Chemical Methods for Hydrolyzing Dairy Manure Fiber: A Concise Review
Abstract
:1. Introduction
2. Lignocellulosic Biomass
3. Manure Composition
3.1. Biofibers
3.2. Protein and Nitrogen Content
4. Hydrolysis
5. Pre- and Post-Treatments
- 1-
- Low surface area because large particles (>0.125 mm in size) form more than 75% of the dairy manure DM.
- 2-
- High protein content (around 20% of the DM).
- 3-
- Low energy density or low fiber content (about 50% of the DM).
- 4-
- Low degradability of fiber.
5.1. Acid Treatment
5.2. Alkali Treatment
5.3. Other Relevant Treatments
6. Areas for More Research and Development
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hofmann, N.; Beaulieu, M.S. A Geographical Profile of Manure Production in Canada; Statistics Canada, Agriculture Division: Ottawa, ON, Canada, 2006. Available online: https://publications.gc.ca/Collection/Statcan/16F0025X/16f0025xib-h.pdf (accessed on 21 September 2021).
- Wen, Z.; Liao, W.; Chen, S. Hydrolysis of animal manure lignocellulosics for reducing sugar production. Bioresour. Technol. 2004, 91, 31–39. [Google Scholar] [CrossRef]
- Klass, D.L. Biomass for Renewable Energy, Fuels, and Chemicals; Elselvier Press: San Diego, CA, USA, 1998; ISBN 13: 978-0124109506. [Google Scholar]
- Ravindranath, N.H.; Somashekar, H.I.; Nagaraja, M.S.; Sudha, P.; Sangeetha, G.; Bhattacharya, S.C.; Abdul Salam, P. Assessment of sustainable non-plantation biomass resources potential for energy in India. Biomass Bioenerg. 2005, 29, 178–190. [Google Scholar] [CrossRef]
- Wendt, C.; Ellis, C.; Guillen, D.P.; Feris, K.; Coats, E.R.; McDonald, A. Reduction of GHG emissions through the conversion of dairy waste to value-added materials and products. In Energy Technology; Li, L., Ed.; Springer: Cham, Switerland, 2016; Available online: https://link.springer.com/chapter/10.1007/978-3-319-48182-1_13#citeas (accessed on 21 September 2021). [CrossRef]
- Liebrand, C.B.; Ling, K.C. Cooperative Approaches for Implementation of Dairy Manure Digesters; Rural Development; USDA: Washington, DC, USA, 2009. Available online: http://purl.access.gpo.gov/GPO/LPS117368 (accessed on 21 September 2021). [CrossRef]
- Chen, S.; Liao, W.; Liu, C.; Wen, Z.; Kincaid, R.L.; Harrison, J.H.; Elliott, D.C.; Brown, M.D.; Solana, A.E.; Stevens, D.J. Value-Added Chemicals From Animal Manure. Northwest Bioproducts Research Institute, 2003. Available online: http://www.adktroutguide.com/files/Elliott_PNNL_value_from_manure.pdf (accessed on 21 September 2021).
- Environment, E.C.-D.; Collection and Analysis of Data for the Control of Emissions from the Spreading of Manure. Final Report. 2014. Available online: https://ec.europa.eu/environment/air/pdf/Final%20Report.pdf (accessed on 21 September 2021).
- Steffen, R.; Szolar, O.; Braun, R. Feedstocks for Anaerobic Digestion; Institute for Agrobiotechnology—Tulln: Vienna, Austria, 1998. [Google Scholar]
- Jia, W.; Qin, W.; Zhang, Q.; Wang, X.; Ma, Y.; Chen, Q. Evaluation of crop residues and manure production and their geographical distribution in China. J. Clean. Prod. 2018, 188, 954–965. [Google Scholar] [CrossRef]
- Guo Guo, L. Potential of Biogas Production from Livestock Manure in China: GHG Emission Abatement from “Manure-Biogas-Digestate” System. Master′s Thesis, Chalmers University of Technology, Göteborg, Sweden, 2010. Available online: https://publications.lib.chalmers.se/records/fulltext/155056.pdf (accessed on 21 September 2021).
