Research on Early Warning for Gas Risks at a Working Face Based on Association Rule Mining
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apriori Algorithm Based on Weight Optimization
2.2. K-Means Algorithm for Outlier Detection Based on Optimal Selection of the Cluster Centre Initial Value
2.2.1. K-Means Clustering Algorithm
2.2.2. Improved K-Means Clustering Algorithm
2.3. Multifactor Coupling Relationship Analysis and Early Warning Model of Gas in the Working Face
3. Experimental Data Processing
3.1. Data Sources
3.2. K-Means Outlier Detection Based on Initial Cluster Centre Optimization
3.2.1. Correlation Analysis of Preorder and Postorder Gas Data
3.2.2. Cluster Analysis and Abnormal Point Detection of Gas Concentration Data
4. Discussion
- (1)
- Data entry. The binary table of abnormal data includes binary information of the working face, upper corner, mining coalbed and support pressure data.
- (2)
- Establish the association rules between the data in the training set to obtain the weight.
- (3)
- Based on the weighted Apriori algorithm, the correlation of the entire dataset is analyzed, and the association rules are obtained.
- (4)
- Set different confidence levels, obtain different levels of strong association rules and set the warning level.
- (5)
- Analyze the dataset according to the strong association rules of different early warning levels to achieve hierarchical early warning.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Yang, K.; Qin, R.; Yu, Y. Technical system and prospect of safe and efficient mining of coal and gas outburst coal seams. Coal Sci. Technol. 2020, 48, 167–173. [Google Scholar]
- Wang, G.; Yang, S.; Zhang, S.; Liu, X. Status and prospect of coal mine gas drainage and utilization technology in Xinjiang coal mining area. Coal Sci. Technol. 2020, 48, 154–161. [Google Scholar]
- Wang, K.; Zhang, J.; Cai, B.; Yu, S. Emission factors of fugitive methane from underground coal mines in China: Estimation and uncertainty. Appl. Energy 2019, 250, 273–282. [Google Scholar] [CrossRef]
- Szlazak, N.; Swolkien, J. Possibilities of capturing methane from hard coal deposits lying at great depths. Energies 2021, 14, 3542. [Google Scholar] [CrossRef]
- Kursunoglu, N.; Onder, M. Application of structural equation modeling to evaluate coal and gas outbursts. Tunn. Undergr. Space Technol. 2019, 88, 63–72. [Google Scholar] [CrossRef]
- Borowski, M.; Zyczkowski, P.; Cheng, J.W.; Luczak, R.; Zwolinska, K. The combustion of methane from hard coal seams in gas engines as a technology leading to reducing greenhouse gas emissions—electricity prediction using ANN. Energies 2020, 13, 4429. [Google Scholar] [CrossRef]
- Yang, Y.K.; Du, Q.Y.; Wang, C.L.; Bai, Y. Research on the method of methane emission prediction using improved grey radial basis function neural network model. Energies 2020, 13, 6112. [Google Scholar] [CrossRef]
- Song, Y.; Yang, S.; Hu, X.; Song, W.; Sang, N.; Cai, J.; Xu, Q. Prediction of gas and coal spontaneous combustion coexisting disaster through the chaotic characteristic analysis of gas indexes in goaf gas extraction. Process. Saf. Environ. Prot. 2019, 129, 8–16. [Google Scholar] [CrossRef]
- Hu, Q.; Peng, S.; Xu, J.; Zhang, L.; Liu, D. Application of gray target models in the prediction of coal and gas outburst: The case of Jinzhushan coal mine in China. Int. J. Saf. Secur. Eng. 2015, 5, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Yan-Ju, L.; Hong-Lie, Z. An improved coal and gas outburst prediction algorithm based on BP neural network. Int. J. Control. Autom. 2015, 8, 169–176. [Google Scholar] [CrossRef]
