Biochar Stability in a Highly Weathered Sandy Soil under Four Years of Continuous Corn Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Characteristics and Soil Properties
2.2. Biochar Pyrolysis and Characterization
2.3. Field Plot Description
2.3.1. Establishing Plots and Soil Sampling
2.3.2. Biochar Application
2.3.3. Agronomic Management and Precipitation Conditions
2.4. Statistics
3. Results
3.1. Biochar Characteristics and Application
3.2. Annual SOC Contents
4. Discussion
4.1. SOC Stability in Control Goldsboro Soils
4.2. Pine Chip Biochar Application and Stability
4.3. Poultry Litter Biochar Application and Stability
4.4. Comparing Biochar Stability
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lal, R. Climate strategic soil management. Challenges 2014, 5, 43–74. [Google Scholar] [CrossRef] [Green Version]
- Sykes, A.J.; Macleod, M.; Eory, V.; Rees, R.M.; Payen, F.; Myrgiotis, V.; Williams, M.; Sohi, S.; Hillier, J.; Moran, D.; et al. Characterizing the biophysical, economic, and social impacts of soil carbon sequestration as a greenhouse gas removal technology. Glob. Chang. Biol. 2020, 26, 1085–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brassard, P.; Godbout, S.; Raghavan, V. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved. J. Environ. Manag. 2016, 181, 484–497. [Google Scholar] [CrossRef] [PubMed]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Amelung, W.; Bossio, D.; de Vries, W.; Kögel-Knabner, I.; Lehmann, J.; Amundson, R.; Bol, R.; Collins, C.; Lal, R.; Leifeld, J.; et al. Towards a global-scale climate mitigation strategy. Nat. Commun. 2020, 11, 5427. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Laird, D.A.; Heaton, E.A.; Rathke, S.; Acharya, B.S. Soil carbon increased by twice the amount of biochar carbon applied after 6 years: Field evidence of negative priming. GCB Bioenergy 2020, 12, 240–251. [Google Scholar] [CrossRef]
- Han, L.; Sun, K.; Yang, Y.; Xia, X.; Li, F.; Yang, Z.; Xing, B. Biochar’s stability and effect on the content, composition and turnover of soil organic carbon. Geoderma 2020, 364, 114184. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, B. Biochar to improve soil fertility. A Review. Agron. Sustain. Dev. 2016, 36, 1–74. [Google Scholar] [CrossRef] [Green Version]
- Razzaghi, F.; Obour, P.B.; Arthur, E. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 2020, 361, 114055. [Google Scholar] [CrossRef]
- Spokas, K.A.; Cantrell, K.B.; Novak, J.M.; Archer, D.W.; Ippolito, J.A.; Collins, H.P.; Boateng, A.A.; Lima, I.M.; Lamb, M.C.; McAloon, A.J.; et al. Biochar: A synthesis of its agronomic impact beyond carbon sequestration. J. Environ. Qual. 2012, 41, 973–989. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Liqiang, C.; Kammann, C.; Wrange-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizabal, T.; Cayuela, M.L.; Sigua, G.; Novak, J.; Spokas, K.; et al. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive meta-analysis review. Biochar 2020, 2, 4. [Google Scholar] [CrossRef]
- Rasse, D.P.; Budai, A.; O’Toole, A.; Ma, X.; Rumpel, C.; Abiven, S. Persistence in soil of Miscanthus biochar in laboratory and field conditions. PLoS ONE 2017, 12, e0184383. [Google Scholar] [CrossRef]
- Woolf, D.; Lehmann, J.; Cowie, A.; Cayuela, M.L.; Whitman, T.; Sohi, S. Biochar for Climate Change Mitigation: Navigating from Science to Evidence-Based Policy. In Soil and Climate; Lal, R., Stewart, B.A., Eds.; CRC Press: New York, NY, USA, 2019; pp. 220–242. [Google Scholar]
