Solid-State Hydrogen Storage Systems and the Relevance of a Gender Perspective
Abstract
:1. Introduction
2. Hydrogen-Based Solutions for Energy Storage
3. Social Aspects of Energy Transition: A Sociotechnical System and Gender Perspective
3.1. The Sociotechnical System Framework for Sustainability Innovation
- Landscape (macroscale), which considers the sociotechnical setting and megatrends, the wider exogenous environment of macroeconomics, deep cultural patterns, and macropolitical developments, and which usually changes slowly;
- Regime (mesoscale) or the assemblage of networks (of actors and social groups) and rules (formal, normative and cognitive) that guide the activities of actors, as well as material and technical elements, and that enable and constrain actors. In practice, it includes dominant practices, organizational settings, public policy, and market structure;
- Niche (microscale), which involves individual actors and small areas for innovation where novelties emerge in an environment protected from mainstream market selection.
3.2. The Need for a Gender Perspective to Investigate and Foster Innovation in the Energy Field
4. Applications of Hydrides for Hydrogen Storage
4.1. Hydrides for Energy Storage
4.2. Modeling of Hydride-Based Integrated Systems
4.3. Hydride-Based Systems Available at Lab Scale
4.4. Hydride-Based Systems Available at Industrial Scale
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IEA. Data and Statistics. Available online: https://www.iea.org/data-and-statistics (accessed on 1 February 2021).
- IEA. Change in Electricity Demand in 2020 and 2021 by Region. Available online: https://www.iea.org/data-and-statistics/charts/change-in-electricity-demand-in-2020-and-2021-by-region (accessed on 1 February 2021).
- IEA. Global Energy Review 2021—CO2 Emissions. Available online: https://www.iea.org/reports/global-energy-review-2021/co2-emissions (accessed on 1 February 2021).
- IEA. Documentation for Electricity Information 2020. Available online: https://iea.blob.core.windows.net/assets/e5ee2901-204b-4977-8d6c-91b97e69dd94/Ele_documentation.pdf. (accessed on 1 February 2021).
- Paris Agreement—Report of the Conference of the Parties on Its Twenty-First Session; FCCC/CP/2015/10/Add.1; United Nations, European Commision Secretariate: New York, NY, USA, 2015.
- European Commision. Clean Energy for All Europeans—European Commission, Directorate General for Energy; European Commision: Brussels, Belgium, 2019. [Google Scholar] [CrossRef]
- Armaroli, N.; Balzani, V. The Future of Energy Supply: Challenges and Opportunities. Angew. Chemie Int. Ed. 2007, 46, 52–66. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Hadhrami, L.M.; Alam, M.M. Pumped hydro energy storage system: A technological review. Renew. Sustain. Energy Rev. 2015, 44, 586–598. [Google Scholar] [CrossRef]
- Trist, E.L. A conceptual framework and action research program. In The Evolution of Socio-Technical Systems; Ontario Quality of Working Life Centre: Toronto, ON, Canada, 1981. [Google Scholar]
- Walker, G.; Cass, N. Carbon reduction, ‘the public’ and renewable energy: Engaging with socio-technical configurations. Area 2007, 39, 458–469. [Google Scholar] [CrossRef]
- Geels, F.W.; Schot, J. Typology of sociotechnical transition pathways. Res. Policy 2007, 36, 399–417. [Google Scholar] [CrossRef]
- Smith, A.; Stirling, A.; Berkhout, F. The governance of sustainable socio-technical transitions. Res. Policy 2005, 34, 1491–1510. [Google Scholar] [CrossRef]
- Møller, K.T.; Jensen, T.R.; Akiba, E.; Li, H.-W. Hydrogen—A sustainable energy carrier. Prog. Nat. Sci. Mater. Int. 2017, 27, 34–40. [Google Scholar] [CrossRef]
- Armaroli, N.; Balzani, V. The Hydrogen Issue. ChemSusChem 2011, 4, 21–36. [Google Scholar] [CrossRef]
- Lai, Q.; Paskevicius, M.; Sheppard, D.A.; Buckley, C.E.; Thornton, A.W.; Hill, M.R.; Gu, Q.; Mao, J.; Huang, Z.; Liu, H.K.; et al. Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art. ChemSusChem 2015, 8, 2789–2825. [Google Scholar] [CrossRef]
- Ball, M.; Wietschel, M. The future of hydrogen—opportunities and challenges. Int. J. Hydrogen Energy 2009, 34, 615–627. [Google Scholar] [CrossRef]
- Agostini, A.; Belmonte, N.; Masala, A.; Hu, J.; Rizzi, P.; Fichtner, M.; Moretto, P.; Luetto, C.; Sgroi, M.; Baricco, M. Role of hydrogen tanks in the life cycle assessment of fuel cell-based auxiliary power units. Appl. Energy 2018, 215, 1–12. [Google Scholar] [CrossRef]
- Belmonte, N.; Girgenti, V.; Florian, P.; Peano, C.; Luetto, C.; Rizzi, P.; Baricco, M. A comparison of energy storage from renewable sources through batteries and fuel cells: A case study in Turin, Italy. Int. J. Hydrogen Energy 2016, 41, 21427–21438. [Google Scholar] [CrossRef] [Green Version]
- Wierling, A.; Zeiss, J.P.; Lupi, V.; Candelise, C.; Sciullo, A.; Schwanitz, V.J. The Contribution of Energy Communities to the Upscaling of Photovoltaics in Germany and Italy. Energies 2021, 14, 2258. [Google Scholar] [CrossRef]
- Directive (EU) 2019/944 on common rules for the internal market for electricity. Off. J. Eur. Union 2019, L158, 125–199.
- Directive (EU) 2018/2001 on the promotion of the use of energy from renewable sources. Off. J. Eur. Union 2018, L328, 82–209.
- COP24 Women Gender Constituency—Key Demands 2021. Available online: www.womengenderclimate.org (accessed on 15 January 2021).
