Molecular Dynamics Study on Water Flow Behaviour inside Planar Nanochannel Using Different Temperature Control Strategies
Abstract
:1. Introduction
2. Simulation Method
2.1. Poiseuille Flow Simulation Details
- First equilibration stage: In this stage, the simulations began from the initial configuration and continued for 0.4 ns, during which the system reached a thermal equilibrium state at 303 K temperature. Water and solid walls were simulated in canonical (NVT) ensemble.
- The second equilibration stage: After equilibrium state was reached, the flow inducing force in the x-direction was applied to each water molecule, and the simulation continued for another 0.4 ns. During this stage, the moving average of the mean flow velocity in time reached constant value (with slight fluctuations), and the system reached steady flow state. The temperature of the water during the flow (in current and the following simulations stages) was maintained at 303 K according to the temperature control strategy used in the simulation.
- The MD run: After the second equilibration run, the MD run stage was performed for 12 ns with force still applied to the water molecules to maintain the steady flow state in the system. During this stage, the atomistic data was sampled for statistical analysis of the system during steady flow.
2.2. Temperature Control Strategies
3. Results and Discussion
3.1. Simulation Temperature
3.2. Water Density Profiles
3.3. Flow Profiles and Slip Velocity
4. Conclusions
- the water temperature during steady flow state in simulations where the temperature is controlled through the channel walls might be slightly higher than the targeted simulation temperature due to the finite thermal conductivity in bulk water and liquid–solid interface and, consequently, this could change the temperature-dependent dynamic properties of water in the channel;
- the peaks in the water density profiles show the water layering effect near the channel walls, which is caused by correlated effects of long-range molecular attraction and short-range repulsion between copper and oxygen atoms. Furthermore, as the water cannot occupy the whole volume between solid walls, the channel boundaries are considered to be at density peak locations;
- the temperature control strategies considered in simulations had no effect on the shape of the water flow profile, and flow behaviour in the channel is well described by the Navier–Stokes equation solution with added slip velocity. Meanwhile, the slip velocity occurring at the boundaries of the channel is linearly dependent on the magnitude of flow inducing force in both frozen wall and dynamic wall simulations. However, the slip velocity is considerably greater in simulations, when the wall dynamics are solved in contrast to the frozen wall simulations, which is caused by the different collision mechanisms of water molecules with the copper atoms at the interface when the exchange of momentum is considered and the slightly different simulation temperatures.
Author Contributions
Funding
Conflicts of Interest
References
- Abgrall, P.; Nguyen, N.T. Nanofluidic devices and their applications. Anal. Chem. 2008, 80, 2326–2341. [Google Scholar] [CrossRef]
- Murshed, S.; de Castro, N. A critical review of traditional and emerging techniques and fluids for electronics cooling. Renew. Sustain. Energy Rev. 2017, 78, 821–833. [Google Scholar] [CrossRef]
- Wang, C.; Kazoe, Y.; Morikawa, K.; Shimizu, H.; Pihosh, Y.; Mawatari, K.; Kitamori, T. Micro heat pipe device utilizing extended nanofluidics. RSC Adv. 2017, 7, 50591–50597. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Wang, R.; Yang, P.; Ling, W.; Zeng, M.; Qian, J.; Wang, Q. Numerical Investigation on Two-Phase Flow Heat Transfer Parallel Channels. Energies 2021, 14, 4408. [Google Scholar] [CrossRef]
- Liu, B.; Wu, R.; Baimova, J.A.; Wu, H.; Law, A.W.K.; Dmitriev, S.V.; Zhou, K. Molecular dynamics study of pressure-driven water transport through graphene bilayers. Phys. Chem. Chem. Phys. 2016, 18, 1886–1896. [Google Scholar] [CrossRef]