- Rao, P.V.; Baral, S.S.; Dey, R.; Mutnuri, S. Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renew. Sustain. Energy Rev. 2010, 14, 2086–2094. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Kheirrouz, M.; Asl, H.F.; Youse, H.; Hajinezhad, A. Biogas production potential from livestock manure in Iran. Renew. Sustain. Energy Rev. 2015, 50, 748–754. [Google Scholar] [CrossRef]
- El-Nahrawy, M.A. Country Pasture/Forage Resource Profiles: Egypt; FAO: Rome, Italy, 2011; Available online: https://docplayer.net/47325686-Country-pasture-forage-resource-profiles-egypt-by-dr-mohamed-a-el-nahrawy.html (accessed on 21 September 2021).
- Batzias, F.A.; Sidiras, D.K.; Spyrou, E.K. Evaluating livestock manures for biogas production: A GIS based method. Renew. Energy 2005, 30, 1161–1176. [Google Scholar] [CrossRef]
- Oliveira, A.C.L.d.; Milagres, R.S.; Orlando Junior, W.d.A.; Renato, N.d.S. Evaluation of Brazilian potential for generating electricity through animal manure and sewage. Biomass Bioenerg. 2020, 139, 105654. [Google Scholar] [CrossRef]
- Albihn, A.; Vinnerås, B. Biosecurity and arable use of manure and biowaste—Treatment alternatives. Livest. Sci. 2007, 112, 232–239. [Google Scholar] [CrossRef]
- Wilkie, A.C. Anaerobic digestion of dairy manure: Design and process considerations. Nat. Resour. Agric. Eng. Serv. 2005, 176, 301–312. [Google Scholar]
- Muhammad Nasir, I.; Mohd Ghazi, T.I. Pretreatment of lignocellulosic biomass from animal manure as a means of enhancing biogas production. Eng. Life Sci. 2015, 15, 733–742. [Google Scholar] [CrossRef]
- Nasir, I.M.; Mohd Ghazi, T.I.; Omar, R. Anaerobic digestion technology in livestock manure treatment for biogas production: A review. Eng. Life Sci. 2012, 12, 258–269. [Google Scholar] [CrossRef]
- Brigham, J.S.; Adney, W.S.; Himmel, M.E. Handbook on Bioethanol: Production and Utilization; Wyman, C., Ed.; CRC Press: Boca Raton, FL, USA, 1996; pp. 119–141. [Google Scholar]
- Jacobsen, S.E.; Wyman, C.E. Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. Appl. Biochem. Biotechnol. Part A Enzym. Eng. Biotechnol. 2000, 81–96. [Google Scholar] [CrossRef]
- Angelidaki, I.; Ahring, B.K. Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Sci. Technol. 2000, 41, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wang, H.; Larson, R.; Runge, T. Comparative study of chemical pretreatments of dairy manure for enhanced biomethane production. BioResources 2017, 12, 7363–7375. Available online: https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_12_4_7363_Yang_Chemical_Pretreatments_Dairy_Manure/5522 (accessed on 21 September 2021).
- Sun, Y.; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 2002, 83, 1–11. [Google Scholar] [CrossRef]
- Taherzadeh, M.J.; Karimi, K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int. J. Mol. Sci. 2008, 9, 1621–1651. [Google Scholar] [CrossRef] [Green Version]
- Kuhad, R.C.; Singh, A.; Eriksson, K.E. Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv. Biochem. Eng. Biotechnol. 1997, 57, 45–125. [Google Scholar] [CrossRef]
- Liao, W.; Wen, Z.; Hurley, S.; Liu, Y.; Liu, C.; Chen, S. Effects of hemicellulose and lignin on enzymatic hydrolysis of cellulose from dairy manure. Appl. Biochem. Biotechnol. Part A Enzym. Eng. Biotechnol. 2005, 124, 1017–1030. [Google Scholar] [CrossRef]