- Feenstra, M.; Özerol, G. Energy justice as a search light for gender-energy nexus: Towards a conceptual framework. Renew. Sustain. Energy Rev. 2021, 138, 110668. [Google Scholar] [CrossRef]
- Geels, F.W. Socio-technical transitions to sustainability: A review of criticisms and elaborations of the Multi-Level Perspective. Curr. Opin. Environ. Sustain. 2019, 39, 187–201. [Google Scholar] [CrossRef]
- Verbong, G.P.J.; Geels, F.W. Exploring sustainability transitions in the electricity sector with socio-technical pathways. Technol. Forecast. Soc. Change 2010, 77, 1214–1221. [Google Scholar] [CrossRef]
- Geels, F.W. Technological transitions as evolutionary reconfiguration processes: A multi-level perspective and a case-study. Res. Policy 2002, 31, 1257–1274. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, M. Human development revisited: A new UNDP report. World Dev. 1991, 19, 1469–1473. [Google Scholar] [CrossRef]
- Gender and Climate Change—Thematic Issue Briefs and Training Modules. Available online: http://www.undp.org/content/undp/en/home/librarypage/womens-empowerment/gender-and-climate-change.html (accessed on 7 July 2018).
- Arora-Jonsson, S. Virtue and vulnerability: Discourses on women, gender and climate change. Glob. Environ. Chang. 2011, 21, 744–751. [Google Scholar] [CrossRef]
- Lieu, J.; Sorman, A.H.; Johnson, O.W.; Virla, L.D.; Resurrección, B.P. Three sides to every story: Gender perspectives in energy transition pathways in Canada, Kenya and Spain. Energy Res. Soc. Sci. 2020, 68, 101550. [Google Scholar] [CrossRef]
- Wong, S. Can Climate Finance Contribute to Gender Equity in Developing Countries? J. Int. Dev. 2016, 28, 428–444. [Google Scholar] [CrossRef] [Green Version]
- Shankar, A. Strategically Engaging Women in Clean Energy Solutions for Sustainable Development and Health. In Global Sustainable Development Report; United Nations, Department of Economic and Social Affairs: New York, NY, USA, July 2015. [Google Scholar]
- Carlsson-Kanyama, A.; Lindén, A.-L. Energy efficiency in residences—Challenges for women and men in the North. Energy Policy 2007, 35, 2163–2172. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Renewable Energy: A Gender Perspective; International Renewable Energy Agency: Masdar City, United Arab Emirates, 2019; ISBN 9789292600983. [Google Scholar]
- Sartori, S. Further Steps Are Needed to Endure a Gender-Just Energy Transition; FES: Bonn, Germany, 2020. [Google Scholar]
- Loarne-Lemaire, S.L.; Bertrand, G.; Razgallah, M.; Maalaoui, A.; Kallmuenzer, A. Women in innovation processes as a solution to climate change: A systematic literature review and an agenda for future research. Technol. Forecast. Soc. Chang. 2021, 164, 120440. [Google Scholar] [CrossRef]
- Cannon, C.E.B.; Chu, E.K. Gender, sexuality, and feminist critiques in energy research: A review and call for transversal thinking. Energy Res. Soc. Sci. 2021, 75, 102005. [Google Scholar] [CrossRef]
- Mang-Benza, C. Many shades of pink in the energy transition: Seeing women in energy extraction, production, distribution, and consumption. Energy Res. Soc. Sci. 2021, 73, 101901. [Google Scholar] [CrossRef]
- Allen, E.; Lyons, H.; Stephens, J.C. Women’s leadership in renewable transformation, energy justice and energy democracy: Redistributing power. Energy Res. Soc. Sci. 2019, 57, 101233. [Google Scholar] [CrossRef]
- Hirscher, M.; Yartys, V.A.; Baricco, M.; Bellosta von Colbe, J.; Blanchard, D.; Bowman, R.C.; Broom, D.P.; Buckley, C.E.; Chang, F.; Chen, P.; et al. Materials for hydrogen-based energy storage—past, recent progress and future outlook. J. Alloys Compd. 2020, 827, 153548. [Google Scholar] [CrossRef]
- Szilágyi, P.Á.; Rogers, D.M.; Zaiser, I.; Callini, E.; Turner, S.; Borgschulte, A.; Züttel, A.; Geerlings, H.; Hirscher, M.; Dam, B. Functionalised metal–organic frameworks: A novel approach to stabilising single metal atoms. J. Mater. Chem. A 2017, 5, 15559–15566. [Google Scholar] [CrossRef]
- Liu, W.; Setijadi, E.; Crema, L.; Bartali, R.; Laidani, N.; Aguey-Zinsou, K.F.; Speranza, G. Carbon nanostructures/Mg hybrid materials for hydrogen storage. Diam. Relat. Mater. 2018, 82, 19–24. [Google Scholar] [CrossRef]
- Zavorotynska, O.; Deledda, S.; Vitillo, J.; Saldan, I.; Guzik, M.; Baricco, M.; Walmsley, J.; Muller, J.; Hauback, B. Combined X-ray and Raman Studies on the Effect of Cobalt Additives on the Decomposition of Magnesium Borohydride. Energies 2015, 8, 9173–9190. [Google Scholar] [CrossRef] [Green Version]
- Broom, D.P.; Webb, C.J.; Fanourgakis, G.S.; Froudakis, G.E.; Trikalitis, P.N.; Hirscher, M. Concepts for improving hydrogen storage in nanoporous materials. Int. J. Hydrogen Energy 2019, 44, 7768–7779. [Google Scholar] [CrossRef]
- Hirscher, M. Handbook of Hydrogen Storage: New Materials for Future Energy Storage; Wiley: Hoboken, NJ, USA, 2010; ISBN 9783527320813. [Google Scholar]
- Callini, E.; Aguey-Zinsou, K.-F.; Ahuja, R.; Ares, J.R.; Bals, S.; Biliškov, N.; Chakraborty, S.; Charalambopoulou, G.; Chaudhary, A.-L.; Cuevas, F.; et al. Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103. Int. J. Hydrogen Energy 2016, 41, 14404–14428. [Google Scholar] [CrossRef]
- Schlichtenmayer, M.; Hirscher, M. The usable capacity of porous materials for hydrogen storage. Appl. Phys. A 2016, 122, 379. [Google Scholar] [CrossRef] [Green Version]
- Broom, D.P.; Webb, C.J.; Hurst, K.E.; Parilla, P.A.; Gennett, T.; Brown, C.M.; Zacharia, R.; Tylianakis, E.; Klontzas, E.; Froudakis, G.E.; et al. Outlook and challenges for hydrogen storage in nanoporous materials. Appl. Phys. A 2016, 122, 151. [Google Scholar] [CrossRef] [Green Version]