- Weerakoon-Ratnayake, K.M.; O’Neil, C.E.; Uba, F.I.; Soper, S.A. Thermoplastic nanofluidic devices for biomedical applications. Lab. Chip 2017, 17, 362–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, C.; Wang, W.; Xie, Q. Review Article: Fabrication of Nanofluidic Devices. Biomicrofluidics 2013, 7, 026501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bocquet, L.; Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 2010, 39, 1073–1095. [Google Scholar] [CrossRef] [Green Version]
- Karniadakis, G.; Beskok, A.; Aluru, N. Microflows and Nanoflows: Fundamentals and Simulation; Springer Science: New York, NY, USA, 2005; ISBN 0387971734. [Google Scholar]
- Vo, T.Q.; Kim, B. Transport phenomena of water in molecular fluidic channels. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, J.S.; Dyre, J.C.; Daivis, P.; Todd, B.D.; Bruus, H. Continuum Nanofluidics. Langmuir 2015, 31, 13275–13289. [Google Scholar] [CrossRef] [Green Version]
- Tuckerman, M.E.; Martyna, G.J. Understanding Modern Molecular Dynamics: Techniques and Applications. J. Phys. Chem. B 2000, 104, 159–178. [Google Scholar] [CrossRef]
- Noorian, H.; Toghraie, D.; Azimian, A.R. The effects of surface roughness geometry of flow undergoing Poiseuille flow by molecular dynamics simulation. Heat Mass Transf. Stoffuebertragung 2014, 50, 95–104. [Google Scholar] [CrossRef]
- Noorian, H.; Toghraie, D.; Azimian, A.R. Molecular dynamics simulation of Poiseuille flow in a rough nano channel with checker surface roughnesses geometry. Heat Mass Transf. Stoffuebertragung 2014, 50, 105–113. [Google Scholar] [CrossRef]
- Yan, S.R.; Toghraie, D.; Hekmatifar, M.; Miansari, M.; Rostami, S. Molecular dynamics simulation of Water-Copper nanofluid flow in a three-dimensional nanochannel with different types of surface roughness geometry for energy economic management. J. Mol. Liq. 2020, 311, 113222. [Google Scholar] [CrossRef]
- Alipour, P.; Toghraie, D.; Karimipour, A.; Hajian, M. Modeling different structures in perturbed Poiseuille flow in a nanochannel by using of molecular dynamics simulation: Study the equilibrium. Phys. A Stat. Mech. Its Appl. 2019, 515, 13–30. [Google Scholar] [CrossRef]
- Alipour, P.; Toghraie, D.; Karimipour, A.; Hajian, M. Molecular dynamics simulation of fluid flow passing through a nanochannel: Effects of geometric shape of roughnesses. J. Mol. Liq. 2019, 275, 192–203. [Google Scholar] [CrossRef]
- Lin, X.; Bao, F.B.; Gao, X.; Chen, J. Molecular dynamics simulation of nanoscale channel flows with rough wall using the virtual-wall model. J. Nanotechnol. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.C. Effects of surface roughness and interface wettability on nanoscale flow in a nanochannel. Microfluid. Nanofluid. 2006, 2, 501–511. [Google Scholar] [CrossRef]
- Song, F.Q.; Wang, J.D. Investigation of influence of wettability on poiseuille flow via molecular dynamics simulation. J. Hydrodyn. 2010, 22, 513–517. [Google Scholar] [CrossRef]
- Nagayama, G.; Cheng, P. Effects of interface wettability on microscale flow by molecular dynamics simulation. Int. J. Heat Mass Transf. 2004, 47, 501–513. [Google Scholar] [CrossRef]
- Chen, W.; Foster, A.S.; Alava, M.J.; Laurson, L. Stick-slip control in nanoscale boundary lubrication by surface wettability. Phys. Rev. Lett. 2015, 114, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, S.; Wang, J.; Liu, X.; Jiao, Y. The effects of surface topography and non-uniform wettability on fluid flow and interface slip in rough nanochannel. J. Mol. Liq. 2020, 301, 112460. [Google Scholar] [CrossRef]
- Chen, X.; Cao, G.; Han, A.; Punyamurtula, V.K.; Liu, L.; Culligan, P.J.; Kim, T.; Qiao, Y. Nanoscale fluid transport: Size and rate effects. Nano Lett. 2008, 8, 2988–2992. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, F. Modeling the effects of material chemistry on water flow enhancement in nanotube membranes. MRS Bull. 2017, 42, 289–293. [Google Scholar] [CrossRef]
