Underfloor Heating Using Room Air Conditioners with Air Source Heat Pump in a Foundation Insulation House
Abstract
:1. Introduction
2. Methods
2.1. Target Detached House
2.2. Room Air Conditioner
2.2.1. Coefficient of Performance
2.2.2. Overview of Air Source Heat Pump
2.3. Indoor Environment Survey
2.3.1. Indoor Thermal Environment Measurement
2.3.2. Questionnaire
2.4. Crawl Space Environment Survey
2.5. Insulation Placement Analysis
3. Results and Discussion
3.1. Evaluation of Room Air Conditioner
3.1.1. Operation Performance
3.1.2. The Influence of Defrost Operation
3.2. Crawl Space Air Temperature Distribution
3.3. Indoor Thermal Environment Survey
3.3.1. The Indoor Thermal Environment
3.3.2. Subjective Survey
3.4. Heat Loss from the Crawl Space
3.4.1. Measurement of Heat Loss
3.4.2. Calculating Heat Loss by Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ANSI/ASHRAE Standard. 55-2017 Thermal Environmental Conditions for Human Occupancy; American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc.: Atlanta, GA, USA, 2017. [Google Scholar]
- ISO 7730. Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; International Organization for Standardization: Geneva, Switzerland, 2005. [Google Scholar]
- Housing Energy Saving Technology Training Text Design/Construction; Reiwa 2nd Revised Building Energy Saving Law Briefing Session and Housing Energy Saving Technology Class (Online Course). Available online: https://www.shoene.org/d_book/ (accessed on 20 October 2021). (In Japanese).
- Hwang, Y.-J.; Jeong, J.-W. Energy Saving Potential of Radiant Floor Heating Assisted by an Air Source Heat Pump in Residential Buildings. Energies 2021, 14, 1321. [Google Scholar] [CrossRef]
- Kropas, T.; Streckienė, G.; Bielskus, J. Experimental Investigation of Frost Formation Influence on an Air Source Heat Pump Evaporator. Energies 2021, 14, 5737. [Google Scholar] [CrossRef]
- Asama, H.; Akabayashi, S.-I.; Sakaguchi, J. Study on the performance of household air-conditioner in the practical use: Results of COP on an air-conditioner at 13 detached houses. J. Environ. Eng. (Trans. AIJ) 2007, 72, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Feng, Y.; Zhu, J.; Li, L.; Guo, Q.; Lu, W. Performances of air source heat pump system for a kind of mal-defrost phenomenon appearing in moderate climate conditions. Appl. Energy 2013, 112, 1138–1145. [Google Scholar] [CrossRef]
- Guo, X.-M.; Chen, Y.-G.; Wang, W.-H.; Chen, C.-Z. Experimental study on frost growth and dynamic performance of air source heat pump system. Appl. Therm. Eng. 2008, 28, 2267–2278. [Google Scholar] [CrossRef]
- Bauman, F.S. Underfloor Air Distribution (UFAD) Design Guide; American Society of Heating, Refrigerating and Air-Conditioning Engineering: Atlanta, GA, USA, 2003. [Google Scholar]
- Bauman, F.; Webster, T. Outlook for underfloor air distribution. ASHRAE J. 2001, 43, 18–27. [Google Scholar]
- Fukao, H.; Ichihara, M.; Oguro, M.; Tanabe, S. Comparison of Underfloor vs. Overhead Air Distribution Systems in an Office Building. ASHRAE Trans. 2002, 108, 64–76. [Google Scholar]
- Sekhar, S.; Ching, C. Indoor air quality and thermal comfort studies of an under-floor air-conditioning system in the tropics. Energy Build. 2002, 34, 431–444. [Google Scholar] [CrossRef]
- Bos, M.A.; Love, J.A. A field study of thermal comfort with underfloor air distribution. Build. Environ. 2013, 69, 233–240. [Google Scholar] [CrossRef]
- Faulkner, D.; Fisk, W.; Sullivan, D. Indoor airflow and pollutant removal in a room with floor-based task ventilation: Results of additional experiments. Build. Environ. 1995, 30, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Webster, T.; Bauman, F.; Reese, J. Underfloor air distribution: Thermal stratification. ASHRAE J. 2002, 44, 28–36. [Google Scholar]
- Giles, J.R. Energy Comparison of Under Floor Air Distribution Heating Ventilation and Air Conditioning Systems in Office Buildings; Iowa State University: Ames, IA, USA, 2008. [Google Scholar] [CrossRef]
- Inatomi, T.A.; Abe, V.; Leite, B.C. Energy consumption of underfloor air distribution systems: A literature overviews. In Proceedings of the 23rd Conference on Passive and Low Energy Architecture, Geneva, Switzerland, 6–8 September 2006. [Google Scholar]
- Alajmi, A.F.; Abou-Ziyan, H.Z.; El-Amer, W. Energy analysis of under-floor air distribution (UFAD) system: An office building case study. Energy Convers. Manag. 2013, 73, 78–85. [Google Scholar] [CrossRef]
- Kong, Q.; Yu, B. Numerical study on temperature stratification in a room with underfloor air distribution system. Energy Build. 2008, 40, 495–502. [Google Scholar] [CrossRef]