- Gaboardi, M.; Milanese, C.; Magnani, G.; Girella, A.; Pontiroli, D.; Cofrancesco, P.; Marini, A.; Riccò, M. Optimal hydrogen storage in sodium substituted lithium fullerides. Phys. Chem. Chem. Phys. 2017, 19, 21980–21986. [Google Scholar] [CrossRef] [Green Version]
- Pramudita, J.C.; Pontiroli, D.; Magnani, G.; Gaboardi, M.; Milanese, C.; Bertoni, G.; Sharma, N.; Riccò, M. Effect of Ni-nanoparticles decoration on graphene to enable high capacity sodium-ion battery negative electrodes. Electrochim. Acta 2017, 250, 212–218. [Google Scholar] [CrossRef]
- Sarzi Amadè, N.; Gaboardi, M.; Magnani, G.; Riccò, M.; Pontiroli, D.; Milanese, C.; Girella, A.; Carretta, P.; Sanna, S. H and Li dynamics in Li12C60 and Li12C60Hy. Int. J. Hydrogen Energy 2017, 42, 22544–22550. [Google Scholar] [CrossRef] [Green Version]
- El Kharbachi, A.; Dematteis, E.M.; Shinzato, K.; Stevenson, S.C.; Bannenberg, L.J.; Heere, M.; Zlotea, C.; Szilágyi, P.Á.; Bonnet, J.-P.; Grochala, W.; et al. Metal Hydrides and Related Materials. Energy Carriers for Novel Hydrogen and Electrochemical Storage. J. Phys. Chem. C 2020, 124, 7599–7607. [Google Scholar] [CrossRef] [Green Version]
- Bannenberg, L.J.; Heere, M.; Benzidi, H.; Montero, J.; Dematteis, E.M.; Suwarno, S.; Jaroń, T.; Winny, M.; Orłowski, P.A.; Wegner, W.; et al. Metal (boro-) hydrides for high energy density storage and relevant emerging technologies. Int. J. Hydrogen Energy 2020, 45, 33687–33730. [Google Scholar] [CrossRef]
- Weidenthaler, C. Crystal structure evolution of complex metal aluminum hydrides upon hydrogen release. J. Energy Chem. 2020, 42, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Hadjixenophontos, E.; Dematteis, E.M.; Berti, N.; Wołczyk, A.R.; Huen, P.; Brighi, M.; Le, T.T.; Santoru, A.; Payandeh, S.; Peru, F.; et al. A Review of the MSCA ITN ECOSTORE—Novel Complex Metal Hydrides for Efficient and Compact Storage of Renewable Energy as Hydrogen and Electricity. Inorganics 2020, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Yartys, V.A.; Lototskyy, M.V.; Akiba, E.; Albert, R.; Antonov, V.E.; Ares, J.R.; Baricco, M.; Bourgeois, N.; Buckley, C.E.; Bellosta von Colbe, J.M.; et al. Magnesium based materials for hydrogen based energy storage: Past, present and future. Int. J. Hydrogen Energy 2019, 44, 7809–7859. [Google Scholar] [CrossRef]
- Crivello, J.-C.; Denys, R.V.; Dornheim, M.; Felderhoff, M.; Grant, D.M.; Huot, J.; Jensen, T.R.; de Jongh, P.; Latroche, M.; Walker, G.S.; et al. Mg-based compounds for hydrogen and energy storage. Appl. Phys. A 2016, 122, 85. [Google Scholar] [CrossRef] [Green Version]
- Joubert, J.-M.; Paul-Boncour, V.; Cuevas, F.; Zhang, J.; Latroche, M. LaNi5 related AB5 compounds: Structure, properties and applications. J. Alloys Compd. 2021, 862, 158163. [Google Scholar] [CrossRef]
- Dornheim, M. Thermodynamics of Metal Hydrides: Tailoring Reaction Enthalpies of Hydrogen Storage Materials. In Thermodynamics—Interaction Studies—Solids, Liquids and Gases; InTech: London, UK, 2011; pp. 891–918. ISBN 978-953-307-563-1. [Google Scholar]
- Baran, A.; Polański, M. Magnesium-Based Materials for Hydrogen Storage—A Scope Review. Materials 2020, 13, 3993. [Google Scholar] [CrossRef]
- Graetz, J.; Reilly, J.J.; Yartys, V.A.; Maehlen, J.P.; Bulychev, B.M.; Antonov, V.E.; Tarasov, B.P.; Gabis, I.E. Aluminum hydride as a hydrogen and energy storage material: Past, present and future. J. Alloys Compd. 2011, 509, S517–S528. [Google Scholar] [CrossRef]
- Léon, A. (Ed.) Hydrogen Technology. In Green Energy and Technology; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 978-3-540-79027-3. [Google Scholar]
- Dematteis, E.M.; Berti, N.; Cuevas, F.; Latroche, M.; Baricco, M. Substitutional effects in TiFe for hydrogen storage: A comprehensive review. Mater. Adv. 2021, 2, 2524–2560. [Google Scholar] [CrossRef]
- Sujan, G.K.; Pan, Z.; Li, H.; Liang, D.; Alam, N. An overview on TiFe intermetallic for solid-state hydrogen storage: Microstructure, hydrogenation and fabrication processes. Crit. Rev. Solid State Mater. Sci. 2019, 45, 410–427. [Google Scholar] [CrossRef]
- Reilly, J.J.; Wiswall, R.H. Formation and properties of iron titanium hydride. Inorg. Chem. 1974, 13, 218–222. [Google Scholar] [CrossRef]
- Dematteis, E.M.; Dreistadt, D.M.; Capurso, G.; Jepsen, J.; Cuevas, F.; Latroche, M. Fundamental hydrogen storage properties of TiFe-alloy with partial substitution of Fe by Ti and Mn. J. Alloys Compd. 2021, 874, 159925. [Google Scholar] [CrossRef]
- Dematteis, E.M.; Cuevas, F.; Latroche, M. Hydrogen storage properties of Mn and Cu for Fe substitution in TiFe0.9 intermetallic compound. J. Alloys Compd. 2021, 851, 156075. [Google Scholar] [CrossRef]
- Rusman, N.A.A.; Dahari, M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int. J. Hydrogen Energy 2016, 41, 12108–12126. [Google Scholar] [CrossRef]
- Stein, F.; Palm, M.; Sauthoff, G. Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability. Intermetallics 2004, 12, 713–720. [Google Scholar] [CrossRef]
- Liu, B.-H.; Kim, D.-M.; Lee, K.-Y.; Lee, J.-Y. Hydrogen storage properties of TiMn2-based alloys. J. Alloys Compd. 1996, 240, 214–218. [Google Scholar] [CrossRef]
- Lototskyy, M.V.; Tolj, I.; Pickering, L.; Sita, C.; Barbir, F.; Yartys, V. The use of metal hydrides in fuel cell applications. Prog. Nat. Sci. Mater. Int. 2017, 27, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Commission’s communication on the 2017 list of Critical raw Materials for the EU. COM 2017, 490. Available online: https://ec.europa.eu/transparency/documents-register/detail?ref=COM(2017)490&lang=en (accessed on 1 February 2021).
