Controls of Radiogenic Heat and Moho Geometry on the Thermal Setting of the Marche Region (Central Italy): An Analytical 3D Geothermal Model
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
3.1. 3D Geological Model
3.2. Geothermal Model: Constraints and Assumptions
- 1
- Altitude: we took into account the topography using a 10 m cell size digital elevation model (DEM) [18];
- 2
- Variable thickness of the first layer represented the terrigenous marine succession (Late Eocene to Plio-Pleistocene) and late Quaternary continental deposits. It was based on a series of published balanced geological cross-sections [14,15,16] (Figure 3), and the geological map by Conti et al. [17] (Figure 1). We considered a constant heat production rate of the Siliciclastic succession (with a range of ) [10] and thermal conductivity (with a range of ) [8];
- 3
- The variable thickness of the second layer , representing the Umbria–Marche calcareous–marly succession from Triassic evaporites (Burano Anhydrites Formation) to the Scaglia Rossa Fm., was based on a series of published balanced geological cross-sections [14,15,16] (Figure 3), and the geological map by Conti et al. [17] (Figure 1). We considered the constant heat production rate of the Umbria–Marche calcareous–marly succession, (with a range of ) [10], and thermal conductivity, (with a range of ) [8];
- 4
- Variable thickness of the third layer represented the basement. We considered a thickness of the basement from the Moho (based on Grad et al. [12]) to the top basement constrained by the CROP-03 seismic profile [13] interpreted by Mazzoli et al. [14] (Figure 2) and a series of published balanced geological cross-sections [14,15,16] (Figure 3). We considered a basement thermal conductivity of (with a range of ) [8] and a heat production rate of the basement of [76,77], exponentially decreasing with depth. The radiogenic sources’ intensity, for any thickness , diminished downward with a logarithmic decrement , which had the dimension of depth and a characteristic value of 8 km in the region [76,78];
- 5
3.3. Analytical Procedure
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Della Vedova, B.; Marson, I.; Panza, G.F.; Suhadolc, P. Upper mantle properties of the Tuscan-Tyrrhenian area: A key for understanding the recent tectonic evolution of the Italian region. Tectonophysics 1991, 195, 311–318. [Google Scholar] [CrossRef]
- Pandeli, E.; Bertini, G.; Castellucci, P. The Tectonic Wedges Complex of the Larderello area (Southern Tuscany—Italy). Boll. Soc. Geol. Ital. 1991, 110, 621–629. [Google Scholar]
- Cameli, G.M.; Dini, I.; Liotta, D. Upper crustal structure of the Larderello geothermal field as a feature of post-collisional extensional tectonics (Southern Tuscany, Italy). Tectonophysics 1993, 224, 413–423. [Google Scholar] [CrossRef]
- Gianelli, G.; Puxeddu, M.; Batini, F.; Bertini, G.; Dini, I.; Pandeli, E.; Nicolich, R. Geological model of a young volcano-plutonic system: The geothermal region of Monte Amiata (Tuscany, Italy). Geothermics 1988, 17, 719–734. [Google Scholar] [CrossRef]
- Bertini, G.; Casini, M.; Gianelli, G.; Pandeli, E. Geological structure of a long-living geothermal system, Larderello, Italy. Terra Nova 2006, 18, 163–169. [Google Scholar] [CrossRef]