- Myint, M.; Nirmalakhandan, N. Evaluation of first-order, second-order, and surface-limiting reactions in anaerobic hydrolysis of cattle manure. Environ. Eng. Sci. 2006, 23, 970–980. [Google Scholar] [CrossRef]
- Yue, Z.; Teater, C.; MacLellan, J.; Liu, Y.; Liao, W. Development of a new bioethanol feedstock—Anaerobically digested fiber from confined dairy operations using different digestion configurations. Biomass Bioenerg. 2011, 35, 1946–1953. [Google Scholar] [CrossRef]
- Amon, T.; Amon, B.; Kryvoruchko, V.; Zollitsch, W.; Mayer, K.; Gruber, L. Biogas production from maize and dairy cattle manure-Influence of biomass composition on the methane yield. Agric. Ecosyst. Environ. 2007, 118, 173–182. [Google Scholar] [CrossRef]
- Chen, S.; Wen, Z.; Liao, W.; Liu, C.; Kincaid, R.L.; Harrison, J.H.; Elliott, D.C.; Brown, M.D.; Stevens, D.J. Studies into using manure in a biorefinery concept. Appl. Biochem. Biotechnol. Part A Enzym. Eng. Biotechnol. 2005, 124, 999–1015. [Google Scholar] [CrossRef]
- Jaster, E.H.; Newman, H.R.; McCoy, G.C.; Staples, C.R.; Berger, L.L.; Fahey, G.C. Dairy waste fiber as a roughage source for dairy heifers. J. Dairy Sci. 1982, 65, 1234–1239. [Google Scholar] [CrossRef]
- Rorick, M.B.; Spahr, S.L.; Bryant, M.P. Methane production from cattle waste in laboratory reactors at 40° and 60 °C after solid-liquid separation. J. Dairy Sci. 1980, 63, 1953–1956. [Google Scholar] [CrossRef]
- Park, J.; Cho, K.H.; Ligaray, M.; Choi, M.J. Organic matter composition of manure and its potential impact on plant growth. Sustainability 2019, 11, 2346. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.; Liu, Y.; Liu, C.; Wen, Z.; Chen, S. Acid hydrolysis of fibers from dairy manure. Bioresour. Technol. 2006, 97, 1687–1695. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Liu, Y.; Frear, C.; Chen, S. Co-production of fumaric acid and chitin from a nitrogen-rich lignocellulosic material—Dairy manure—Using a pelletized filamentous fungus Rhizopus oryzae ATCC 20344. Bioresour. Technol. 2008, 99, 5859–5866. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Liu, Y.; Wen, Z.; Frear, C.; Chen, S. Studying the effects of reaction conditions on components of dairy manure and cellulose accumulation using dilute acid treatment. Bioresour. Technol. 2007, 98, 1992–1999. [Google Scholar] [CrossRef]
- Kaparaju, P.L.-N.; Angelidaki, I. Effect of post-treatments on biodegradability and methane recovery from fibres separated from thermophilically digested cow manure. In Proceedings of the 11th IWA World Congress on Anaerobic Digestion, Brisbane, Australia, 23–27 September 2007. [Google Scholar]
- Myint, M.; Nirmalakhandan, N.; Speece, R.E. Anaerobic fermentation of cattle manure: Modeling of hydrolysis and acidogenesis. Water Res. 2007, 41, 323–332. [Google Scholar] [CrossRef]
- Vavilin, V.A.; Rytov, S.V.; Lokshina, L.Y. A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Bioresour. Technol. 1996, 56, 229–237. [Google Scholar] [CrossRef]
- Tambone, F.; Genevini, P.; D′Imporzano, G.; Adani, F. Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW. Bioresour. Technol. 2009, 100, 3140–3142. [Google Scholar] [CrossRef]
- Reinertsen, S.A.; Elliott, L.F.; Cochran, V.L.; Campbell, G.S. Role of available carbon and nitrogen in determining the rate of wheat straw decomposition. Soil Biol. Biochem. 1984, 16, 459–464. [Google Scholar] [CrossRef]