- Kucaba-Pietal, A.; Walenta, Z.; Peradzyński, Z. Molecular dynamics computer simulation of water flows in nanochannels. Bull. Polish Acad. Sci. Tech. Sci. 2009, 57, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Soong, C.Y.; Yen, T.H.; Tzeng, P.Y. Molecular dynamics simulation of nanochannel flows with effects of wall lattice-fluid interactions. Phys. Rev. E 2007, 76, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Morciano, M.; Fasano, M.; Nold, A.; Braga, C.; Yatsyshin, P.; Sibley, D.N.; Goddard, B.D.; Chiavazzo, E.; Asinari, P.; Kalliadasis, S. Nonequilibrium molecular dynamics simulations of nanoconfined fluids at solid-liquid interfaces. J. Chem. Phys. 2017, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghorbanian, J.; Beskok, A. Scale effects in nanochannel liquid flows. Microfluid. Nanofluid. 2016, 20, 1–11. [Google Scholar] [CrossRef]
- Yen, T.H. Effects of wettability and interfacial nanobubbles on flow through structured nanochannels: An investigation of molecular dynamics. Mol. Phys. 2015, 113, 3783–3795. [Google Scholar] [CrossRef]
- Rezaei, M.; Azimian, A.R.; Semiromi, D.T. The surface charge density effect on the electro-osmotic flow in a nanochannel: A molecular dynamics study. Heat Mass Transf. Stoffuebertragung 2015, 51, 661–670. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Ye, H. Molecular dynamics-based prediction of boundary slip of fluids in nanochannels. Microfluid. Nanofluid. 2012, 12, 107–115. [Google Scholar] [CrossRef]
- Marable, D.C.; Shin, S.; Yousefzadi Nobakht, A. Investigation into the microscopic mechanisms influencing convective heat transfer of water flow in graphene nanochannels. Int. J. Heat Mass Transf. 2017, 109, 28–39. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Chen, Z.; Li, J.; Li, X.; Xu, J.; Dong, X. Wettability effect on nanoconfined water flow. Proc. Natl. Acad. Sci. USA 2017, 114, 3358–3363. [Google Scholar] [CrossRef] [Green Version]
- Shaat, M. Viscosity of Water Interfaces with Hydrophobic Nanopores: Application to Water Flow in Carbon Nanotubes. Langmuir 2017, 33, 12814–12819. [Google Scholar] [CrossRef]
- Qin, X.; Yuan, Q.; Zhao, Y.; Xie, S.; Liu, Z. Measurement of the rate of water translocation through carbon nanotubes. Nano Lett. 2011, 11, 2173–2177. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, H.; Ye, H. Pressure-driven flow in parallel-plate nanochannels. Appl. Phys. Lett. 2009, 95, 10–13. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Zheng, Y.; Ye, H. Corrected second-order slip boundary condition for fluid flows in nanochannels. Phys. Rev. E 2010, 81, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Priezjev, N.V. Rate-dependent slip boundary conditions for simple fluids. Phys. Rev. E 2007, 75, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suk, M.E.; Aluru, N.R. Modeling Water Flow Through Carbon Nanotube Membranes with Entrance/Exit Effects. Nanoscale Microscale Thermophys. Eng. 2017, 21, 247–262. [Google Scholar] [CrossRef]
- Li, W.; Wang, W.; Zheng, X.; Dong, Z.; Yan, Y.; Zhang, J. Molecular dynamics simulations of water flow enhancement in carbon nanochannels. Comput. Mater. Sci. 2017, 136, 60–66. [Google Scholar] [CrossRef]
- Falk, K.; Sedlmeier, F.; Joly, L.; Netz, R.R.; Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction. Nano Lett. 2010, 10, 4067–4073. [Google Scholar] [CrossRef]
- Bagheri Motlagh, M.; Kalteh, M. Simulating the convective heat transfer of nanofluid Poiseuille flow in a nanochannel by molecular dynamics method. Int. Commun. Heat Mass Transf. 2020, 111, 104478. [Google Scholar] [CrossRef]
- Bagheri Motlagh, M.; Kalteh, M. Molecular dynamics simulation of nanofluid convective heat transfer in a nanochannel: Effect of nanoparticles shape, aggregation and wall roughness. J. Mol. Liq. 2020, 318. [Google Scholar] [CrossRef]
- Jiang, Y.; Dehghan, S.; Karimipour, A.; Toghraie, D.; Li, Z.; Tlili, I. Effect of copper nanoparticles on thermal behavior of water flow in a zig-zag nanochannel using molecular dynamics simulation. Int. Commun. Heat Mass Transf. 2020, 116. [Google Scholar] [CrossRef]
- Bantan, R.A.R.; Abu-Hamdeh, N.H.; Nusier, O.K.; Karimipour, A. The molecular dynamics study of aluminum nanoparticles effect on the atomic behavior of argon atoms inside zigzag nanochannel. J. Mol. Liq. 2021, 331. [Google Scholar] [CrossRef]
- Asgari, A.; Nguyen, Q.; Karimipour, A.; Bach, Q.V.; Hekmatifar, M.; Sabetvand, R. Investigation of additives nanoparticles and sphere barriers effects on the fluid flow inside a nanochannel impressed by an extrinsic electric field: A molecular dynamics simulation. J. Mol. Liq. 2020, 318. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Yuan, L.S.; Liu, Z.; Cheng, G.G.; Ye, H.F.; Ding, J.N. Flow behaviors of nanofluids in parallel-plate nanochannels influenced by the dynamics of nanoparticles. Comput. Mater. Sci. 2018, 145, 184–190. [Google Scholar] [CrossRef]