- Bertini, G.; Cappetti, G.; Fiordalisi, A. Characteristics of Geothermal Fields in Italy. Giornale di Geologia Applicata 2005, 1, 247–254. [Google Scholar] [CrossRef]
- Chicco, J.M.; Pierantoni, P.P.; Costa, M.; Invernizzi, C. Plio-Quaternary tectonics and possible implications for geothermal fluids in the Marche Region (Italy). Tectonophysics 2019, 755, 21–34. [Google Scholar] [CrossRef]
- Della Vedova, B.; Bellani, S.; Pellis, G.; Squarci, P. Deep temperatures and surface heat flow distribution. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins; Vai, F., Martini, I.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 65–76. [Google Scholar] [CrossRef]
- Santini, S.; Mazzoli, S.; Megna, A.; Candela, S. Thermal Structure of the Outer Northern Apennines along the CROP-03 Profile. JGG 2016, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Pauselli, G.; Gola, G.; Mancinelli, P.; Trumpy, E.; Saccone, M.; Manzella, A.; Ranalli, G. A new surface heat flow map of the Northern Apennines between latitudes 42.5 and 44.5 N. Geothermics 2019, 81, 39–52. [Google Scholar] [CrossRef]
- Moeck, I.S. Catalog of geothermal play types based on geologic controls. Renew. Sustain. Energy Rev. 2014, 37, 867–882. [Google Scholar] [CrossRef] [Green Version]
- Grad, M.; Tiire, T.; ESC Working Group. The Moho depth map of the European Plate. Geophys. J. Int. 2009, 176, 279–292. [Google Scholar] [CrossRef] [Green Version]
- Barchi, M.; Minelli, G.; Magnani, B.; Mazzotti, A. Line CROP 03: Northern Apennines. Mem. Descr. Carta Geol. d’Ital. 2003, LXII, 127–136. [Google Scholar]
- Mazzoli, S.; Pierantoni, P.P.; Borraccini, F.; Paltrinieri, W.; Deiana, G. Geometry, segmentation pattern and displacement variations along a major Apennine thrust zone, central Italy. J. Struct. Geol. 2005, 27, 1940–1953. [Google Scholar] [CrossRef]
- Coward, M.P.; de Donatis, M.; Mazzoli, S.; Paltrinieri, W.; Wezel, F.C. Frontal part of the northern Apennines fold and thrust belt in the Romagna-Marche area (Italy): Shallow and deep structural styles. Tectonics 1999, 18, 559–574. [Google Scholar] [CrossRef]
- Pierantoni, P.P.; Deiana, G.; Romano, A.; Paltrinieri, W.; Borraccini, F.; Mazzoli, S. Geometrie strutturali lungo la thrust zone del fronte montuoso umbro-marchigiano-sabino. Boll. Soc. Geol. Ital. 2005, 124, 395–411. [Google Scholar]
- Conti, P.; Cornamusini, G.; Carmignani, L. An outline of the geology of the Northern Apennines (Italy), with geological map at 1:250,000 scale. Ital. J. Geosci. 2020, 139, 149–194. [Google Scholar] [CrossRef]
- Tarquini, S.; Isola, I.; Favalli, M.; Battistini, A. TINITALY, a Digital Elevation Model of Italy with a 10 meters Cell Size (Version 1.0) [Data Set]; Istituto Nazionale di Geofisica e Vulcanologia: Roma, Italy, 2007. [Google Scholar] [CrossRef]
- Dewey, J.F.; Helman, H.L.; Turco, E.; Hutton, D.H.W.; Knott, S.D. Kinematics of the western Mediterranean. In Alpine Tectonics—An Overview; Coward, M.P., Dietrich, D., Eds.; Geological Society Special Publication: London, UK, 1989; Volume 45, pp. 265–283. [Google Scholar]
- Schettino, A.; Turco, E. Tectonic history of the western Tethys since the Late Triassic. GSA Bulletin 2011, 123, 89–105. [Google Scholar] [CrossRef]