- Winter, F.; Wartha, C.; Hofbauer, H. NO and N2O formation during the combustion of wood, straw, malt waste and peat. Bioresour. Technol. 1999, 70, 39–49. [Google Scholar] [CrossRef]
- Chen, S.; Liao, W.; Liu, C.; Kincaid, R.L.; Harrison, J.H. Use of animal manure as feedstock for bio-products. In Proceedings of the 9th International Symposium on Animal, Agricultural and Food Processing Wastes, Raleight, NC, USA, 12–15 October 2003; Burns, R.T., Ed.; ASAE: Washington, DC, USA, 2003; pp. 50–57. [Google Scholar] [CrossRef]
- Liao, W.; Liu, Y.; Wen, Z.; Frear, C.; Chen, S. Kinetic modeling of enzymatic hydrolysis of cellulose in differently pretreated fibers from dairy manure. Biotechnol. Bioeng. 2008, 101, 441–451. [Google Scholar] [CrossRef]
- Yang, Q.; Zhou, S.; Runge, T. Dairy manure as a potential feedstock for cost-effective cellulosic bioethanol. BioResources 2016, 11, 1240–1254. [Google Scholar] [CrossRef] [Green Version]
- Hinman, N.D.; Schell, D.J.; Riley, J.; Bergeron, P.W.; Walter, P.J. Preliminary estimate of the cost of ethanol production for ssf technology. Appl. Biochem. Biotechnol. 1992, 34–35, 639–649. [Google Scholar] [CrossRef]
- Kaparaju, P.; Rintala, J. Anaerobic co-digestion of potato tuber and its industrial by-products with pig manure. Resour. Conserv. Recycl. 2005, 43, 175–188. [Google Scholar] [CrossRef]
- Vavilin, V.A.; Shchelkanov, M.Y.; Rytov, S.V. Effect of mass transfer on concentration wave propagation during anaerobic digestion of solid waste. Water Res. 2002, 36, 2405–2409. [Google Scholar] [CrossRef]
- Motte, J.C.; Trably, E.; Escudié, R.; Hamelin, J.; Steyer, J.P.; Bernet, N.; Delgenes, J.P.; Dumas, C. Total solids content: A key parameter of metabolic pathways in dry anaerobic digestion. Biotechnol. Biofuels 2013, 6, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noike, T.; Endo, G.; Chang, J.-E.; Yaguchi, J.-I.; Matsumoto, J.-I. Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic digestion. Biotechnol. Bioeng. 1985, 27, 1482–1489. [Google Scholar] [CrossRef]
- Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, A.T.W.M.; Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Biores. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Yawson, S.K.; Liao, P.H.; Lo, K.V. Two-stage dilute acid hydrolysis of dairy manure for nutrient release, solids reduction and reducing sugar production. Nat. Res. 2011, 2, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Hua, Q.-X.; Zhang, L.; Tang, J.-W.; Liu, Y.; Chen, J. Hydrolysis properties of livestock manure in sulphuric acid solutions. Guangzhou Chem. Ind. 2013, 2, 7. [Google Scholar]
- McMillan, J.D. Pretreatment of lignocellulosic biomass. In Enzymatic Conversion of Biomass for Fuels Production; Himmel, M.E., Baker, J.O., Overend, R.P., Eds.; American Chemical Society: Washington, DC, USA, 1994; pp. 292–324. [Google Scholar]
- Champagne, P.; Li, C. Bio-product recovery from lignocellulosic materials derived from poultry manure. Bull. Sci. Technol. Soc. 2008, 28, 219–226. [Google Scholar] [CrossRef]
- Lloyd, T.A.; Wyman, C.E. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour. Technol. 2005, 96, 1967–1977. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Singh, A.; Joshi, H.C. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Res. Conserv. Recycl. 2007, 50, 1–39. [Google Scholar] [CrossRef]
- Hahn-Hägerdal, B.; Galbe, M.; Gorwa-Grauslund, M.F.; Lidén, G.; Zacchi, G. Bio-ethanol—The fuel of tomorrow from the residues of today. Trends Biotechnol. 2006, 24, 549–556. [Google Scholar] [CrossRef]