- Philippe, H. Hünenberger Thermostat Algorithms for Molecular Dynamics Simulations. In Advanced Computer Simulation Approaches for Soft Matter Sciences I; Springer: Berlin, Germany, 2005. [Google Scholar]
- Yong, X.; Zhang, L.T. Thermostats and thermostat strategies for molecular dynamics simulations of nanofluidics. J. Chem. Phys. 2013, 138. [Google Scholar] [CrossRef]
- Basconi, J.E.; Shirts, M.R. Effects of temperature control algorithms on transport properties and kinetics in molecular dynamics simulations. J. Chem. Theory Comput. 2013, 9, 2887–2899. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.H.; Beskok, A.; Cagin, T. Thermal interactions in nanoscale fluid flow: Molecular dynamics simulations with solid-liquid interfaces. Microfluid. Nanofluid. 2008, 5, 551–559. [Google Scholar] [CrossRef]
- Bernardi, S.; Todd, B.D.; Searles, D.J. Thermostating highly confined fluids. J. Chem. Phys. 2010, 132. [Google Scholar] [CrossRef] [Green Version]
- Thomas, M.; Corry, B. Thermostat choice significantly influences water flow rates in molecular dynamics studies of carbon nanotubes. Microfluid. Nanofluid. 2015, 18, 41–47. [Google Scholar] [CrossRef]
- Sam, A.; Kannam, S.K.; Hartkamp, R.; Sathian, S.P. Water flow in carbon nanotubes: The effect of tube flexibility and thermostat. J. Chem. Phys. 2017, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markesteijn, A.P.; Hartkamp, R.; Luding, S.; Westerweel, J. A comparison of the value of viscosity for several water models using Poiseuille flow in a nano-channel. J. Chem. Phys. 2012, 136, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271. [Google Scholar] [CrossRef]
- Skarbalius, G.; Džiugys, A.; Misiulis, E.; Navakas, R. Molecular dynamics study on water evaporation/condensation parameters. Microfluid. Nanofluid. 2021, 25, 1–13. [Google Scholar] [CrossRef]
- Etesami, S.A.; Asadi, E. Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method. J. Phys. Chem. Solids 2018, 112, 61–72. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Maknickas, A.; Skarbalius, G.; Dziugys, A.; Misiulis, E. Nano-scale water Poiseuille flow: MD computational experiment. AIP Conf. Proc. 2020, 2239. [Google Scholar] [CrossRef]
- Wang, S.; Javadpour, F.; Feng, Q. Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale. Fuel 2016, 181. [Google Scholar] [CrossRef]
- Abramovich, G.N. Applied Gas Dynamics, 3rd ed.; Ft. Belvoir Defense Technical Information Center: Fort Belvoir, VA, USA, 1973.
FW Simulations | DW Simulations | |||
---|---|---|---|---|
1.77 | 0 | 303.00 | 302.85 | 303.19 |
2.65 | 0 | 303.00 | 302.87 | 304.06 |
3.53 | 0 | 303.00 | 302.84 | 304.99 |
Coeffiicients | FW Simulations | DW Simulations |
---|---|---|
2.79 | 3.72 | |
0.060 | −1.147 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skarbalius, G.; Džiugys, A.; Misiulis, E.; Navakas, R.; Vilkinis, P.; Šereika, J.; Pedišius, N. Molecular Dynamics Study on Water Flow Behaviour inside Planar Nanochannel Using Different Temperature Control Strategies. Energies 2021, 14, 6843. https://doi.org/10.3390/en14206843
Skarbalius G, Džiugys A, Misiulis E, Navakas R, Vilkinis P, Šereika J, Pedišius N. Molecular Dynamics Study on Water Flow Behaviour inside Planar Nanochannel Using Different Temperature Control Strategies. Energies. 2021; 14(20):6843. https://doi.org/10.3390/en14206843
Chicago/Turabian StyleSkarbalius, Gediminas, Algis Džiugys, Edgaras Misiulis, Robertas Navakas, Paulius Vilkinis, Justas Šereika, and Nerijus Pedišius. 2021. "Molecular Dynamics Study on Water Flow Behaviour inside Planar Nanochannel Using Different Temperature Control Strategies" Energies 14, no. 20: 6843. https://doi.org/10.3390/en14206843
APA StyleSkarbalius, G., Džiugys, A., Misiulis, E., Navakas, R., Vilkinis, P., Šereika, J., & Pedišius, N. (2021). Molecular Dynamics Study on Water Flow Behaviour inside Planar Nanochannel Using Different Temperature Control Strategies. Energies, 14(20), 6843. https://doi.org/10.3390/en14206843