- Piana Agostinetti, N.; Faccenna, C. Deep Structure of Northern Apennines Subduction Orogen (Italy) as Revealed by a Joint Interpretation of Passive and Active Seismic Data. Geophys. Res. Lett. 2018, 45, 4017–4024. [Google Scholar] [CrossRef]
- Turco, E.; Macchiavelli, C.; Penza, G.; Schettino, A.; Pierantoni, P.P. Kinematics of Deformable Blocks: Application to the Opening of the Tyrrhenian Basin and the Formation of the Apennine Chain. Geosciences 2021, 11, 177. [Google Scholar] [CrossRef]
- Mazzoli, S.; Barkham, S.; Cello, G.; Gambini, R.; Mattioni, L.; Shiner, P.; Tondi, E. Reconstruction of continental margin architecture deformed by the contraction of the Lagonegro Basin, southern Apennines, Italy. J. Geol. Soc. Lond. 2001, 158, 309–319. [Google Scholar] [CrossRef]
- Speranza, F.; Chiappini, M. Thick-skinned tectonics in the external Apennines, Italy: New evidence from magnetic anomaly analysis. J. Geophys. Res. Solid Earth 2002, 107, 2290. [Google Scholar] [CrossRef]
- Malinverno, A.; Ryan, W.B.F. Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 1986, 5, 227–245. [Google Scholar] [CrossRef]
- Le Breton, E.; Handy, M.R.; Molli, G.; Ustaszewski, K. Post-20 Ma motion of the Adriatic Plate: New constraints from surrounding orogens and implications for crust-mantle decoupling. Tectonics 2017, 36, 3135–3154. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, G.; Lister, G.S. Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides. Tectonics 2004, 23, 1–17. [Google Scholar] [CrossRef]
- Mele, G.; Sandvol, E. Deep crustal roots beneath the northern Apennines inferred from teleseismic receiver functions. Earth Planet. Sci. Lett. 2003, 211, 69–78. [Google Scholar] [CrossRef]
- Di Stefano, R.; Kissling, E.; Chiarabba, C.; Amato, A.; Giardini, D. Shallow subduction beneath Italy: Three-dimensional images of the Adriatic-European-Tyrrhenian lithosphere system based on high-quality P wave arrival times. J. Geophys. Res. Solid Earth 2009, 114, B05305. [Google Scholar] [CrossRef] [Green Version]
- Mele, G.; di Luzio, E.; di Salvo, C. Mapping Moho depth variations in central Italy from PsMoho-P delay times: Evidence of an E-W transition in the Adriatic Moho at 42°N latitude. Geochem. Geophys. 2013, 14, 10. [Google Scholar] [CrossRef] [Green Version]
- Spada, M.; Bianchi, I.; Kissling, E.; Piana Agostinetti, N.; Wiemer, S. Combining controlled-source seismology and receiver function information to derive 3-D Moho topography for Italy. Geophys. J. Int. 2013, 194, 1050–1068. [Google Scholar] [CrossRef] [Green Version]
- Di Stefano, R.; Ciaccio, M.G. The lithosphere and asthenosphere system in Italy as inferred from the Vp and Vs 3D velocity model and Moho map. J. Geodyn. 2014, 82, 16–25. [Google Scholar] [CrossRef]
- Gualtieri, L.; Serretti, P.; Morelli, A. Finite-difference P wave travel time seismic tomography of the crust and uppermost mantle in the Italian region. Geochem. Geophys. 2014, 15, 1. [Google Scholar] [CrossRef]
- Anelli, L.; Gorza, M.; Pieri, M.; Riva, M. Subsurface well data in the Northern Apennines (Italy). Mem. Soc. Geol. Ital. 1994, 48, 461–471. [Google Scholar]
- Martinis, B.; Pieri, M. Alcune nozioni sulla formazione evaporitica del Triassico Superiore nell’Italia centrale e meridionale. Mem. Soc. Geol. Ital. 1964, 4, 649–687. [Google Scholar]
- Passeri, L. L’ambiente deposizionale della formazione evaporitica nel quadro della paleogeografia del Norico tosco-umbro-marchigiano. Boll. Soc. Geol. Ital. 1975, 94, 231–268. [Google Scholar]