- Kumar, P.; Barrett, D.M.; Delwiche, M.J.; Stroeve, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 2009, 48, 3713–3729. [Google Scholar] [CrossRef]
- Liao, W.; Liu, Y.; Liu, C.; Chen, S. Optimizing dilute acid hydrolysis of hemicellulose in a nitrogen-rich cellulosic material—Dairy manure. Bioresour. Technol. 2004, 94, 33–41. [Google Scholar] [CrossRef]
- Bayat-Makooi, F.; Singh, T.M.; Goldstein, I.S. Some factors influencing the rate of cellulose hydrolysis by concentrated acid. Biotechnol. Bioeng. Symp. 1985, 15, 27–37. [Google Scholar]
- Aftab, M.; Iqbal, I.; Riaz, F.; Karadag, A.; Tabatabaei, M. Different pretreatment methods of lignocellulosic biomass for use in biofuel productionnt pretreatment methods of lignocellulosic biomass for use in biofuel production. In Biomass for Bioenergy—Recent Trends and Future Challenges; IntechOpen: London, UK, 2019. [Google Scholar]
- Janker-Obermeier, I.; Sieber, V.; Faulstich, M.; Schieder, D. Solubilization of hemicellulose and lignin from wheat straw through microwave-assisted alkali treatment. Ind. Crops Prod. 2012, 39, 198–203. [Google Scholar] [CrossRef]
- Niasar, H.S.; Karimi, K.; Zilouei, H.; Salehian, P.; Jeihanipour, A. Effects of lime pretreatment on biogas production from dry dairy cattle manure. Minerva Biotechnol. 2011, 23, 77–82. [Google Scholar]
- Silverstein, R.A.; Chen, Y.; Sharma-Shivappa, R.R.; Boyette, M.D.; Osborne, J. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour. Technol. 2007, 98, 3000–3011. [Google Scholar] [CrossRef]
- Nesse, N.; Wallick, J.; Harper, J.M. Pretreatment of cellulosic wastes to increase enzyme reactivity. Biotechnol. Bioeng. 1977, 19, 323–336. [Google Scholar] [CrossRef]
Country | Year | Wet Mass (106 Tonnes) | Dry Mass (106 Tonnes) | Reference |
---|---|---|---|---|
USA | 2016 | 2490 | NR | [5] |
2008 | NR | 249 | [6] | |
2001 | NR | 160 | [7] | |
Canada | 2001 | 178 | 35 | [1] |
Europe Union | 2014 | 1380 | NR | [8] |
1993 | 1100 | NR | [9] | |
China | 2014 | NR | 551 | [10] |
2008 | 2700 | NR | [11] | |
India | 2010 | 730 | NR | [12] |
1996 | 659 | NR | [4] | |
Iran | 2015 | 69 | NR | [13] |
Egypt | 2011 | 50 | NR | [14] |
Greece | 2010 | 17 | NR | [15] |
Brazil | 2017 | 2302 | NR | [16] |
% of DM | References | |||||||
---|---|---|---|---|---|---|---|---|
Total Fiber | NDF | ADF | Lignin (ADL) | Cellulose (ADF-ADL) | Hemicellulose (NDF-ADF) | Lignin | Crude Protein | |
52.6 | 52.6 | 40.4 | 13.0 | 27.4 | 12.2 | 13.0 | 18.1 | [32] |
26.6 | 19.5 | 14.4 | 16.2 | 16.3 | [31] | |||
24.9 | 21.0 | 19.6 | 12.2 | 29.7 | [31] | |||
27.3 | 16.2 | 20.9 | 19.0 | 18.0 | [31] | |||
82.5 | 50.5 | 15.1 | 35.4 | 32 | [33] | |||
2.8 | 14.6 | 11.1 | 9.0 | 23.8 | [34] | |||
22 | 26 | 9 | [35] | |||||
48.3 | 35.8 | 13.9 | 21.9 | 12.9 | 16.5 | [36] | ||
31.4 | 13.8 | 16.0 | 8.2 | [37] | ||||
45.9 | 23.1 | 10.6 | 12.1 | 18.1 | [38] |
Procedure of Hydrolysis | Stages of the Treatment Processes | % of the Total Sugar Yield | Lignin Removal (%) | References | ||||
---|---|---|---|---|---|---|---|---|
C6 | C5 | |||||||
One-stage with decrystallization | Decrystallization (70% acid, 0.25 h) | AH 1 (100 °C, 20% acid, 1 h) | 31 | 70 | [32] | |||
One stage | AH (170 °C, 20% acid, 10 min) | 9 | 22 | [32] | ||||
Two-stages with grinding | AH (120 °C, 3% acid, 1 h) | Drying and Grinding | AH (170 °C, 20% acid, 10 min) | 28 | 95 | [32] | ||