- Spokas, K.A. Review of the stability of biochar in soils: Predictability of O:C molar ratios. Carbon Manag. 2010, 1, 289–303. [Google Scholar] [CrossRef] [Green Version]
- Antal, M.J.; Grønli, M. The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 2003, 42, 1619–1640. [Google Scholar] [CrossRef]
- Laird, D.A.; Brown, R.C.; Amonette, J.E.; Lehmann, J. Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels, Bioprod. Biorefin. 2009, 3, 547–562. [Google Scholar] [CrossRef]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of pyrolysis temperature and manure source on physoiochemical characteristics of biochar. Bioresour. Tech. 2012, 107, 419–428. [Google Scholar] [CrossRef]
- Domingues, R.R.; Trugilho, P.F.; Silva, C.A.; De Melo, I.C.N.A.; Melo, L.C.A.; Magriotis, Z.M.; Sánchez-Monedero, M.A. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and experimental benefits. PLoS ONE 2017, 12, e0176884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novak, J.M.; Busscher, W.J. Selection and use of designer biochars to improve characteristics of southeastern USA coastal plain degraded soils. In Advanced Biofuels and Bioproducts; Lee, J.L., Ed.; Springer: New York, NY, USA, 2012; pp. 69–96. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef] [Green Version]
- Chia, C.H.; Downie, A.; Munroe, P. Characteristics of biochar: Physical and structural properties. In Biochar for Environmental Management, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Earthscan, Routledge Publ.: New York, NY, USA, 2015; pp. 89–138. [Google Scholar]
- Sigua, G.C.; Novak, J.M.; Watts, D.W.; Cantrell, K.B.; Shumaker, P.D.; Szögo, A.A.; Johnson, M.G. Carbon mineralization in two Ultisols amended with different sources and particle sizes of pyrolyzed biochars. Chemosphere 2013, 103, 313–321. [Google Scholar] [CrossRef]
- Glaser, B.G.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. Bio. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Libra, J.A.; Ro, K.S.; Kammann, C.; Funke, A.; Berge, N.D.; Neubauer, Y.; Titirici, M.M.; Fühner, C.; Bens, O.; Kern, J.; et al. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and application of wet and dry pyrolysis. Biofuels 2011, 2, 89–124. [Google Scholar] [CrossRef] [Green Version]
- Joseph, S.D.; Camps-Arbestain, M.; Lin, Y.; Munroe, P.; Chia, C.H.; Hook, J.; van Zwieten, L.; Kimber, S.; Cowie, S.; Singh, B.P.; et al. An investigation into the reactions of biochar in soil. Aust. J. Soil Res. 2010, 48, 501–515. [Google Scholar] [CrossRef]
- Ducey, T.F.; Novak, J.M.; Johnson, M.G. Effects of biochar blends on microbial community composition in two coastal plain soils. Agriculture 2015, 5, 1060–1075. [Google Scholar] [CrossRef] [Green Version]
- Gascó, G.; Paz-Ferreiro, J.; Cely, P.; Plaza, C.; Méndez, A. Influence of pig manure and its biochar on soil CO2 emissions and soil enzymes. Ecol. Eng. 2016, 95, 19–24. [Google Scholar] [CrossRef]
- Lehmann, J.; Rilling, M.C.; Theis, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota-a review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science and Technology; Earthscan: London, UK, 2009. [Google Scholar]
- Demisie, W.; Liu, Z.; Zhang, M. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena 2014, 121, 214–221. [Google Scholar] [CrossRef]
- Zhao, R.; Coles, N.; Wu, J. Carbon mineralization following additions of fresh and aged biochar to an infertile soil. Catena 2015, 125, 183–189. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B.; Ahn, M.-Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Friedel, J.K.; Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 2000, 32, 1485e1498. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Z.; Kuzyakova, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy 2015, 8, 512–523. [Google Scholar] [CrossRef] [Green Version]