- Ciarapica, G.; Cirilli, S.; Passeri, L.; Trinciardi, E.; Zaninetti, L. “Anidriti di Burano” et “Formation du Monte Cetona” (nouvelle formation), biostratigraphie de deux-types du Trias supérieur dans l’Apennin septentrional. Rev. Paléobiol. 1985, 2, 341–409. [Google Scholar]
- Centamore, E.; Cantalamessa, G.; Micarelli, A.; Potetti, M.; Berti, D.; Bigi, S.; Morelli, C.; Ridolfi, M. Stratigrafia e analisi di facies dei depositi del Miocene e del Pliocene inferiore dell’avanfossa marchigiano-abruzzese e delle zone limitrofe. Studi Geologici Camerti 1991, 31, 125–131. [Google Scholar]
- Marchegiani, L.; Bertotti, G.; Cello, G.; Deiana, G.; Mazzoli, S.; Tondi, E. Pre-orogenic tectonics in the Umbria-Marche sector of the Afro-Adriatic continental margin. Tectonophysics 1999, 315, 123–143. [Google Scholar] [CrossRef]
- Centamore, E.; Chiocchini, M.; Deiana, G.; Micarelli, A.; Pieruccini, U. Contributo alla conoscenza del Giurassico dell’Appennino Umbro-Marchigiano. Studi Geologici Camerti 1971, 1, 1–81. [Google Scholar]
- Deiana, G.; Cello, G.; Chiocchini, M.; Galdenzi, S.; Mazzoli, S.; Pistolesi, E.; Potetti, M.; Romano, A.; Turco, E.; Principi, M. Tectonic evolution of the external zones of the Umbria-Marche Apennines in the Monte San Vicino-Cingoli area. Boll. Soc. Geol. Ital. 2002, 1, 229–238. [Google Scholar]
- Carmignani, L.; Kligfield, R. Crustal extension in the Northern Apennines: The transition from compression to extension in the Alpi Apuane core complex. Tectonics 1990, 9, 1275–1303. [Google Scholar] [CrossRef]
- Winter, T.; Tapponnier, P. Extension majeure post-Jurassique et ante-Miocène dans le centre de l’Italie: Donnèes microtectoniques. Bull. Soc. Geol. Fr. 1991, 162, 1095–1108. [Google Scholar]
- Bally, A.W.; Burbi, L.; Cooper, C.; Ghelardoni, R. Balanced sections and seismic reflection profiles across the Central Apennines. Mem. Soc. Geol. Ital. 1986, 35, 257–310. [Google Scholar]
- Menichetti, M.; Minelli, G. Extensional tectonics and seismogenesis in Umbria (Central Italy) The Gubbio Area. Boll. Soc. Geol. Ital. 1991, 110, 857–880. [Google Scholar]
- Calamita, F.; Cello, G.; Deiana, G. Structural styles, chronology rates of deformation, and time-space relationships in the Umbria-Marche thrust system (central Apennines, Italy). Tectonics 1994, 13, 873–881. [Google Scholar] [CrossRef]
- Ponziani, F.; de Franco, R.; Minelli, G.; Biella, G.; Federico, C.; Pialli, G. Crustal shortening and duplication of the Moho in the Northern Appennines: A view from seismic refraction data. Tectonophysics 1995, 252, 1–4. [Google Scholar] [CrossRef]
- Chiappini, M.; Meloni, A.; Boschi, E.; Faggioni, O.; Beverini, N.; Carmisciano, C.; Marson, I. Shaded relief magnetic anomaly map of Italy and surrounding marine areas. Annali di Geofisica 2000, 43, 5. [Google Scholar]
- Tozer, R.S.J.; Butler, R.W.H.; Chiappini, M.; Corrado, S.; Mazzoli, S.; Speranza, F. Testing thrust tectonic models at mountain fronts: Where has the displacement gone? J. Geol. Soc. Lond. 2006, 163, 1–14. [Google Scholar] [CrossRef]
- Bigi, S.; Casero, P.; Ciotoli, G. Seismic interpretation of the Laga basin; Constraints on the structural setting and kinematics of the Central Apennines. J. Geol. Soc. Lond. 2011, 168, 179–190. [Google Scholar] [CrossRef]