- EU Critical Raw Materials Resilience: Charting a Path towards greater Security and Sustainability. Communication from the commission to the European parliament, the council, the European Economic and Social Committee and the committee of the regions. COM 2020, 474. Available online: https://op.europa.eu/en/publication-detail/-/publication/160da878-edc7-11ea-991b-01aa75ed71a1/language-en (accessed on 1 February 2021).
- Liang, G.; Huot, J.; Schulz, R. Hydrogen storage properties of the mechanically alloyed LaNi5-based materials. J. Alloys Compd. 2001, 320, 133–139. [Google Scholar] [CrossRef]
- Read, C.; Petrovic, J.; Ordaz, G.; Satyapal, S. The DOE National Hydrogen Storage Project: Recent Progress in On-Board Vehicular Hydrogen Storage. MRS Proc. 2005, 885, 501. [Google Scholar] [CrossRef]
- An, X.H.; Gu, Q.F.; Zhang, J.Y.; Chen, S.L.; Yu, X.B.; Li, Q. Experimental investigation and thermodynamic reassessment of La–Ni and LaNi5–H systems. Calphad 2013, 40, 48–55. [Google Scholar] [CrossRef]
- Chen, J.; Dou, S.X.; Liu, H.K. Effect of partial substitution of La with Ce, Pr and Nd on the properties of LaNi5-based alloy electrodes. J. Power Source 1996, 63, 267–270. [Google Scholar] [CrossRef]
- Milanese, C.; Jensen, T.R.; Hauback, B.C.; Pistidda, C.; Dornheim, M.; Yang, H.; Lombardo, L.; Zuettel, A.; Filinchuk, Y.; Ngene, P.; et al. Complex hydrides for energy storage. Int. J. Hydrogen Energy 2019, 44, 7860–7874. [Google Scholar] [CrossRef] [Green Version]
- Milanese, C.; Garroni, S.; Gennari, F.; Marini, A.; Klassen, T.; Dornheim, M.; Pistidda, C. Solid State Hydrogen Storage in Alanates and Alanate-Based Compounds: A Review. Metals 2018, 8, 567. [Google Scholar] [CrossRef] [Green Version]
- Sandrock, G.; Gross, K.; Thomas, G.; Jensen, C.; Meeker, D.; Takara, S. Engineering considerations in the use of catalyzed sodium alanates for hydrogen storage. J. Alloys Compd. 2002, 330–332, 696–701. [Google Scholar] [CrossRef]
- Gross, K.J.; Thomas, G.J.; Jensen, C.M. Catalyzed alanates for hydrogen storage. J. Alloys Compd. 2002, 330–332, 683–690. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ren, Z.; Zhang, X.; Jian, N.; Yang, Y.; Gao, M.; Pan, H. Development of Catalyst-Enhanced Sodium Alanate as an Advanced Hydrogen-Storage Material for Mobile Applications. Energy Technol. 2018, 6, 487–500. [Google Scholar] [CrossRef]
- Bogdanović, B.; Brand, R.A.; Marjanović, A.; Schwickardi, M.; Tölle, J. Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials. J. Alloys Compd. 2000, 302, 36–58. [Google Scholar] [CrossRef]
- Paskevicius, M.; Jepsen, L.H.; Schouwink, P.; Černý, R.; Ravnsbæk, D.B.; Filinchuk, Y.; Dornheim, M.; Besenbacher, F.; Jensen, T.R. Metal borohydrides and derivatives—synthesis, structure and properties. Chem. Soc. Rev. 2017, 46, 1565–1634. [Google Scholar] [CrossRef]
- Puszkiel, J.; Garroni, S.; Milanese, C.; Gennari, F.; Klassen, T.; Dornheim, M.; Pistidda, C. Tetrahydroborates: Development and Potential as Hydrogen Storage Medium. Inorganics 2017, 5, 74. [Google Scholar] [CrossRef] [Green Version]
- Rude, L.H.; Nielsen, T.K.; Ravnsbaek, D.B.; Bösenberg, U.; Ley, M.B.; Richter, B.; Arnbjerg, L.M.; Dornheim, M.; Filinchuk, Y.; Besenbacher, F.; et al. Tailoring properties of borohydrides for hydrogen storage: A review. Phys. Status Solidi 2011, 208, 1754–1773. [Google Scholar] [CrossRef]
- Dematteis, E.M.; Jensen, S.R.; Jensen, T.R.; Baricco, M. Heat capacity and thermodynamic properties of alkali and alkali-earth borohydrides. J. Chem. Thermodyn. 2020, 143, 106055. [Google Scholar] [CrossRef]
- Dematteis, E.M.; Roedern, E.; Pinatel, E.R.; Corno, M.; Jensen, T.R.; Baricco, M. A thermodynamic investigation of the LiBH4–NaBH4 system. RSC Adv. 2016, 6, 60101–60108. [Google Scholar] [CrossRef] [Green Version]
- Dematteis, E.M.; Pinatel, E.R.; Corno, M.; Jensen, T.R.; Baricco, M. Phase diagrams of the LiBH4–NaBH4–KBH4 system. Phys. Chem. Chem. Phys. 2017, 19, 25071–25079. [Google Scholar] [CrossRef]
- Dematteis, E.M.; Pistidda, C.; Dornheim, M.; Baricco, M. Exploring Ternary and Quaternary Mixtures in the LiBH4-NaBH4-KBH4-Mg(BH4)2-Ca(BH4)2 System. ChemPhysChem 2019, 20, 1348–1359. [Google Scholar] [CrossRef] [Green Version]