- Gurwick, N.P.; Moore, L.A.; Kelly, C.; Elias, P. A Systematic Review of Biochar Research, with a Focus on Its Stability in situ and Its Promise as a Climate Mitigation Strategy. PLoS ONE 2013, 8, e75932. [Google Scholar] [CrossRef] [Green Version]
- Sagrilo, E.; Jeffery, S.; Hoffland, E.; Kuyper, T.W. Emission of CO2 from biochar-amended soils and implications for soil organic carbon. GCB Bioenergy 2014, 7, 1294–1304. [Google Scholar] [CrossRef] [Green Version]
- Daniels, R.B.; Buol, S.W.; Kleiss, H.J.; Ditzler, C.A. Soil Systems in North Carolina, Technical Bulletin 314; North Carolina State University: Raleigh, NC, USA, 1999. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Chapter 15—Particle Size Analysis: Hydrometer Method. In Methods of Soil Analysis. Part 1-Physical and Mineralogical Methods; Book Series No. 5; American Society of Agronomy, Soil Science Society of Agronomy and Crop Science Society of America: Madison, WI, USA, 1984. [Google Scholar]
- Novak, J.M.; Sigua, G.C.; Ducey, T.F.; Watts, D.W.; Stone, K.C. Designer biochars impact on corn grain yields, biomass production, and fertility properties of a highly-weathered Ultisol. Environments 2019, 6, 64. [Google Scholar] [CrossRef] [Green Version]
- Ippolito, J.A.; Berry, C.M.; Strawn, D.G.; Novak, J.M.; Levine, J.; Harley, A. Biochar reduce mine land soil bioavailable metals. J. Environ. Qual. 2017, 46, 411–419. [Google Scholar] [CrossRef] [PubMed]
- ASTM (American Society of Testing and Materials). Petroleum Products, Lubricants, and Fossil Fuels: Gaseous Fuels, Coal, and Coke; ASTM International Conshohocken: Conshohocken, PA, USA, 2016. [Google Scholar]
- Grossmann, R.B.; Reinsch, T.G. Bulk density and linear extensibility: Core method. In Methods of Soil Analysis: Part 4 Physical Methods; Dane, J.H., Topp, G.C., Eds.; SSSA Book Series 5.4; Soil Science Society of America: Madison, WI, USA, 2002; pp. 208–228. [Google Scholar]
- Novak, J.M.; Busscher, W.J.; Watts, D.W.; Laird, D.L.; Ahmedna, M.A.; Niandou, M.A.S. Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma 2010, 154, 281–288. [Google Scholar] [CrossRef]
- Busscher, W.J.; Novak, J.M.; Watts, D.W.; Laird, D.L.; Niandou, M.A.S.; Ahmedna, M. Influence of pecan biochar on physical properties of a Norfolk loamy sand. Soil Sci. 2010, 175, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Novak, J.M.; Frederick, J.R.; Watts, D.W.; Ducey, T.F.; Karlen, D.L. Corn stover removal responses on soil test P and K levels in Coastal Plain Ultisols. Sustainability 2021, 13, 4401. [Google Scholar] [CrossRef]
- Hunt, P.G.; Bauer, P.J.; Matheny, T.A.; Quisenberry, V.L. Changes in carbon content of a Norfolk loamy sand after 14 years of conservation or conventional tillage. J. Soil Water Conserv. 1996, 51, 255–258. [Google Scholar]
- Novak, J.M.; Bauer, P.J.; Hunt, P.G. Carbon dynamics under long-term conservation and disk tillage management in a Norfolk loamy sand. Soil Sci. Soc. Am. J. 2007, 71, 453–456. [Google Scholar] [CrossRef] [Green Version]
- Novak, J.M.; Watts, D.W.; Bauer, P.J.; Karlen, D.L.; Hunt, P.G.; Mishra, U. Loamy sand soil approaches organic carbon saturation after 37 years of conservation tillage. Agron. J. 2020, 112, 3152–3162. [Google Scholar] [CrossRef] [Green Version]
