3 | 3 | 5 | 2 | 5 | 5 | 4 | 4 | 5 | 3 |
Windshield (mm) | 2 | 2 | 2 | 3 | 3 | 2 | 5 | 4 | 5 | 4 |
Number of cells | 4 | 4 | 3 | 5 | 3 | 3 | 3 | 2 | 3 | 3 |
Color | 5 | 1 | 5 | 5 | 5 | 4 | 4 | 4 | 5 | 5 |
Technical Criteria and Kind of Criterion (D-destimulant, S-simulant) | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Rated power (Wp) | S | 0.75 | 0.25 | 0.50 | 1.00 | 0.75 | 0.75 | 0.50 | 0.00 | 0.75 | 0.50 |
Short-circuit current (A) | S | 0.67 | 0.33 | 0.00 | 1.00 | 0.67 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 |
Maximum current (A) | D | 0.67 | 0.67 | 0.33 | 1.00 | 1.00 | 0.33 | 0.33 | 0.00 | 0.67 | 0.33 |
Idle voltage (V) | D | 0.25 | 0.00 | 0.50 | 1.00 | 0.25 | 0.75 | 0.25 | 0.00 | 0.50 | 0.75 |
Maximum voltage (V) | D | 0.50 | 0.00 | 0.50 | 1.00 | 0.50 | 0.50 | 0.50 | 0.00 | 0.50 | 0.50 |
Efficiency (%) | S | 1.00 | 0.67 | 0.00 | 0.33 | 1.00 | 1.00 | 0.67 | 0.33 | 0.00 | 1.00 |
Temperature coefficient of intensity (%/°C) | S | 0.50 | 0.50 | 0.75 | 1.00 | 0.00 | 0.00 | 0.75 | 0.75 | 0.75 | 0.25 |
Temperature coefficient of voltage (%/°C) | S | 0.67 | 0.67 | 1.00 | 0.00 | 0.33 | 0.33 | 1.00 | 1.00 | 1.00 | 1.00 |
Temperature power factor (%/°C) | S | 0.67 | 0.67 | 1.00 | 0.00 | 0.33 | 0.33 | 1.00 | 1.00 | 1.00 | 1.00 |
Length (mm) | S | 1.00 | 0.25 | 0.50 | 1.00 | 0.75 | 0.50 | 0.50 | 0.00 | 0.75 | 0.50 |
Width (mm) | S | 0.67 | 0.67 | 0.33 | 1.00 | 1.00 | 1.00 | 0.33 | 0.00 | 1.00 | 0.33 |
Thickness (mm) | S | 0.33 | 0.33 | 1.00 | 0.00 | 1.00 | 1.00 | 0.67 | 0.67 | 1.00 | 0.33 |
Windshield (mm) | S | 0.00 | 0.00 | 0.00 | 0.33 | 0.33 | 0.00 | 1.00 | 0.67 | 1.00 | 0.67 |
Number of cells | S | 0.67 | 0.67 | 0.33 | 1.00 | 0.33 | 0.33 | 0.33 | 0.00 | 0.33 | 0.33 |
Color | D | 0.50 | 0.00 | 0.50 | 1.00 | 0.50 | 0.50 | 0.50 | 0.00 | 0.50 | 0.50 |
Technical Criteria | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Rated power (Wp) | 0.08 | 0.75 | 0.25 | 0.50 | 1.00 | 0.75 | 0.75 | 0.50 | 0.00 | 0.75 | 0.50 |
Short-circuit current (A) | 0.04 | 0.67 | 0.33 | 0.00 | 1.00 | 0.67 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 |
Maximum current (A) | 0.05 | 0.67 | 0.67 | 0.33 | 1.00 | 1.00 | 0.33 | 0.33 | 0.00 | 0.67 | 0.33 |
Idle voltage (V) | 0.03 | 0.25 | 0.00 | 0.50 | 1.00 | 0.25 | 0.75 | 0.25 | 0.00 | 0.50 | 0.75 |
Maximum voltage (V) | 0.06 | 0.50 | 0.00 | 0.50 | 1.00 | 0.50 | 0.50 | 0.50 | 0.00 | 0.50 | 0.50 |
Efficiency (%) | 0.04 | 1.00 | 0.67 | 0.00 | 0.33 | 1.00 | 1.00 | 0.67 | 0.33 | 0.00 | 1.00 |
Temperature coefficient of intensity (%/°C) | 0.02 | 0.50 | 0.50 | 0.75 | 1.00 | 0.00 | 0.00 | 0.75 | 0.75 | 0.75 | 0.25 |
Temperature coefficient of voltage (%/°C) | 0.02 | 0.67 | 0.67 | 1.00 | 0.00 | 0.33 | 0.33 | 1.00 | 1.00 | 1.00 | 1.00 |
Temperature power factor (%/°C) | 0.04 | 0.67 | 0.67 | 1.00 | 0.00 | 0.33 | 0.33 | 1.00 | 1.00 | 1.00 | 1.00 |
Length (mm) | 0.08 | 1.00 | 0.25 | 0.50 | 1.00 | 0.75 | 0.50 | 0.50 | 0.00 | 0.75 | 0.50 |