- Boschi, E.; Guidoboni, E.; Ferrari, G.; Valensise, G.; Gasperini, P. Catalogo dei forti terremoti in Italia dal 461 a.C. al 1990. ING-SGA 1997, 2, 644. [Google Scholar]
- Stucchi, M.; Rovida, A.; Gomez Capera, A.A.; Alexandre, P.; Camelbeeck, T.; Demircioglu, M.B.; Gasperini, P.; Kouskouna, V.; Musson, R.M.; Radulian, M.; et al. The SHARE European Earthquake Catalogue (SHEEC) 1000-1899. J. Seismol. 2013, 17, 523–544. [Google Scholar] [CrossRef] [Green Version]
- Blumetti, A.M. Neotectonic investigations and evidence of paleoseismicity in the epicentral area of the January-February 1703 Central Italy earthquakes. In Perspectives in Paleoseismology; Serva, L., Ed.; Bulletin of the American Association of Engineering Geologists: Boston, MA, USA, 1995; Volume 6, pp. 83–100. [Google Scholar]
- Cello, G.; Mazzoli, S.; Tondi, E.; Turco, E. Active tectonics in the central Apennines and possible implications for seismic hazard analysis in peninsular Italy. Tectonophysics 1997, 272, 43–68. [Google Scholar] [CrossRef]
- Cinti, F.R.; Cucci, L.; Marra, F.; Montone, P. The 1997 Umbria-Marche (Italy) earthquake sequence: Relationship between ground deformation and seismogenic structure. Geophys. Res. Lett. 1999, 26, 895–898. [Google Scholar] [CrossRef]
- Cello, G.; Tondi, E. The Resolution of Geological Analysis and Models for Earthquake Faulting Studies. J. Geodyn. 2000, 29, 149. [Google Scholar] [CrossRef]
- Galadini, F.; Galli, P. Active Tectonics in the Central Apennines (Italy)—Input Data for Seismic Hazard Assessment. Nat. Hazards 2000, 22, 225–268. [Google Scholar] [CrossRef]
- Tondi, E.; Cello, G. Spatiotemporal evolution of the Central Apennines fault system (Italy). J. Geodyn. 2003, 36, 113–128. [Google Scholar] [CrossRef]
- Roberts, G.P.; Michetti, A.M. Spatial and temporal variations in growth rates along active normal fault systems: An example from The Lazio–Abruzzo Apennines, central Italy. J. Struct. Geol. 2004, 26, 339–376. [Google Scholar] [CrossRef]
- Mildon, Z.K.; Roberts, G.P.; Faure Walker, J.P.; Iezzi, F. Coulomb stress transfer and fault interaction over millennia on non-planar active normal faults: The Mw 6.5–5.0 seismic sequence of 2016–2017, central Italy. Geophys. J. Int. 2017, 210, 1206–1218. [Google Scholar] [CrossRef]
- Chiaraluce, L.; di Stefano, R.; Tinti, E.; Scognamiglio, L.; Michele, M.; Casarotti, E.; Cattaneo, M.; de Gori, P.; Chiarabba, C.; Monachesi, G.; et al. The 2016 Central Italy Seismic Sequence: A First Look at the Mainshocks, Aftershocks, and Source Models. Seismol. Res. Lett. 2017, 88, 757–771. [Google Scholar] [CrossRef]
- Pucci, S.; de Martini, P.M.; Civico, R.; Villani, F.; Nappi, R.; Ricci, T.; Azzaro, R.; Brunori, C.A.; Caciagli, M.; Cinti, F.R.; et al. Coseismic ruptures of the 24 August 2016, Mw 6.0 Amatrice earthquake (central Italy). Geophys. Res. Lett. 2017, 44, 2138–2147. [Google Scholar] [CrossRef]
- Buttinelli, M.; Pezzo, G.; Valoroso, L.; de Gori, P.; Chiarabba, C. Tectonics Inversions, Fault Segmentation, and Triggerin Mechanisms in the Central Apennines Normal Fault System: Insights from High-Resolution Velocity Models. Teconics 2018, 37, 4135–4149. [Google Scholar] [CrossRef]