- Dematteis, E.M.; Santoru, A.; Poletti, M.G.; Pistidda, C.; Klassen, T.; Dornheim, M.; Baricco, M. Phase stability and hydrogen desorption in a quinary equimolar mixture of light-metals borohydrides. Int. J. Hydrogen Energy 2018, 43, 16793–16803. [Google Scholar] [CrossRef]
- Dematteis, E.M.; Vaunois, S.; Pistidda, C.; Dornheim, M.; Baricco, M. Reactive Hydride Composite of Mg2NiH4 with Borohydrides Eutectic Mixtures. Crystals 2018, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Dematteis, E.M.; Baricco, M. Hydrogen Desorption in Mg(BH4)2-Ca(BH4)2 System. Energies 2019, 12, 3230. [Google Scholar] [CrossRef] [Green Version]
- Garroni, S.; Santoru, A.; Cao, H.; Dornheim, M.; Klassen, T.; Milanese, C.; Gennari, F.; Pistidda, C. Recent Progress and New Perspectives on Metal Amide and Imide Systems for Solid-State Hydrogen Storage. Energies 2018, 11, 1027. [Google Scholar] [CrossRef] [Green Version]
- Gulino, V.; Brighi, M.; Dematteis, E.M.; Murgia, F.; Nervi, C.; Černý, R.; Baricco, M. Phase Stability and Fast Ion Conductivity in the Hexagonal LiBH4–LiBr–LiCl Solid Solution. Chem. Mater. 2019, 31, 5133–5144. [Google Scholar] [CrossRef] [Green Version]
- Gulino, V.; Dematteis, E.M.; Corno, M.; Palumbo, M.; Baricco, M. Theoretical and Experimental Studies of LiBH4–LiBr Phase Diagram. ACS Appl. Energy Mater. 2021, 4, 7327–7337. [Google Scholar] [CrossRef]
- Saunders, N.; Miodownik, A.P. CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide; Elsevier: Amsterdam, The Netherlands, 1998; Volume 1. [Google Scholar]
- Turchi, P.E.A.; Abrikosov, I.A.; Burton, B.; Fries, S.G.; Grimvall, G.; Kaufman, L.; Korzhavyi, P.; Rao Manga, V.; Ohno, M.; Pisch, A.; et al. Interface between quantum-mechanical-based approaches, experiments, and CALPHAD methodology. Calphad 2007, 31, 4–27. [Google Scholar] [CrossRef]
- Dovesi, R.; Orlando, R.; Civalleri, B.; Roetti, C.; Saunders, V.R.; Zicovich-Wilson, C.M. CRYSTAL: A computational tool for the ab initio study of the electronic properties of crystals. Zeitschrift Für Krist.-Cryst. Mater. 2005, 220, 571–573. [Google Scholar] [CrossRef]
- Dovesi, R.; Orlando, R.; Erba, A.; Zicovich-Wilson, C.M.; Civalleri, B.; Casassa, S.; Maschio, L.; Ferrabone, M.; De La Pierre, M.; D’Arco, P.; et al. CRYSTAL14: A Program for the Ab Initio Investigation of Crystalline Solids. Int. J. Quantum Chem. 2014, 114, 1287–1317. [Google Scholar] [CrossRef]
- Dovesi, R.; Saunders, V.R.; Roetti, C.; Orlando, R.; Zicovich-Wilson, C.M.; Pascale, F.; Civalleri, B.; Doll, K.; Harrison, N.M.; Bush, I.J.; et al. CRYSTAL17 User’s Manual; University of Turin (Università degli Studi di Torino): Turin, Italy, 2017. [Google Scholar]
- Dovesi, R.; Erba, A.; Orlando, R.; Zicovich-Wilson, C.M.; Civalleri, B.; Maschio, L.; Rérat, M.; Casassa, S.; Baima, J.; Salustro, S.; et al. Quantum-mechanical condensed matter simulations with CRYSTAL. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1360. [Google Scholar] [CrossRef]
- Grove, H.; Rude, L.H.; Jensen, T.R.; Corno, M.; Ugliengo, P.; Baricco, M.; Sørby, M.H.; Hauback, B.C. Halide substitution in Ca(BH 4) 2. RSC Adv. 2014, 4, 4736–4742. [Google Scholar] [CrossRef] [Green Version]
- Hino, S.; Fonneløp, J.E.; Corno, M.; Zavorotynska, O.; Damin, A.; Richter, B.; Baricco, M.; Jensen, T.R.; Sørby, M.H.; Hauback, B.C. Halide Substitution in Magnesium Borohydride. J. Phys. Chem. C 2012, 116, 12482–12488. [Google Scholar] [CrossRef] [Green Version]
- Albanese, E.; Corno, M.; Baricco, M.; Civalleri, B. Simulation of nanosizing effects in the decomposition of Ca(BH4)2 through atomistic thin film models. Res. Chem. Intermed. 2021, 47, 345–356. [Google Scholar] [CrossRef]
- Kim, K.J.; Montoya, B.; Razani, A.; Lee, K.-H. Metal hydride compacts of improved thermal conductivity. Int. J. Hydrogen Energy 2001, 26, 609–613. [Google Scholar] [CrossRef]
- Baldissin, D.; Urgnani, J.; Palumbo, M.; Gagliano, S.; Baricco, M. Thermofluidodynamic modelling of hydrogen absorption and desorption in a LaNi4.8Al0.2 hydride bed. Present. MH2008 Int. Symp. Met. Syst. Reykjavik. Icel. 2008, 26, 609–613. [Google Scholar]
- Bellosta von Colbe, J.; Ares, J.-R.; Barale, J.; Baricco, M.; Buckley, C.; Capurso, G.; Gallandat, N.; Grant, D.M.; Guzik, M.N.; Jacob, I.; et al. Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives. Int. J. Hydrogen Energy 2019, 44, 7780–7808. [Google Scholar] [CrossRef]