Two-stages with alkaline extraction | AH (120 °C, 3% acid, 1 h) | Alkaline extraction (2% NaOH, 25 °C) | Drying and Grinding | AH (170 °C, 3% acid, 10 min) | 19 | 95 | [32] | |
Two-stages with decrystallization | AH (120 °C, 3% acid, 1 h) | Drying and Grinding | Decrystallization (70% acid, 0.25 h) | AH (100 °C, 20% acid, 1 h) | 89 | 95 | [32] | |
One-stage | AH (180 °C, 4% acid, 0.5 h) | NR | 75.5 | 43.7 | [24] | |||
One-stage | AH and Sodium sulfite (180 °C, 4% acid, 9% sulfite, 0.5 h) | 46.9 | 53.4 | [24] | ||||
Two-stages with microwave | AH (MW 2 160 °C, 3% acid, 20 min, TS 5.4%) | AH (MW160 °C, 3% acid, 5 min, TS 1.7%) | 19.5 | [55] | ||||
One-stage | 12.5% H2SO4 and 10% dry sample at 135 °C for 10 min | 84 | 80 | [36] | ||||
One-stage | 1% H2SO4, 135 °C, and 5% substrate for 2 h | 58 | [46] | |||||
One-stage | 1% H2SO4, 135 °C, and 10% dairy manure for 2 h | 21 | [63] | |||||
One-stage | 1% H2SO4 at 140 °C and 2.8 h reaction time, | 34 | [38] |
Treatment | Substrate | Conditions | Sugar Yield | Change in CH4 Yield (%) | References |
---|---|---|---|---|---|
NaOH | CM fibers | 20 g kg−1 VS | NR | +13 | [23] |
NaOH | CM fibers | 40 g kg−1 VS | NR | +23 | |
NH4OH | CM fibers | <20 g kg−1 VS | |||
NH4OH | CM fibers | 40 g kg−1 VS | NR | +23 | |
NaOH, or NH4OH or (2:2:1) of NaOH:KOH:Ca(OH)2 | CM fibers | 40 g kg−1 VS for 24 to 48 h | NR | +20 | |
NaOH | Dairy manure fiber | 8% NaOH/180 °C/0.5 h | C5 removal: 59.7% Lignin removal: 58.6% | +50 | [24] |
NaOH and polyethylene glycol | Dairy manure fiber | 7% NaOH/2% polyethylene glycol/23 °C/12 h | C5 removal: 55.8% Lignin removal: 62.9% | +34.2 | [24] |
NaOH and Thiourea | 7% NaOH and 5.5% thiourea/−20 °C/12 h | C5 removal: 52.5% Lignin removal: 55.2% | +21 | [24] | |
Sodium Chlorite (NaClO2) | Manure fibers (5%) | 0.3 g NaClO2 and 0.1 mL glacial acetic acid per g manure fiber/70 °C/1 h. | C6 51% | [46] | |
Dilute alkaline peroxide | Dairy manure fiber (5%) | 0.5% NaOH, 1% H2O2/150 °C/30 min | C6 65% | ||
Dilute acid and sodium chlorite | Dairy manure fibers (5%) | 0.3 g NaClO2 and 0.1 mL glacial CH3COOH per gram of manure fiber/70 °C/1 h. | C6 82% | ||
Ca(OH)2 | Dairy manure | pH 12/12 h. | C6 53%, C5 7% Lignin removal: 23% | +76 | [67] |
MW | ADCM fibers (125 g L−1) | 300 W/60 min | NR | 0 | [39] |
Conventional boiling | ADCM fibers (125 g L−1) | 30 min | NR | ||
Wet oxidation | ADCM fibers (200 g L−1) | Autoclaved/10 min/190 °C and 10 bar oxygen | NR | ||
Ultrasound irradiation | ADCM fibers (125 g L−1) | 60 min in 47 kHz | NR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saady, N.M.C.; Rezaeitavabe, F.; Ruiz Espinoza, J.E. Chemical Methods for Hydrolyzing Dairy Manure Fiber: A Concise Review. Energies 2021, 14, 6159. https://doi.org/10.3390/en14196159
Saady NMC, Rezaeitavabe F, Ruiz Espinoza JE. Chemical Methods for Hydrolyzing Dairy Manure Fiber: A Concise Review. Energies. 2021; 14(19):6159. https://doi.org/10.3390/en14196159
Chicago/Turabian StyleSaady, Noori M. Cata, Fatemeh Rezaeitavabe, and Juan Enrique Ruiz Espinoza. 2021. "Chemical Methods for Hydrolyzing Dairy Manure Fiber: A Concise Review" Energies 14, no. 19: 6159. https://doi.org/10.3390/en14196159
APA StyleSaady, N. M. C., Rezaeitavabe, F., & Ruiz Espinoza, J. E. (2021). Chemical Methods for Hydrolyzing Dairy Manure Fiber: A Concise Review. Energies, 14(19), 6159. https://doi.org/10.3390/en14196159