- Lee, K.; Xue, G.; Jiang, Z.; Chen, Q. Thermal environment in indoor spaces with under-floor air distribution systems: 1. Impact of design parameters (1522-RP). HVAC R Res. 2012, 18, 1182–1191. [Google Scholar]
- Lin, Y.J.P.; Linden, P.F. A model for an underfloor air distribution system. Energy Build. 2005, 37, 399–409. [Google Scholar] [CrossRef]
- Tsai, T.-Y.; Liou, R.-H.; Lin, Y.-J.P. An Experimental Study on the Indoor Environment Using UnderFloor Air Distribution System. Procedia Eng. 2014, 79, 263–266. [Google Scholar] [CrossRef] [Green Version]
- Schiavon, S.; Lee, K.H.; Bauman, F.; Webster, T. Influence of raised floor on zone design cooling load in commercial buildings. Energy Build. 2010, 42, 1182–1191. [Google Scholar] [CrossRef] [Green Version]
- Bauman, F.S.; Jin, H.; Webster, T. Heat transfer pathway in underfloor air distribution (UFAD) systems. ASHRAE Trans. 2006, 112, 2. [Google Scholar]
- Schiavon, S.; Lee, K.H.; Bauman, F.; Webster, T. Simplified calculation method for design cooling loads in underfloor air distribution (UFAD) systems. Energy Build. 2011, 43, 517–528. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.H.; Schiavon, S.; Bauman, F.; Webster, T. Thermal decay in underfloor air distribution (UFAD) systems: Fundamentals and influence on system performance. Appl. Energy 2012, 91, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.H.; Seo, B.; Hong, S.H.; Yeon, S.H.; Lee, K.H. Influences of different operational configurations on combined effects of room air stratification and thermal decay in UFAD system. Energy Build. 2018, 176, 262–274. [Google Scholar] [CrossRef]
- Liu, Q.; Ryu, Y.; Kagawa, H.; Kojima, T. Influence of crawlspace design and utilization on thermal environment in detached house with insulated foundation for moderate and humid climate region. J. Environ. Eng. (Trans. AIJ) 2006, 71, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Rantala, J. A new method to estimate the periodic temperature distribution underneath a slab-on-ground structure. Build. Environ. 2005, 40, 832–840. [Google Scholar] [CrossRef]
- Krarti, M. Steady-State heat transfer from horizontally insulated slabs. Int. J. Heat Mass Transf. 1993, 36, 2135–2145. [Google Scholar] [CrossRef]
- Krarti, M. Time-Varying heat transfer from horizontally insulated slab-on-grade floors. Build. Environ. 1994, 29, 63–71. [Google Scholar] [CrossRef]
- Krarti, M. Steady-State heat transfer from slab-on-grade floors with vertical insulation. Int. J. Heat Mass Transf. 1993, 36, 2147–2155. [Google Scholar] [CrossRef]
- Krarti, M. Time-Varying heat transfer from slab-on-grade floors with vertical insulation. Build. Environ. 1994, 29, 55–61. [Google Scholar] [CrossRef]
- Hagentoft, C.-E. Steady-State heat loss for an edge-insulated slab: Part I. Build. Environ. 2002, 37, 19–25. [Google Scholar] [CrossRef]
- Iwamae, A.; Nagai, H.; Suzuki, H.; Kitatani, Y. A quantitative analysis on heat loss around the basement of insulated house. J. Environ. Eng. (Trans. AIJ) 2003, 68, 37–42. [Google Scholar] [CrossRef]
- Seduikyte, L.; Stasiulienė, L.; Prasauskas, T.; Martuzevičius, D.; Černeckienė, J.; Ždankus, T.; Dobravalskis, M.; Fokaides, P. Field Measurements and Numerical Simulation for the Definition of the Thermal Stratification and Ventilation Performance in a Mechanically Ventilated Sports Hall. Energies 2019, 12, 2243. [Google Scholar] [CrossRef] [Green Version]
- Iguchi, M.; Hachisu, H.; Sakamoto, Y. Verification of air distribution, thermal environment and energy consumption in an existing detached house—A methodology for designing the air-conditioning system using floor-chambers in a residence Part 4. J. Environ. Eng. AIJ 2016, 81, 1137–1145. [Google Scholar] [CrossRef] [Green Version]
- Iguchi, M.; Hachisu, H.; Sakamoto, Y. Comparison between thermal simulations and measurements of an existing detached house—A methodology for designing the air-conditioning system using floor-chambers in a residence Part 5. J. Environ. Eng. AIJ 2019, 84, 947–954. [Google Scholar] [CrossRef]
- Kishi, T.; Lee, S.; Asano, Y. Thermal environment by adjusting air flow rate for blown fan of central air-conditioning system for residential building. J. Environ. Eng. AIJ 2020, 85, 37–44. [Google Scholar] [CrossRef]
- ISO 10551. Ergonomics of the Thermal Environment—Assessment of the Influence of the Thermal Environment Using Subjective Judgement Scales; International Organization for Standardization: Geneva, Switzerland, 1995. [Google Scholar]
- Standard for Measurement of Psychological and Physiological Responses to Thermal environments, Architectural Institute of Japan Environmental Standards; Architectural Institute of Japan: Tokyo, Japan, 2014.
