Optimal Sizing of PV/Wind/Battery Hybrid Microgrids Considering Lifetime of Battery Banks
Abstract
:1. Introduction
1.1. Background
1.2. Literature Reviews
1.3. Aim and Contributions
1.4. Paper Organization
2. Generation Unit Models
2.1. PV Generation Model
2.2. Wind Generation Model
2.3. ESS Lifetime Model
3. Problem Formulation
3.1. Multi-Objective Scheduling Model
3.1.1. Economic Objective
3.1.2. Power Supply Reliability Objective
3.2. Constraints
3.2.1. Power Balance Constraint
3.2.2. PV Power Constraint
3.2.3. Wind Power Constraint
3.2.4. ESS Constraint
3.2.5. Control Variables
4. Optimization Algorithm
- (1)
- Input the data, including load demands, the output power of wind turbines, and a PV panel.
- (2)
- Set MOPSO parameters.
- (3)
- Generate the population of control variables (NPV and Nbattery).
- (4)
- Calculate the multi-objective function f1 and f2 for each population using (10)–(14).
- (5)
- Search the initial nondominated solutions set from the population set generated in Step 3.
- (6)
- Select the leader by performing a roulette wheel selection.
- (7)
- Update the NPV, Nbattery.
- (8)
- Mutate and update the nondominated solutions.
- (9)
- Should the iteration procedure be stopped? If the iteration procedure is continued, go to Step 6; if the iteration procedure is stopped, the Pareto solution set is obtained.
5. Case Study
5.1. Comparison Analysis
5.2. Effect of Lifetime for ESS
5.3. Effect of Upper Limit of SOC for ESS
5.4. Effect of ESS
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kapsali, M.; Kaldellis, J.K. Combining hydro and variable wind power generation by means of pumped-storage under economically viable terms. Appl. Energy 2010, 87, 3475–3485. [Google Scholar] [CrossRef]
- Wu, Z.; Tazvinga, H.; Xia, X. Demand side management of photovoltaic-battery hybrid system. Appl. Energy 2015, 148, 294–304. [Google Scholar] [CrossRef] [Green Version]
- Zong, W.G. Size optimization for a hybrid photovoltaic–wind energy system. Int. J. Electr. Power Energy Syst. 2012, 42, 448–451. [Google Scholar]
- Ogunjuyigbe, A.S.O.; Ayodele, T.R.; Akinola, O.A. Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building. Appl. Energy 2016, 171, 153–171. [Google Scholar] [CrossRef]
- Ju, L.; Tan, Z.; Yuan, J.; Tan, Q.; Li, H.; Dong, F. A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response. Appl. Energy 2016, 171, 184–199. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Wang, X.; Wu, X.; Guo, J. Economic scheduling model of microgrid considering the lifetime of batteries. Iet Gener. Transm. Distrib. 2017, 11, 759–767. [Google Scholar] [CrossRef]
- Lee, T.Y.; Chen, C.L. Wind-photovoltaic capacity coordination for a time-of-use rate industrial user. Iet Renew. Power Gener. 2009, 3, 150–152. [Google Scholar] [CrossRef]
- Hong, Y.Y.; Lian, R.C. Optimal Sizing of Hybrid Wind/PV/Diesel Generation in a Stand-Alone Power System Using Markov-Based Genetic Algorithm. IEEE Trans. Power Deliv. 2012, 27, 640–647. [Google Scholar] [CrossRef]
- Belfkira, R.; Lu, Z.; Barakat, G. Optimal sizing study of hybrid wind/PV/diesel power generation unit. Sol. Energy 2011, 85, 100–110. [Google Scholar] [CrossRef]
- Bass, R.; Carr, J.; Aguilar, J.; Whitener, K. Determining the Power and Energy Capacities of a Battery Energy Storage System to Accommodate High Photovoltaic Penetration on a Distribution Feeder. IEEE Power Energy Technol. Syst. J. 2016, 3, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Mosadeghy, M.; Yan, R.; Saha, T.K. A Time-Dependent Approach to Evaluate Capacity Value of Wind and Solar PV Generation. IEEE Trans. Sustain. Energy 2015, 7, 129–138. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, W.; Lou, C. Optimal design and techno-economic analysis of a hybrid solar-wind power generation system. Appl. Energy 2009, 86, 163–169. [Google Scholar] [CrossRef]
- Yang, D.; Jiang, C.; Cai, G.; Huang, N. Optimal sizing of a wind/solar/battery/diesel hybrid microgrid based on typical scenarios considering meteorological variability. IET Renew. Power Gener. 2019, 13, 1446–1455. [Google Scholar] [CrossRef]
- Kaabeche, A.; Belhamel, M.; Ibtiouen, R. Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system. Energy 2011, 36, 1214–1222. [Google Scholar] [CrossRef]
- Sujil, A.; Agarwal, S.K.; Kumar, R. Centralized multi-agent implementation for securing critical loads in PV based microgrid. J. Mod. Power Syst. Clean Energy 2014, 2, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Hemmati, R.; Saboori, H. Stochastic optimal battery storage sizing and scheduling in home energy management systems equipped with solar photovoltaic panels. Energy Build. 2017, 152, 290–300. [Google Scholar] [CrossRef]