- Ley, M.; Meggouh, M.; Moury, R.; Peinecke, K.; Felderhoff, M. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides. Materials 2015, 8, 5891–5921. [Google Scholar] [CrossRef]
- Utz, I.; Linder, M.; Schmidt, N.; Hu, J.J.; Fichtner, M.; Wörner, A. Experimental study of powder bed behavior of sodium alanate in a lab-scale H2 storage tank with flow-through mode. Int. J. Hydrogen Energy 2012, 37, 7645–7653. [Google Scholar] [CrossRef]
- Utz, I.; Schmidt, N.; Wörner, A.; Hu, J.J.; Zabara, O.; Fichtner, M. Experimental results of an air-cooled lab-scale H2 storage tank based on sodium alanate. Int. J. Hydrogen Energy 2011, 36, 3556–3565. [Google Scholar] [CrossRef]
- Pfeifer, P.; Wall, C.; Jensen, O.; Hahn, H.; Fichtner, M. Thermal coupling of a high temperature PEM fuel cell with a complex hydride tank. Int. J. Hydrogen Energy 2009, 34, 3457–3466. [Google Scholar] [CrossRef]
- Weiss-Ungethüm, J.; Bürger, I.; Schmidt, N.; Linder, M.; Kallo, J. Experimental investigation of a liquid cooled high temperature proton exchange membrane (HT-PEM) fuel cell coupled to a sodium alanate tank. Int. J. Hydrogen Energy 2014, 39, 5931–5941. [Google Scholar] [CrossRef]
- Urbanczyk, R.; Peinecke, K.; Meggouh, M.; Minne, P.; Peil, S.; Bathen, D.; Felderhoff, M. Design and operation of an aluminium alloy tank using doped Na3AlH6 in kg scale for hydrogen storage. J. Power Source 2016, 324, 589–597. [Google Scholar] [CrossRef]
- Mosher, D.A.; Tang, X.; Brown, R.J.; Arsenault, S.; Saitta, S.; Laube, B.L.; Dold, R.H.; Donald, L.A. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides; OSTI: Golden, CO, USA, 2007. [Google Scholar]
- Mosher, D.A.; Arsenault, S.; Tang, X.; Anton, D.L. Design, fabrication and testing of NaAlH4 based hydrogen storage systems. J. Alloys Compd. 2007, 446–447, 707–712. [Google Scholar] [CrossRef]
- Urbanczyk, R.; Peinecke, K.; Felderhoff, M.; Hauschild, K.; Kersten, W.; Peil, S.; Bathen, D. Aluminium alloy based hydrogen storage tank operated with sodium aluminium hexahydride Na3AlH6. Int. J. Hydrogen Energy 2014, 39, 17118–17128. [Google Scholar] [CrossRef] [Green Version]
- Urbanczyk, R.; Peil, S.; Bathen, D.; Heßke, C.; Burfeind, J.; Hauschild, K.; Felderhoff, M.; Schüth, F. HT-PEM Fuel Cell System with Integrated Complex Metal Hydride Storage Tank. Fuel Cells 2011, 11, 911–920. [Google Scholar] [CrossRef]
- Na Ranong, C.; Höhne, M.; Franzen, J.; Hapke, J.; Fieg, G.; Dornheim, M.; Eigen, N.; Bellosta von Colbe, J.M.; Metz, O. Concept, Design and Manufacture of a Prototype Hydrogen Storage Tank Based on Sodium Alanate. Chem. Eng. Technol. 2009, 32, 1154–1163. [Google Scholar] [CrossRef] [Green Version]
- Wellnitz, J. Hydrogen storage systems for automotive applications: Project StorHy. Int. J. Sustain. Des. 2008, 1, 93. [Google Scholar] [CrossRef]
- Bellosta von Colbe, J.M.; Metz, O.; Lozano, G.A.; Pranzas, P.K.; Schmitz, H.W.; Beckmann, F.; Schreyer, A.; Klassen, T.; Dornheim, M. Behavior of scaled-up sodium alanate hydrogen storage tanks during sorption. Int. J. Hydrogen Energy 2012, 37, 2807–2811. [Google Scholar] [CrossRef]
- Bellosta von Colbe, J.M.; Lozano, G.; Metz, O.; Bücherl, T.; Bormann, R.; Klassen, T.; Dornheim, M. Design, sorption behaviour and energy management in a sodium alanate-based lightweight hydrogen storage tank. Int. J. Hydrogen Energy 2015, 40, 2984–2988. [Google Scholar] [CrossRef] [Green Version]
- Johnson, T.A.; Kanouff, M.P.; Dedrick, D.E.; Evans, G.H.; Jorgensen, S.W. Model-based design of an automotive-scale, metal hydride hydrogen storage system. Int. J. Hydrogen Energy 2012, 37, 2835–2849. [Google Scholar] [CrossRef]
- Yan, M.; Sun, F.; Liu, X.; Ye, J.; Wang, S.; Jiang, L. Effects of graphite content and compaction pressure on hydrogen desorption properties of Mg(NH2)2–2LiH based tank. J. Alloys Compd. 2015, 628, 63–67. [Google Scholar] [CrossRef]
- Yan, M.Y.; Sun, F.; Liu, X.P.; Ye, J.H.; Yuan, H.P.; Wang, S.M.; Jiang, L.J. Experimental study on hydrogen storage properties of Li–Mg–N–H based tank. J. Alloys Compd. 2014, 603, 19–22. [Google Scholar] [CrossRef]
- Lohstroh, W.; Fichtner, M.; Breitung, W. Complex hydrides as solid storage materials: First safety tests. Int. J. Hydrogen Energy 2009, 34, 5981–5985. [Google Scholar] [CrossRef]