- Guo, M. The 3R principals for applying biochar to improve soil health. Soil Syst. 2020, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Abiven, S.; Maestrini, B.; Torn, M.S.; Schmidt, M.W. Transformation and stabilization of pyrogenic organic matter in a temperate forest field experiment. Glob. Chang. Biol. 2014, 20, 1629–1642. [Google Scholar] [CrossRef]
- Major, J.; Lehmann, J.; Rondon, M.; Goodale, C. Fate of soil-applied black carbon: Downward migration, leaching and soil respiration. Glob. Chang. Biol. 2010, 16, 1366–1379. [Google Scholar] [CrossRef]
- Spokas, K.A.; Novak, J.M.; Masiello, C.A.; Johnson, M.G.; Colosky, E.C.; Ippolito, J.A.; Trigo, C. Physical disintegration of biochar: An overlooked process. Environ. Sci. Technol. Lett. 2014, 1, 326–332. [Google Scholar] [CrossRef]
- Skjernstad, J.O.; Taylor, J.A.; Smernik, R.J. Estimation of charcoal (char) in soils. Comm. Soil Sci. Plant Anal. 1999, 30, 2283–2298. [Google Scholar] [CrossRef]
- Ameloot, N.; Graber, E.R.; Verherijen, F.G.; De Neve, S. Interaction between biochar stability and soil organisms: Review and research needs. Eur. J. Soil Sci. 2013, 64, 379–390. [Google Scholar] [CrossRef]
- Gaskin, J.; Steiner, C.; Harris, K.; Das, K.C.; Bibens, B. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. ASABE 2008, 51, 2061–2069. [Google Scholar] [CrossRef]
- Smebye, A.; Alling, V.; Vogt, R.D.; Gadmar, T.C.; Mulder, J.; Cornelissen, G.; Hale, S.E. Biochar amendment to soil changes, dissolved organic matter content and composition. Chemosphere 2016, 142, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, H.; Li, P.; Xian, Q.; Tang, X. Biochars impact on dissolved organic matter (DOM) export from cropland soil during natural rainfalls. Sci. Total Environ. 2019, 650, 1988–1995. [Google Scholar] [CrossRef] [PubMed]
- Jaffé, R.; Ding, Y.; Niggemann, J.; Vahatalo, A.V.; Stubbins, A.; Spencer, R.G.; Campbell, J.; Dittmar, T. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans. Science 2013, 340, 345–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, S.; Kammann, C.I.; Shepard, J.G.; Conte, P.; Schmidt, H.P.; Hagemann, N.; Rich, A.N.; Marjo, C.E.; Allen, J.; Munroe, P.; et al. Microstructural and associated chemical changes during the composting of a high temperature biochar: Mechanisms for nitrate, phosphate and other nutrient retention and release. Sci. Total Environ. 2018, 618, 1210–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, S.; Cowie, A.L.; van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Cayuela, M.L.; Graber, E.R.; Ippolito, J.A.; Kuzyakov, Y.; et al. How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. CGB Bioenergy 2021, 1–34. [Google Scholar] [CrossRef]
Characteristic | Poultry Litter Biochar | Pine Chip Biochar |
---|---|---|
%C | 33.2 | 88.5 |
%H | 2.23 | 1.64 |
%N | 4.21 | 0.49 |
%O | 3.6 | 5.91 |
%Ash | 54.1 | 3.46 |
%Fixed C | 16.5 | 85.7 |
O/C molar ratio | 0.094 | 0.051 |
pH | 9.1 | 7.8 |
Date | Event | Year |
---|---|---|
11 December 2015 | Plot Boundaries Established | Y0 |
4 to 8 January 2016 | Soil Cores Collected and BD Measured | Y0 |
1 to 2 February 2016 | Biochars Applied | Y0 |
3 February 2016 | Plots Disked to Incorporate Biochar | Y0 |
12 to 18 January 2017 | Soil Cores Collected and BD Measured | Y1 |
15 January to 16 February 2018 | Soil Cores Collected and BD Measured | Y2 |
26 February to 18 March 2019 | Soil Cores Collected and BD Measured | Y3 |
30 March to 8 April 2020 | Soil Cores Collected and BD Measured | Y4 |
Treatment | Biochar C Content | Biochar Applied | Total C Applied as Biochar |
---|---|---|---|
% | -------------------------- kg ha−1 ---------------------- | ||