- Civico, R.; Pucci, S.; Villani, F.; Pizzimenti, L.; de Martini, P.M.; Nappi, R.; The Open EMERGEO Working Group. Surface ruptures following the 30 October 2016 Mw 6.5 Norcia earthquake, central Italy. J. Maps 2018, 14, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Farabollini, P.; Angelini, S.; Fazzini, M.; Lugeri, F.R.; Scalella, G.; GeomorphoLab. La sequenza sismica dell’Italia centrale del 24 agosto e successive: Contributi alla conoscenza e la banca dati degli effetti di superficie. Rend. Online Soc. Geol. Ital. 2018, 46, 9–15. [Google Scholar] [CrossRef]
- Villani, F.; Civico, R.; Pucci, S.; Pizzimenti, L.; Nappi, R.; de Martini, P.M.; The Open EMERGEO Working Group. A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy. Sci. Data 2018, 5, 180049. [Google Scholar] [CrossRef] [Green Version]
- Mazzoli, S.; Ascione, A.; Buscher, J.T.; Pignalosa, A.; Valente, E.; Zattin, M. Low-angle normal faulting and focused exhumation associated with late Pliocene change in tectonic style in the southern Apennines (Italy). Tectonics 2014, 33, 1802–1818. [Google Scholar] [CrossRef]
- Mazzoli, S.; Santini, S.; Macchiavelli, C.; Ascione, A. Active tectonics of the outer northern Apennines: Adriatic vs. Po Plain seismicity and stress fields. J. Geodyn. 2015, 84, 62–76. [Google Scholar] [CrossRef]
- Ryan, E.; Papeschi, S.; Viola, G.; Musumeci, G.; Mazzarini, F.; Torgersen, E.; Sørensen, B.E.; Ganerød, M. Syn-Orogenic Exhumation of High-P Units by Upward Extrusion in an Accretionary Wedge: Insights from the Eastern Elba Nappe Stack (Northern Apennines, Italy). Tectonics 2021, 40, e2020TC006348. [Google Scholar] [CrossRef]
- Blender. Available online: https://www.blender.org/ (accessed on 24 August 2021).
- Dovramadjiev, T. Principle of interaction between Worldwide Protein Data Bank and Blender software. In Machines, Technologies, Materials, Proceedings of the XIII International Scientific Congress Winter Session, Borovets, Bulgaria, 16–19 March 2016; Scientific-Technical Union of Mechanical Engineering: Sofia, Bulgaria, 2016; Volume 1, pp. 65–66. [Google Scholar]
- Lanciani, M. Museo 3D: Ricostruzione e modellazione virtuale volta ad indagare il tema neogreco-neopompeiano durante l’esposizione internazionale a Roma del 1883. Archeomatica 2019, 10, 3. [Google Scholar]
- Florinsky, I.V.; Filippov, S.V. Three-dimensional desktop morphometric models for the Artic Ocean floor. In Proceedings of the 29th International Cartographic Conference, Tokyo, Japan, 15–20 July 2019. [Google Scholar]
- Basilici, M.; Mazzoli, S.; Megna, A.; Santini, S.; Tavani, S. 3-D Geothermal Model of the Lurestan Sector of the Zagros Thrust Belt, Iran. Energies 2020, 13, 2140. [Google Scholar] [CrossRef]
- Basilici, M. Thermal Structure and Active Tectonics of the Frontal Zone of the Zagros Fold and Thrust Belt in Western Lurestan, Iran: New Insights from 3-D Geothermal Analytical Modelling and 2-D Structural Finite Element Modelling. Ph.D. Thesis, Università degli Studi di Urbino Carlo Bo, Urbino, Italy, 2021. [Google Scholar]
- Dragoni, M.; Doglioni, C.; Mongelli, F.; Zito, G. Evaluation of Stresses in Two Geodynamically Different Areas: Stable Foreland and Extensional Backarc. PAGEOPH 1996, 146, 319–341. [Google Scholar] [CrossRef]
- Springer, M. Interpretation of heat-flow density in the Central Andes. Tectonophysics 1999, 306, 377–395. [Google Scholar] [CrossRef]