- Wee, J.-H. Which type of fuel cell is more competitive for portable application: Direct methanol fuel cells or direct borohydride fuel cells? J. Power Source 2006, 161, 1–10. [Google Scholar] [CrossRef]
- Ma, J.; Choudhury, N.A.; Sahai, Y. A comprehensive review of direct borohydride fuel cells. Renew. Sustain. Energy Rev. 2010, 14, 183–199. [Google Scholar] [CrossRef]
- Kim, J.; Kim, T. Compact PEM fuel cell system combined with all-in-one hydrogen generator using chemical hydride as a hydrogen source. Appl. Energy 2015, 160, 945–953. [Google Scholar] [CrossRef]
- Liu, B.H.; Li, Z.P. A review: Hydrogen generation from borohydride hydrolysis reaction. J. Power Source 2009, 187, 527–534. [Google Scholar] [CrossRef]
- Demirci, U.B.; Akdim, O.; Andrieux, J.; Hannauer, J.; Chamoun, R.; Miele, P. Sodium Borohydride Hydrolysis as Hydrogen Generator: Issues, State of the Art and Applicability Upstream from a Fuel Cell. Fuel Cells 2010, 10, 335–350. [Google Scholar] [CrossRef] [Green Version]
- van Biert, L.; Godjevac, M.; Visser, K.; Aravind, P.V. A review of fuel cell systems for maritime applications. J. Power Source 2016, 327, 345–364. [Google Scholar] [CrossRef] [Green Version]
- Fiori, C.; Dell’Era, A.; Zuccari, F.; Santiangeli, A.; D’Orazio, A.; Orecchini, F. Hydrides for submarine applications: Overview and identification of optimal alloys for air independent propulsion maximization. Int. J. Hydrogen Energy 2015, 40, 11879–11889. [Google Scholar] [CrossRef]
- Ghosh, P.C.; Vasudeva, U. Analysis of 3000T class submarines equipped with polymer electrolyte fuel cells. Energy 2011, 36, 3138–3147. [Google Scholar] [CrossRef]
- Bicer, Y.; Dincer, I. Clean fuel options with hydrogen for sea transportation: A life cycle approach. Int. J. Hydrogen Energy 2018, 43, 1179–1193. [Google Scholar] [CrossRef]
- Weydahl, H.; Gilljam, M.; Lian, T.; Johannessen, T.C.; Holm, S.I.; Hasvold, J.Ø. Fuel cell systems for long-endurance autonomous underwater vehicles—challenges and benefits. Int. J. Hydrogen Energy 2020, 45, 5543–5553. [Google Scholar] [CrossRef]
- Sattler, G. Fuel cells going on-board. J. Power Source 2000, 86, 61–67. [Google Scholar] [CrossRef]
- Swider-Lyons, K.; Deitz, D. Hydrogen Fuel Cells for Unmanned Undersea Vehicle Propulsion. ECS Trans. 2016, 75, 479–489. [Google Scholar] [CrossRef]
- Bevan, A.I.; Züttel, A.; Book, D.; Harris, I.R. Performance of a metal hydride store on the “Ross Barlow” hydrogen powered canal boat. Faraday Discuss. 2011, 151, 353. [Google Scholar] [CrossRef]
- Doucet, G.; Etiévant, C.; Puyenchet, C.; Grigoriev, S.; Millet, P. Hydrogen-based PEM auxiliary power unit. Int. J. Hydrogen Energy 2009, 34, 4983–4989. [Google Scholar] [CrossRef]
- Available online: www.toshiba-energy.com (accessed on 15 February 2021).
- Rizzi, P.; Pinatel, E.; Luetto, C.; Florian, P.; Graizzaro, A.; Gagliano, S.; Baricco, M. Integration of a PEM fuel cell with a metal hydride tank for stationary applications. J. Alloys Compd. 2015, 645, S338–S342. [Google Scholar] [CrossRef]
- Available online: www.gknpm.com (accessed on 1 February 2021).
- GKN Hydrogen. Available online: https://www.gknpm.com/en/innovation/hydrogen-technology/ (accessed on 1 February 2021).
- Beaufrere, A.H.; Salzano, F.J.; Isler, R.J.; Yu, W.S. Hydrogen storage via iron-titanium for a 26 MW(e) peaking electric plant. Int. J. Hydrogen Energy 1976, 1, 307–319. [Google Scholar] [CrossRef]
- Strickland, G.; Yu, W.S. Some Rate and Modeling Studies on the Use of Iron-Titanium Hydride as an Energy Storage Medium for Electric Utility Companies; Brookhaven National Lab: Upton, NY, USA, 1977. [Google Scholar]
- Strickland, G.; Milau, J.; Rosso, M. Some Observations on the Effects of the Volumetric Expansion of Iron-Titanium Hydride on Vessels Built at BNL; Brookhaven National Lab: Upton, NY, USA, 1977. [Google Scholar]
- Beaufrere, A.; Yeo, R.S.; Srinivasan, S.; McElroy, J.; Hart, G. Hydrogen-halogen energy storage system for electric utility applications. In Proceedings of the 12th Intersociety Energy Conversion Engineering Conference, Washington, DC, USA, 28 August–2 September 1977. [Google Scholar]
- Veziroglu, T.N. Hydrogen Energy; Veziroğlu, T.N., Ed.; Springer: Boston, MA, USA, 1975; ISBN 978-1-4684-2609-0. [Google Scholar]
- HyCARE Project. Available online: www.hycare-project.eu (accessed on 1 March 2021).