Control (0 Biochar) | 0 | 0 | 0 |
Poultry Litter Biochar | 33.2 | 30,000 | 9960 |
Pine Chip Biochar | 88.5 | 30,000 | 26,500 |
Treatments | Depth (cm) | Y0 (2016) | Y1 (2017) 1 | Y2 (2018) | Y3 (2019) | Y4 (2020) |
---|---|---|---|---|---|---|
Control (0 Biochar) | 0–5 | 7584 (1655) a, A | 8560 (743) a, A | 8254 (1543) a, A | 7681 (520) a, A | 7838 (680) a, A |
5–10 | 8062(1105) a, A | 8307 (826) a, A | 6751 (824) ab, B | 6845 (468) ab, A | 5998 (1078) b, B | |
10–15 | 4293 (499) a, B | 5123 (807) a, B | 4068 (787) a, CD | 4350 (420) a, B | 4324 (459) a, CD | |
15–23 | 4589 (1173) a, B | 4105 (353) a, B | 4217 (755) a, D | 4294 (789) a, B | 3948 (367) a, D | |
Poultry Litter Biochar | 0–5 | 7368 (525) a, A | 10,968 (952) b, A | 9794 (716) bd, A | 10,810 (1077) b, A | 8918 (562) cd, A |
5–10 | 7754 (580) a, A | 11,429 (2052) b, A | 7315 (794) a, B | 9209 (622) c, B | 7350 (780) a, B | |
10–15 | 4608 (740) a, B | 5873 (1204) a, B | 3921 (1007) a, CD | 4391 (636) a, CD | 4136 (615) a, CD | |
15–23 | 4409 (617) a, B | 4660 (354) a, B | 4619 (542) a, D | 4945 (824) a, D | 4262 (815) a, D | |
Pine Chip Biochar | 0–5 | 7149 (987) a, A | 18,279 (4533) b, A | 12,491 (1760) b, A | 15,784 (4313) b, A | 13,066 (2760) b, A |
5–10 | 7813 (1782) a, A | 16,246 (3118) b, A | 9649 (3355) c, B | 13,149 (3521) c, A | 11,309 (2473) c, A | |
10–15 | 3762 (1203) a, A | 8920 (5777) a, C | 4406 (833) a, C | 5252 (525) a, B | 4668 (657) a, B | |
15–23 | 5383 (1026) a, A | 4370 (484) a, D | 4458 (615) a, C | 4660 (608) a, B | 4462 (1092) a, B | |
Source of Variation | Treatments | ||
---|---|---|---|
Control (0 Biochar) | Poultry Litter Biochar | Pine Chip Biochar | |
---------------------------------------- p ----------------------------------------- | |||
Depth | <0.001 | <0.001 | <0.001 |
Year (Y) | 0.021 | <0.001 | <0.001 |
Depth * Y | 0.229 | <0.001 | 0.009 |
SOC (kg ha−1) | % ∆ | |||||
---|---|---|---|---|---|---|
Treatment | Depth (cm) | Y1 (2017) 1 | Y4 (2020) | Mass ∆ | Relative 2 | Corrected 3 |
Control (0 Biochar) | 0–5 | 8560 (743) a | 7838 (680) a | −721 | 8.4 | nd |
5–10 | 8307 (826) a | 5998 (1078) b | −2310 | 27.8 | nd | |
Poultry Litter Biochar | 0–5 | 10,968 (952) a | 8918 (562) b | −2050 | 18.7 | 10.3 |
5–10 | 11,429 (2052) a | 7350 (780) b | −4079 | 35.7 | 7.9 | |
Pine Chip Biochar | 0–5 | 18,279 (4533) a | 13,066 (2760) a | −5213 | 28.6 | 20.2 |
5–10 | 16,246 (3118) a | 11,309 (2473) b | −4937 | 30.4 | 2.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novak, J.M.; Watts, D.W.; Sigua, G.C.; Myers, W.T.; Ducey, T.F.; Rushmiller, H.C. Biochar Stability in a Highly Weathered Sandy Soil under Four Years of Continuous Corn Production. Energies 2021, 14, 6157. https://doi.org/10.3390/en14196157
Novak JM, Watts DW, Sigua GC, Myers WT, Ducey TF, Rushmiller HC. Biochar Stability in a Highly Weathered Sandy Soil under Four Years of Continuous Corn Production. Energies. 2021; 14(19):6157. https://doi.org/10.3390/en14196157
Chicago/Turabian StyleNovak, Jeffrey Michael, Donald William Watts, Gilbert C. Sigua, William Tillman Myers, Thomas F. Ducey, and Hannah C. Rushmiller. 2021. "Biochar Stability in a Highly Weathered Sandy Soil under Four Years of Continuous Corn Production" Energies 14, no. 19: 6157. https://doi.org/10.3390/en14196157
APA StyleNovak, J. M., Watts, D. W., Sigua, G. C., Myers, W. T., Ducey, T. F., & Rushmiller, H. C. (2021). Biochar Stability in a Highly Weathered Sandy Soil under Four Years of Continuous Corn Production. Energies, 14(19), 6157. https://doi.org/10.3390/en14196157