- Kumari, K.; Dey, P.; Kumar, C.; Pandit, D.; Mishra, S.S.; Kisku, V.; Chaulya, S.K.; Ray, S.K.; Prasad, G.M. UMAP and LSTM based fire status and explosibility prediction for sealed-off area in underground coal mine. Process. Saf. Environ. Prot. 2021, 146, 837–852. [Google Scholar] [CrossRef]
- Slezak, D.; Grzegorowski, M.; Janusz, A.; Kozielski, M.; Nguyen, S.H.; Sikora, M.; Stawicki, S.; Wrobel, L. A framework for learning and embedding multi-sensor forecasting models into a decision support system: A case study of methane concentration in coal mines. Inf. Sci. 2018, 451, 112–133. [Google Scholar] [CrossRef]
- Borowski, M.; Zyczkowski, P.; Zwolinska, K.; Luczak, R.; Kuczera, Z. The security of energy supply from internal combustion engines using coal mine methane—Forecasting of the electrical energy generation. Energies 2021, 14, 3049. [Google Scholar] [CrossRef]
- Jo, B.W.; Khan, R.M.A. An Event reporting and early-warning safety system based on the internet of things for underground coal mines: A case study. Appl. Sci. 2017, 7, 925. [Google Scholar] [CrossRef] [Green Version]
- Mbedzi, M.D.; van der Poll, H.M.; van der Poll, J.A. An information framework for facilitating cost saving of environmental impacts in the coal mining industry in South Africa. Sustainability 2018, 10, 1690. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Wang, G.; Chen, J.; Liu, Z.; Fan, C.; Cheng, Q. Prediction of gas emission from floor coalbed of steeply inclined and extremely thick coal seams mined using the horizontal sublevel top-coal caving method. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 42, 1–17. [Google Scholar] [CrossRef]
- Jo, B.W.; Khan, R.M.A.; Lee, Y.S.; Jo, J.H.; Saleem, N. A fiber bragg grating-based condition monitoring and early damage detection system for the structural safety of underground coal mines using the internet of things. J. Sens. 2018, 2018, 9301873. [Google Scholar] [CrossRef]
- Cheng, L.; Shugang, L.; Shouguo, Y. Gas emission quantity prediction and drainage technology of steeply inclined and extremely thick coal seams. Int. J. Min. Sci. Technol. 2018, 28, 415–422. [Google Scholar] [CrossRef]
- Kurlenya, M.V.; Tsupov, M.N.; Savchenko, A.V. Influence of the bachatsky earthquake on methane emission in roadways in coal mines. J. Min. Sci. 2019, 55, 695–700. [Google Scholar] [CrossRef]
- Wang, L.; Meng, J.; Xu, P.; Peng, K. Mining temporal association rules with frequent itemsets tree. Appl. Soft Comput. 2018, 62, 817–829. [Google Scholar] [CrossRef]
- Tang, M.; Zheng, P.; Zheng, C.; Hu, Z.; Wang, J.; Dai, G. Numerical analysis and prediction of coal mine methane drainage based on gas–solid coupling model. Teh. Vjesn. 2019, 26, 752–761. [Google Scholar]
- Askari, S.; Montazerin, N.; Zarandi, M.; Hakimi, E. Generalized entropy based possibilistic fuzzy C-Means for clustering noisy data and its convergence proof. Neurocomputing 2017, 219, 186–202. [Google Scholar] [CrossRef]
- Tang, Y.; Hu, X.; Pedrycz, W.; Song, X. Possibilistic fuzzy clustering with high-density viewpoint. Neurocomputing 2019, 329, 407–423. [Google Scholar] [CrossRef]
- Tang, Y.; Ren, F.; Pedrycz, W. Fuzzy C-means clustering through SSIM and patch for image segmentation. Appl. Soft Comput. 2020, 87, 105928. [Google Scholar] [CrossRef]
- Jonek-Kowalska, I. Method for assessing the development of underground hard coal mines on a regional basis: The concept of measurement and research results. Energies 2018, 11, 1370. [Google Scholar] [CrossRef] [Green Version]
- Rauch, J.; Šimůnek, M. Apriori and GUHA—Comparing two approaches to data mining with association rules. Intell. Data Anal. 2017, 21, 981–1013. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, M.; Smarandache, F.; Chang, V. Neutrosophic association rule mining algorithm for big data analysis. Symmetry 2018, 10, 106. [Google Scholar] [CrossRef] [Green Version]