- Santini, S.; Basilici, M.; Invernizzi, C.; Mazzoli, S.; Megna, A.; Pierantoni, P.P.; Spina, V.; Teloni, S. Thermal Structure of the Northern Outer Albanides and Adjacent Adriatic Crustal Sector, and Implications for Geothermal Energy Systems. Energies 2020, 13, 6028. [Google Scholar] [CrossRef]
- Cermak, V. Lithospheric thermal regimes in Europe. Phys. Earth Planet. Inter. 1993, 79, 179–193. [Google Scholar] [CrossRef]
- Mele, G. Mapping the Moho across the Northern and Central Apennine chain and Eastern Sicily the teleseismic receiver functions method. In The Earth Expansion Evidence—A Challenge for Geology, Geophysics and Astronomy, Proceedings of the 37th International School of Geophysics, Erice, Italy, 4–9 October 2011; Scalera, G., Boschi, E., Cwojdzinski, S., Eds.; INGV: Rome, Italy, 2011. [Google Scholar]
- Basilici, M.; Mazzoli, S.; Megna, A.; Santini, S.; Tavani, S. Geothermal Model of the Shallow Crustal Structure across the “Mountain Front Fault” in Western Lurestan, Zagros Thrust Belt, Iran. Geosciences 2019, 9, 301. [Google Scholar] [CrossRef] [Green Version]
- Verdoja, M.; Chiozzi, P.; Gola, G. Unravelling the terrestrial heat flow of a young orogen: The example of the northern Apennines. Geothermics 2021, 90, 101993. [Google Scholar] [CrossRef]
0 ≤ z ≤ hCS | hCS < z ≤ hC | hC < z ≤ h | |
---|---|---|---|
calcareous cover thickness | |
whole cover thickness | |
basement thickness | |
whole crustal thickness | |
depth scale | |
siliciclastic cover radioactivity produced heat | |
calcareous cover radioactivity produced heat | |
basement radioactivity produced heat | |
siliciclastic cover thermal conductivity | |
calcareous cover thermal conductivity | |
basement thermal conductivity | |
surface heat flow density | |
mantle heat flow density | |
surface temperature | |
siliciclastic cover heat temperature | |
calcareous cover heat temperature | |
basement heat temperature | |
siliciclastic cover thickness |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santini, S.; Basilici, M.; Invernizzi, C.; Jablonska, D.; Mazzoli, S.; Megna, A.; Pierantoni, P.P. Controls of Radiogenic Heat and Moho Geometry on the Thermal Setting of the Marche Region (Central Italy): An Analytical 3D Geothermal Model. Energies 2021, 14, 6511. https://doi.org/10.3390/en14206511
Santini S, Basilici M, Invernizzi C, Jablonska D, Mazzoli S, Megna A, Pierantoni PP. Controls of Radiogenic Heat and Moho Geometry on the Thermal Setting of the Marche Region (Central Italy): An Analytical 3D Geothermal Model. Energies. 2021; 14(20):6511. https://doi.org/10.3390/en14206511
Chicago/Turabian StyleSantini, Stefano, Matteo Basilici, Chiara Invernizzi, Danica Jablonska, Stefano Mazzoli, Antonella Megna, and Pietro Paolo Pierantoni. 2021. "Controls of Radiogenic Heat and Moho Geometry on the Thermal Setting of the Marche Region (Central Italy): An Analytical 3D Geothermal Model" Energies 14, no. 20: 6511. https://doi.org/10.3390/en14206511
APA StyleSantini, S., Basilici, M., Invernizzi, C., Jablonska, D., Mazzoli, S., Megna, A., & Pierantoni, P. P. (2021). Controls of Radiogenic Heat and Moho Geometry on the Thermal Setting of the Marche Region (Central Italy): An Analytical 3D Geothermal Model. Energies, 14(20), 6511. https://doi.org/10.3390/en14206511