- Kaur, R.; Krishnasamy, V.; Kandasamy, N.K. Optimal sizing of wind–PV-based DC microgrid for telecom power supply in remote areas. Iet Renew. Power Gener. 2018, 12, 859–866. [Google Scholar] [CrossRef]
- Maleki, A.; Pour Fa Yaz, F. Optimal sizing of autonomous hybrid photovoltaic/wind/battery power system with LPSP technology by using evolutionary algorithms. Sol. Energy 2015, 115, 471–483. [Google Scholar] [CrossRef]
- Behzadi Forough, A.; Roshandel, R. Multi objective receding horizon optimization for optimal scheduling of hybrid renewable energy system. Energy Build. 2017, 150, 583–597. [Google Scholar] [CrossRef]
- Atwa, E.S.; El-Saadany, E.F. Optimal Allocation of ESS in Distribution Systems With a High Penetration of Wind Energy. IEEE Trans. Power Syst. 2010, 25, 1815–1822. [Google Scholar] [CrossRef]
- Chen, C.; Duan, S.; Cai, T.; Liu, B.; Hu, G. Smart energy management system for optimal microgrid economic operation. Renew. Power Gener. Iet 2011, 5, 258–267. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, X.; Chen, J.; Wang, C.; Guo, L. Operation Optimization of Standalone Microgrids Considering Lifetime Characteristics of Battery Energy Storage System. IEEE Trans. Sustain. Energy 2013, 4, 934–943. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, Y.; Jiang, T. Planning-operation Co-optimization Model of Active Distribution Network with Energy Storage Considering the Lifetime of Batteries. IEEE Access 2018, 6, 59822–59832. [Google Scholar] [CrossRef]
- Sobu, A.; Wu, G. Optimal operation planning method for isolated micro grid considering uncertainties of renewable power generations and load demand. In Proceedings of the Innovative Smart Grid Technologies-Asia, Tianjin, China, 21–24 May 2012. [Google Scholar]
- Lokeshgupta, B.; Sivasubramani, S. Multi-objective dynamic economic and emission dispatch with demand side management. Int. J. Electr. Power Energy Syst. 2018, 97, 334–343. [Google Scholar] [CrossRef]
- Jenkins, D.P.; Fletcher, J.; Kane, D. Lifetime prediction and sizing of lead-acid batteries for microgeneration storage applications. IET Renew. Power Gener. 2007, 2, 191–200. [Google Scholar] [CrossRef]
- Akram, U.; Khalid, M.; Shafiq, S. Optimal sizing of a wind/solar/battery hybrid grid-connected microgrid system. IET Renew. Power Gener. 2017, 12, 72–80. [Google Scholar] [CrossRef]
Item | Value |
---|---|
Rated capacity (kWh) | 0.6 |
Rated power (kW) | 0.15 |
Charge efficiency | 1 |
Discharge efficiency | 1 |
Lower limit SOC | 0.1 |
Upper limit SOC | 0.9 |
Initial SOC value | 0.5 |
kmainten (USD/N) | 10 |
CE (USD/kWh/y) | 13,500 |
CP (USD/kW/y) | 10 |
NC | 390 |
Lifetime (year) | 5 |
Maximum discharging power/kW | 0.15 |
Maximum charging power/kW | 0.15 |
Annual interest rate % | 6.7 |
PV Generator | Wind Generator | |
---|---|---|
Operation and maintenance cost coefficient USD/kW/year | 16 | 33 |
Investment cost coefficient USD/kW | 2025 | 2346 |
Lifetime (year) | 20 | 20 |
Rated power (kW) | 0.2 | 60 |
Annual interest rate % | 6.7 | 6.7 |
NPV | Nbattery | Charge and Discharge Power of ESS (kW) | Cess.DP (USD) | Cess.mainten (USD) | Cess (USD) | CPV (USD) | Cwind (USD) | Total Annualized Cost (USD) | LPSP (%) | |
---|---|---|---|---|---|---|---|---|---|---|
Case 1 | 282 | 79 | 30.900 | 3691 | 474 | 4165 | 11,433 | 14,959 | 30,557 | 1.28 |
Case 2 | 284 | 93 | 32.197 | 3849 | 558 | 4406 | 11,514 | 14,959 | 30,879 | 1.12 |
Case 3 | 318 | 82 | 24.485 | 3069 | 492 | 3561 | 12,892 | 14,959 | 31,412 | 0.97 |
Case 4 | 361 | — | — | — | — | 14,636 | 14,959 | 29,594 | 2.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Yang, N.-C.; Liu, J.-H. Optimal Sizing of PV/Wind/Battery Hybrid Microgrids Considering Lifetime of Battery Banks. Energies 2021, 14, 6655. https://doi.org/10.3390/en14206655
Zhang N, Yang N-C, Liu J-H. Optimal Sizing of PV/Wind/Battery Hybrid Microgrids Considering Lifetime of Battery Banks. Energies. 2021; 14(20):6655. https://doi.org/10.3390/en14206655
Chicago/Turabian StyleZhang, Ning, Nien-Che Yang, and Jian-Hong Liu. 2021. "Optimal Sizing of PV/Wind/Battery Hybrid Microgrids Considering Lifetime of Battery Banks" Energies 14, no. 20: 6655. https://doi.org/10.3390/en14206655
APA StyleZhang, N., Yang, N.-C., & Liu, J.-H. (2021). Optimal Sizing of PV/Wind/Battery Hybrid Microgrids Considering Lifetime of Battery Banks. Energies, 14(20), 6655. https://doi.org/10.3390/en14206655