- HyCARE focuses on large-scale, solid-state hydrogen storage. Fuel Cells Bull. 2019, 2019, 11. [CrossRef]
- Dematteis, E.M.; Cuevas, F.; Latroche, M. HyCARE Deliverable D2.1—Optimized alloy composition. Zenodo 2020. [Google Scholar] [CrossRef]
- Dematteis, E.M.; Cuevas, F.; Latroche, M. HyCARE Deliverable D2.2—Selected alloy characterisation. Zenodo 2020. [Google Scholar] [CrossRef]
- Dematteis, E.M.; Cuevas, F.; Latroche, M. HyCARE Deliverable D2.3—Processing parameters. Zenodo 2020. [Google Scholar] [CrossRef]
- Dematteis, E.M.; Cuevas, F.; Latroche, M. HyCARE Deliverable D3.2—Characterisation of powder and pellets. Zenodo 2021. [Google Scholar] [CrossRef]
- McPhy INGRID Project. Available online: https://mcphy.com/en/achievements/ingrid (accessed on 15 January 2021).
- Johnson, T.A.; Jorgensen, S.W.; Dedrick, D.E. Performance of a full-scale hydrogen-storage tank based on complex hydrides. Faraday Discuss. 2011, 151, 327. [Google Scholar] [CrossRef]
- Bürger, I.; Komogowski, L.; Linder, M. Advanced reactor concept for complex hydrides: Hydrogen absorption from room temperature. Int. J. Hydrogen Energy 2014, 39, 7030–7041. [Google Scholar] [CrossRef]
- Hu, J.; Fichtner, M.; Baricco, M. Preparation of Li-Mg-N-H hydrogen storage materials for an auxiliary power unit. Int. J. Hydrogen Energy 2017, 42, 17144–17148. [Google Scholar] [CrossRef]
- Hu, J.; Pohl, A.; Wang, S.; Rothe, J.; Fichtner, M. Additive Effects of LiBH 4 and ZrCoH3 on the Hydrogen Sorption of the Li-Mg-N-H Hydrogen Storage System. J. Phys. Chem. C 2012, 116, 20246–20253. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Lv, F.; Li, H.; Mi, J.; Wang, S.; Liu, X.; Jiang, L. Improved hydrogen storage performance of the LiNH2–MgH2–LiBH4 system by addition of ZrCo hydride. Int. J. Hydrogen Energy 2010, 35, 7809–7814. [Google Scholar] [CrossRef]
- Baricco, M.; Bang, M.; Fichtner, M.; Hauback, B.; Linder, M.; Luetto, C.; Moretto, P.; Sgroi, M. SSH2S: Hydrogen storage in complex hydrides for an auxiliary power unit based on high temperature proton exchange membrane fuel cells. J. Power Source 2017, 342, 853–860. [Google Scholar] [CrossRef] [Green Version]
- Bürger, I.; Hu, J.J.; Vitillo, J.G.; Kalantzopoulos, G.N.; Deledda, S.; Fichtner, M.; Baricco, M.; Linder, M. Material properties and empirical rate equations for hydrogen sorption reactions in 2 LiNH2–1.1 MgH2–0.1 LiBH4–3 wt.% ZrCoH3. Int. J. Hydrogen Energy 2014, 39, 8283–8292. [Google Scholar] [CrossRef] [Green Version]
- Lototskyy, M.V.; Tolj, I.; Davids, M.W.; Klochko, Y.V.; Parsons, A.; Swanepoel, D.; Ehlers, R.; Louw, G.; van der Westhuizen, B.; Smith, F.; et al. Metal hydride hydrogen storage and supply systems for electric forklift with low-temperature proton exchange membrane fuel cell power module. Int. J. Hydrogen Energy 2016, 41, 13831–13842. [Google Scholar] [CrossRef]
- Standal, K.; Talevi, M.; Westskog, H. Engaging men and women in energy production in Norway and the United Kingdom: The significance of social practices and gender relations. Energy Res. Soc. Sci. 2020, 60, 101338. [Google Scholar] [CrossRef]
- Women in Green Hydrogen. Available online: https://women-in-green-hydrogen.net/ (accessed on 15 December 2020).
Composition | A | B | Compounds |
---|---|---|---|
A2B | Mg, Zr | Ni, Fe, Co | Mg2Ni, Mg2Co, Zr2Fe |
AB | Ti, Zr | Ni, Fe | TiNi, TiFe, ZrNi |
AB2 | Zr, Ti, Y, La | V, Cr, Mn, Fe, Ni | LaNi2, YNi2, YMn2, ZrCr2, ZrMn2, ZrV2, TiMn2 |
AB3 | La, Y, Mg | Ni, Co | LaCo3, YNi3, LaMn2Ni9 |
AB5 | Ca, La, Rare Earth | Ni, Cu, Co, Pt, Fe | CaNi5, LaNi5, CeNi5, LaCu5, LaPt5, LaFe5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dematteis, E.M.; Barale, J.; Corno, M.; Sciullo, A.; Baricco, M.; Rizzi, P. Solid-State Hydrogen Storage Systems and the Relevance of a Gender Perspective. Energies 2021, 14, 6158. https://doi.org/10.3390/en14196158
Dematteis EM, Barale J, Corno M, Sciullo A, Baricco M, Rizzi P. Solid-State Hydrogen Storage Systems and the Relevance of a Gender Perspective. Energies. 2021; 14(19):6158. https://doi.org/10.3390/en14196158
Chicago/Turabian StyleDematteis, Erika Michela, Jussara Barale, Marta Corno, Alessandro Sciullo, Marcello Baricco, and Paola Rizzi. 2021. "Solid-State Hydrogen Storage Systems and the Relevance of a Gender Perspective" Energies 14, no. 19: 6158. https://doi.org/10.3390/en14196158
APA StyleDematteis, E. M., Barale, J., Corno, M., Sciullo, A., Baricco, M., & Rizzi, P. (2021). Solid-State Hydrogen Storage Systems and the Relevance of a Gender Perspective. Energies, 14(19), 6158. https://doi.org/10.3390/en14196158