Width (mm) | 0.08 | 0.67 | 0.67 | 0.33 | 1.00 | 1.00 | 1.00 | 0.33 | 0.00 | 1.00 | 0.33 |
Thickness (mm) | 0.08 | 0.33 | 0.33 | 1.00 | 0.00 | 1.00 | 1.00 | 0.67 | 0.67 | 1.00 | 0.33 |
Windshield (mm) | 0.02 | 0.00 | 0.00 | 0.00 | 0.33 | 0.33 | 0.00 | 1.00 | 0.67 | 1.00 | 0.67 |
Number of cells | 0.08 | 0.67 | 0.67 | 0.33 | 1.00 | 0.33 | 0.33 | 0.33 | 0.00 | 0.33 | 0.33 |
Color | 0.03 | 0.50 | 0.00 | 0.50 | 1.00 | 0.50 | 0.50 | 0.50 | 0.00 | 0.50 | 0.50 |
Technical Criteria | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 |
---|---|---|---|---|---|---|---|---|---|---|
Rated power (Wp) | 0.06 | 0.02 | 0.04 | 0.08 | 0.06 | 0.06 | 0.04 | 0.00 | 0.06 | 0.04 |
Short-circuit current (A) | 0.03 | 0.01 | 0.00 | 0.04 | 0.03 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
Maximum current (A) | 0.03 | 0.03 | 0.02 | 0.05 | 0.05 | 0.02 | 0.02 | 0.00 | 0.03 | 0.02 |
Idle voltage (V) | 0.01 | 0.00 | 0.02 | 0.03 | 0.01 | 0.02 | 0.01 | 0.00 | 0.02 | 0.02 |
Maximum voltage (V) | 0.03 | 0.00 | 0.03 | 0.06 | 0.03 | 0.03 | 0.03 | 0.00 | 0.03 | 0.03 |
Efficiency (%) | 0.04 | 0.03 | 0.00 | 0.01 | 0.04 | 0.04 | 0.03 | 0.01 | 0.00 | 0.04 |
Temperature coefficient of intensity (%/°C) | 0.01 | 0.01 | 0.02 | 0.02 | 0.00 | 0.00 | 0.02 | 0.02 | 0.02 | 0.01 |
Temperature coefficient of voltage (%/°C) | 0.02 | 0.02 | 0.02 | 0.00 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 |
Temperature power factor (%/°C) | 0.03 | 0.03 | 0.04 | 0.00 | 0.01 | 0.01 | 0.04 | 0.04 | 0.04 | 0.04 |
Length (mm) | 0.08 | 0.02 | 0.04 | 0.08 | 0.06 | 0.04 | 0.04 | 0.00 | 0.06 | 0.04 |
Width (mm) | 0.05 | 0.05 | 0.03 | 0.08 | 0.08 | 0.08 | 0.03 | 0.00 | 0.08 | 0.03 |
Thickness (mm) | 0.03 | 0.03 | 0.08 | 0.00 | 0.08 | 0.08 | 0.05 | 0.05 | 0.08 | 0.03 |
Windshield (mm) | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.02 | 0.02 | 0.02 | 0.02 |
Number of cells | 0.06 | 0.06 | 0.03 | 0.08 | 0.03 | 0.03 | 0.03 | 0.00 | 0.03 | 0.03 |
Color | 0.01 | 0.00 | 0.01 | 0.03 | 0.01 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 |
0.48 | 0.30 | 0.37 | 0.58 | 0.50 | 0.43 | 0.39 | 0.16 | 0.51 | 0.37 | |
Ranking | 4 | 8 | 7 | 1 | 3 | 5 | 6 | 9 | 2 | 7 |
AKJ | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 |
---|---|---|---|---|---|---|---|---|---|---|
0.48 | 0.30 | 0.37 | 0.58 | 0.50 | 0.43 | 0.39 | 0.16 | 0.51 | 0.37 | |
47.83 | 29.87 | 36.52 | 57.58 | 50.08 | 43.08 | 38.55 | 15.96 | 50.91 | 37.14 | |
120.34 | 124.72 | 143.19 | 118.16 | 135.66 | 140.04 | 160.39 | 161.92 | 124.06 | 131.29 | |
2.52 | 4.18 | 3.92 | 2.05 | 2.71 | 3.25 | 4.16 | 10.15 | 2.44 | 3.53 | |
0.95 | 0.85 | 0.43 | 1.00 | 0.60 | 0.50 | 0.03 | 0.00 | 0.87 | 0.70 | |
1.99 | 2.85 | 1.17 | 1.74 | 1.20 | 1.16 | 0.09 | 0.00 | 1.70 | 1.88 | |
0.75 | 0.82 | 0.57 | 0.71 | 0.58 | 0.57 | 0.05 | 0.00 | 0.71 | 0.73 | |
0.94 | 0.74 | 0.77 | 1.00 | 0.92 | 0.85 | 0.74 | 0.00 | 0.95 | 0.82 | |