- Su, T.; Xu, H.; Zhou, X. Particle swarm optimization-based association rule mining in big data environment. IEEE Access 2019, 7, 161008–161016. [Google Scholar] [CrossRef]
- Singh, S.; Garg, R.; Mishra, P. Performance optimization of MapReduce-based Apriori algorithm on Hadoop cluster. Comput. Electr. Eng. 2018, 67, 348–364. [Google Scholar] [CrossRef] [Green Version]
- Borah, A.; Nath, B. Rare association rule mining from incremental databases. Pattern Anal. Appl. 2020, 23, 113–134. [Google Scholar] [CrossRef]
- Ji, Q.; Zhang, S. Research on sensor network optimization based on improved Apriori algorithm. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 258. [Google Scholar] [CrossRef]
- Guo, X.; Wang, D.Z.; Wu, J.; Sun, H.; Zhou, L. Mining commuting behavior of urban rail transit network by using association rules. Phys. A Stat. Mech. Its Appl. 2020, 559, 125094. [Google Scholar] [CrossRef]
- Kiran, R.U.; Re, P.K. An improved multiple minimum support based approach to mine rare association rules. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence and Data Mining, Nashville, TN, USA, 30 March–2 April 2009; pp. 340–347. [Google Scholar]
- Xin, C.; Guo, Y.; Lu, X. Association rule mining algorithm using improving treap with interpolation algorithm in large database. Appl. Res. Comput. 2021, 38, 88–92. [Google Scholar]
- Wang, M.Y.; Luciani, L.L.; Noh, H.; Mochan, E.; Shoemaker, J.E. TREAP: A new topological approach to drug target inference. Biophys. J. 2020, 119, 2290–2298. [Google Scholar] [CrossRef] [PubMed]
- Ansari, E.; Sadreddini, M.; Mirsadeghi, S.; Keshtkaran, M.; Wallace, R. TFI-Apriori: Using new encoding to optimize the apriori algorithm. Intell. Data Anal. 2018, 22, 807–827. [Google Scholar] [CrossRef]
- Cai, Q.R. Cause analysis of traffic accidents on urban roads based on an improved association rule mining algorithm. IEEE Access 2020, 8, 75607–75615. [Google Scholar] [CrossRef]
- Sakai, H.; Nakata, M.; Watada, J. NIS-Apriori-based rule generation with three-way decisions and its application system in SQL. Inf. Sci. 2020, 507, 755–771. [Google Scholar] [CrossRef]
- Cózar, J.; Gámez, J.A. Learning compact zero-order TSK fuzzy rule-based systems for high-dimensional problems using an Apriori+ local search approach. Inf. Sci. 2018, 433, 1–16. [Google Scholar] [CrossRef]
- Sinaga, K.P.; Yang, M.-S. Unsupervised K-means clustering algorithm. IEEE Access 2020, 8, 80716–80727. [Google Scholar] [CrossRef]
Model | Measuring Range | Measurement Error | Response Time |
---|---|---|---|
KG9001C | (0–100)% CH4 | (0–1)% CH4 ≤ 0.1% CH4 | ≤30 s |
(1–2)% CH4 ≤ 0.2% CH4 | |||
(2–4)% CH4 ≤ 0.3% CH4 | |||
(4–10)% CH4 ± 1% CH4 | |||
(10–100)% CH4 ± 10% CH4 |
Data Collection Time/s | Working Face/% | Mining Coalbed/% | Upper Corner/% | Working Face Pressure/MPa |
---|---|---|---|---|
3 May 2020 0:00:05 | 0.15 | 1.53 | 0.16 | 24 |
3 May 2020 0:00:10 | 0.15 | 1.55 | 0.16 | 24 |
3 May 2020 0:00:15 | 0.13 | 1.44 | 0.14 | 24 |
3 May 2020 0:00:20 | 0.17 | 1.45 | 0.16 | 24 |
3 May 2020 0:00:25 | 0.21 | 1.48 | 0.18 | 24 |
3 May 2020 0:00:30 | 0.19 | 1.5 | 0.16 | 24 |
3 May 2020 0:00:35 | 0.17 | 1.49 | 0.18 | 24 |
3 May 2020 0:00:40 | 0.15 | 1.44 | 0.2 | 24 |
3 May 2020 0:00:45 | 0.17 | 1.41 | 0.18 | 24 |
3 May 2020 0:00:50 | 0.11 | 1.48 | 0.16 | 24 |
3 May 2020 0:00:55 | 0.15 | 1.53 | 0.18 | 24 |
3 May 2020 0:00:60 | 0.17 | 1.51 | 0.18 | 24 |
Dataset Characteristics | UXpre% | WXpre% | CXpre% | UXpost% | WXpost% | CXpost% |
---|---|---|---|---|---|---|
Max | 0.84 | 0.9 | 8.46 | 1.63 | 1.97 | 3.49 |
Minimum | 0.02 | 0.08 | 0.52 | 0.05 | 0.09 | 1.15 |
Average value | 0.13 | 0.20 | 1.72 | 0.15 | 0.21 | 1.71 |