0.64 | 0.53 | 0.48 | 0.70 | 0.59 | 0.53 | 0.32 | 0.09 | 0.64 | 0.55 | |
0.89 | 0.78 | 0.53 | 0.93 | 0.68 | 0.60 | 0.25 | 0.01 | 0.84 | 0.71 | |
0.77 | 0.66 | 0.51 | 0.82 | 0.63 | 0.56 | 0.28 | 0.05 | 0.74 | 0.63 | |
Ranking | 2 | 4 | 7 | 1 | 5 | 6 | 8 | 9 | 3 | 5 |
Product | Rd | Ranking | Decision |
---|---|---|---|
P1 | 0.77 | 2 | beneficial |
P2 | 0.66 | 4 | satisfactory |
P3 | 0.51 | 7 | moderate |
P4 | 0.82 | 1 | distinctive |
P5 | 0.63 | 5 | satisfactory |
P6 | 0.56 | 6 | moderate |
P7 | 0.28 | 8 | unfavourable |
P8 | 0.05 | 9 | bad |
P9 | 0.74 | 3 | beneficial |
P10 | 0.63 | 5 | satisfactory |
Quality Level | Qualitative-Cost Indicator | ||||||
---|---|---|---|---|---|---|---|
Product | q | Ranking | Product | Rd | Ranking | ||
P4 | 118.16 | 0.58 | 1 | P4 | 118.16 | 0.82 | 1 |
P9 | 124.06 | 0.51 | 2 | P1 | 120.34 | 0.77 | 2 |
P5 | 135.66 | 0.50 | 3 | P9 | 124.06 | 0.74 | 3 |
P1 | 120.34 | 0.48 | 4 | P2 | 124.72 | 0.66 | 4 |
P6 | 140.04 | 0.43 | 5 | P5 | 135.66 | 0.63 | 5 |
P7 | 160.39 | 0.39 | 6 | P10 | 131.29 | 0.63 | 5 |
P3 | 143.19 | 0.37 | 6 | P6 | 140.04 | 0.56 | 6 |
P10 | 131.29 | 0.37 | 7 | P3 | 143.19 | 0.51 | 7 |
P2 | 124.72 | 0.30 | 8 | P7 | 160.39 | 0.28 | 8 |
P8 | 161.92 | 0.16 | 9 | P8 | 161.92 | 0.05 | 9 |
Neural Network | MLP 17-15-1 |
---|---|
Quality (learning) | 0.973 |
Quality (testing) | 0.000 |
Quality (validation) | 0.000 |
Error (learning) | 0.002 |
Error (testing) | 0.000 |
Error (validation) | 0.001 |
Learning algorithm | BFGS 8 |
Error function | SOS |
Activation (hidden) | Linear |
Activation (output) | Exponential |
Variable of Neural Network | Result |
---|---|
Rated power (Wp) | 1.412 |
Short-circuit current (A) | 1.328 |
Maximum current (A) | 1.422 |
Idle voltage (V) | 1.111 |
Maximum voltage (V) | 1.015 |
Efficiency (%) | 0.989 |
Temperature coefficient of intensity (%/°C) | 2.507 |
Temperature coefficient of voltage (%/°C) | 1.270 |
Temperature power factor (%/°C) | 1.319 |
Length (mm) | 1.300 |
Width (mm) | 1.873 |
Thickness (mm) | 1.340 |
Windshield (mm) | 1.059 |
Number of cells | 1.292 |
Color | 1.006 |
Cost of purchase of photovoltaic panels Quality of photovoltaic panels | 4.880 1.244 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siwiec, D.; Pacana, A. Model of Choice Photovoltaic Panels Considering Customers’ Expectations. Energies 2021, 14, 5977. https://doi.org/10.3390/en14185977
Siwiec D, Pacana A. Model of Choice Photovoltaic Panels Considering Customers’ Expectations. Energies. 2021; 14(18):5977. https://doi.org/10.3390/en14185977
Chicago/Turabian StyleSiwiec, Dominika, and Andrzej Pacana. 2021. "Model of Choice Photovoltaic Panels Considering Customers’ Expectations" Energies 14, no. 18: 5977. https://doi.org/10.3390/en14185977
APA StyleSiwiec, D., & Pacana, A. (2021). Model of Choice Photovoltaic Panels Considering Customers’ Expectations. Energies, 14(18), 5977. https://doi.org/10.3390/en14185977