Unoptimized Initial Cluster Centers | Optimized Initial Cluster Centers | ||||
---|---|---|---|---|---|
Cluster Category | Initial Cluster Center | Final Cluster Center | Cluster Category | Initial Cluster Center | Final Cluster Center |
1 | 3.12 | 4.24 | 1 | 6.23 | 6.84 |
2 | 0.59 | 0.62 | 2 | 0.82 | 0.90 |
3 | 0.32 | 0.36 | 3 | 0.71 | 0.75 |
Working Face | Mining Coalbed | Upper Corner | Working Face Pressure | Recorded Risks Situations |
---|---|---|---|---|
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 1 | 1 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 1 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 1 | 1 |
ID | Con | Re | Sup% | Cof% | Lift | ID | Con | Re | Sup% | Cof% | Lift | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | (C,W) | → | D | 0.32 | 1 | 1.46 | 7 | (C,P,U,W) | → | D | 0.25 | 1 | 1.34 |
2 | (P,W) | → | D | 0.30 | 1 | 1.43 | 8 | (P,U) | → | D | 0.34 | 0.98 | 1.38 |
3 | (C,P,W) | → | D | 0.29 | 1 | 1.39 | 9 | (C,P) | → | D | 0.29 | 0.98 | 1.35 |
4 | (C,U,W) | → | D | 0.26 | 1 | 1.36 | 10 | (C,U) | → | D | 0.28 | 0.97 | 1.24 |
5 | (P,U,W) | → | D | 0.25 | 1 | 1.34 | 11 | (U,W) | → | D | 0.26 | 0.97 | 1.21 |
6 | (C,P,U) | → | D | 0.25 | 1 | 1.34 | 12 | (W,P) | → | D | 0.34 | 0.75 | 1.13 |
ID | Con | Re | Sup% | Cof% | Lift | ID | Con | Re | Sup% | Cof% | Lift | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | (C,P,U) | → | W | 0.25 | 1.00 | 1.35 | 9 | (C,U) | → | P | 0.25 | 0.86 | 1.15 |
2 | (P,U,W) | → | C | 0.24 | 1.00 | 1.32 | 10 | (C,P,W) | → | U | 0.25 | 0.86 | 1.15 |
3 | (C,P) | → | W | 0.29 | 0.97 | 1.26 | 11 | (C,P) | → | U | 0.25 | 0.84 | 1.11 |
4 | (P,W) | → | C | 0.29 | 0.95 | 1.24 | 12 | (C,W) | → | U | 0.26 | 0.83 | 1.12 |
5 | (C,U,W) | → | P | 0.25 | 0.94 | 1.27 | 13 | (P,W) | → | U | 0.25 | 0.82 | 1.08 |
6 | (C,U) | → | W | 0.26 | 0.92 | 1.25 | 14 | (U) | → | P | 0.34 | 0.74 | 1.12 |
7 | (U,W) | → | P | 0.25 | 0.91 | 1.20 | 15 | (P,U) | → | W | 0.25 | 0.72 | 1.06 |
8 | (C,W) | → | P | 0.29 | 0.90 | 1.23 | 16 | (C) | → | W | 0.32 | 0.71 | 1.09 |
Grade | Parameter Setting | Con | Re | Sup% | Cof% | Lift | |
---|---|---|---|---|---|---|---|
I | Sup ≥ 0.2 Cof ≥ 0.99 | (C,W) | → | D | 0.32 | 1 | 1.46 |
(P,W) | → | D | 0.30 | 1 | 1.43 | ||
(C,P,W) | → | D | 0.29 | 1 | 1.39 | ||
(C,U,W) | → | D | 0.26 | 1 | 1.36 | ||
(P,U,W) | → | D | 0.25 | 1 | 1.34 | ||
(C,P,U) | → | D | 0.25 | 1 | 1.34 | ||
(C,P,U,W) | → | D | 0.25 | 1 | 1.34 | ||
II | Sup ≥ 0.2 0.99 > Cof ≥ 0.7 | (P,U) | → | D | 0.34 | 0.98 | 1.38 |
(C,P) | → | D | 0.29 | 0.98 | 1.35 | ||
(C,U) | → | D | 0.28 | 0.97 | 1.24 | ||
(U,W) | → | D | 0.26 | 0.97 | 1.21 | ||
(W,P) | → | D | 0.34 | 0.75 | 1.13 | ||
III | Sup ≥ 0.2 0.7 > Cof ≥ 0.5 | (W) | → | D | 0.33 | 0.68 | 1.08 |
(C) | → | D | 0.32 | 0.69 | 1.09 | ||
IV | Sup ≥ 0.2 0.5 > Cof ≥ 0.4 | (P) | → | D | 0.39 | 0.51 | 1.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Fan, J.; Yan, Z.; Li, S.; Wang, Y. Research on Early Warning for Gas Risks at a Working Face Based on Association Rule Mining. Energies 2021, 14, 6889. https://doi.org/10.3390/en14216889
Huang Y, Fan J, Yan Z, Li S, Wang Y. Research on Early Warning for Gas Risks at a Working Face Based on Association Rule Mining. Energies. 2021; 14(21):6889. https://doi.org/10.3390/en14216889
Chicago/Turabian StyleHuang, Yuxin, Jingdao Fan, Zhenguo Yan, Shugang Li, and Yanping Wang. 2021. "Research on Early Warning for Gas Risks at a Working Face Based on Association Rule Mining" Energies 14, no. 21: 6889. https://doi.org/10.3390/en14216889
APA StyleHuang, Y., Fan, J., Yan, Z., Li, S., & Wang, Y. (2021). Research on Early Warning for Gas Risks at a Working Face Based on Association Rule Mining. Energies, 14(21), 6889. https://doi.org/10.3390/en14216889