- ASHRAE Fundamental 2013 CAPTER9 Thermal Comfort. American Society of Heating; Refrigerating and Air Conditioning Engineers, Inc.: Atlanta, GA, USA, 2013. [Google Scholar]
- Benton, C.C.; Bauman, F.S.; Fountain, M.E. A field measurement system for the study of thermal comfort. ASHRAE Trans. 1990, 96, 1. [Google Scholar]
- Tanaka, S.; Takeda, H.; Iwata, T.; Tsuchiya, T.; Terao, M.; Akimoto, T. Architectural Environmental Engineering, 4th ed.; Inoue Shoin Co., Ltd.: Tokyo, Japan, 2014. (In Japanese) [Google Scholar]
- Nakaya, T. Basis of the Architectural Environmental Engineering—Heat Transfer of the Building Wall Affected by The Sun; Pubfull: Tokyo, Japan, 2018. (In Japanese) [Google Scholar]
- Yamaguchi, T.; Katsura, T.; Nakamura, Y. Establishment of a measuring technique for calorie output from variable refrigerant flow air conditioning system by applying refrigerant enthalpy method and verification. J. Environ. Eng. (Trans. AIJ) 2015, 80, 1063–1071. [Google Scholar] [CrossRef] [Green Version]
- Kocyigit, N.; Bulgurcu, H.; Lin, C.-X. Fault diagnosis of a vapor compression refrigeration system with hermetic reciprocating compressor based on p-h diagram. Int. J. Refrig. 2014, 45, 44–54. [Google Scholar] [CrossRef]
- Oseland, N.A. A comparison of the predicted and reported thermal sensation vote in homes during winter and summe. Energy Build. 1994, 21, 45–54. [Google Scholar] [CrossRef]
- Wang, Z. A field study of the thermal environment in residential buildings in Harbin. ASHRAE Trans. 2003, 109, 350–355. [Google Scholar]
- Wang, Z. A field study of the thermal comfort in residential buildings in Harbin. Build. Environ. 2006, 41, 1034–1039. [Google Scholar] [CrossRef]
- Tobita, K.; Nakaya, T.; Matsubara, N.; Kurazumi, Y.; Shimada, R. Calculation of neutral temperature and acceptable range by the field study of houses in Kansai area, Japan, in winter. J. Environ. Eng. (Trans. AIJ) 2007, 72, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Rijal, H.B.; Yoshida, H.; Umemiya, N. Seasonal and regional differences in neutral temperatures houses. Build. Environ. 2010, 45, 2743–2753. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Zhao, J.; He, Y. Thermal comfort for naturally ventilated residential buildings in Harbin. Energy Build. 2010, 42, 2406–2415. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Zhao, J.; He, Y.; Li, A. Thermal responses to different residential environments in Harbin. Build. Environ. 2011, 46, 2170–2178. [Google Scholar] [CrossRef]
- Liu, H.; Wu, Y.; Li, B.; Cheng, Y.; Yao, R. Seasonal variation of thermal sensations in residential buildings in the Hot Summer and Cold Winter zone of China. Energy Build. 2017, 140, 9–18. [Google Scholar] [CrossRef]
- Jiao, Y.; Yu, H.; Wang, T.; An, Y.; Yu, Y. Thermal comfort and adaptation of the elderly in free-running environments in Shanghai, China. Build. Environ. 2017, 118, 259–272. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, H.; Jiao, Y.; Wei, Q.; Chu, X. A field study of thermal sensation and neutrality in free-running aged-care homes in Shanghai. Energy Build. 2018, 158, 1523–1532. [Google Scholar] [CrossRef]
- Gautam, B.; Rijal, H.B.; Shukuya, M.; Imagawa, H. A field investigation on the wintry thermal comfort and clothing adjustment of residents in traditional Nepalese houses. J. Build. Eng. 2019, 26, 100886. [Google Scholar] [CrossRef]
- Xiong, Y.; Liu, J.; Kim, J. Understanding differences in thermal comfort between urban and rural residents in hot summer and cold winter climate. Build. Environ. 2019, 165, 106393. [Google Scholar] [CrossRef]
- Jiao, Y.; Yu, H.; Yu, Y.; Wang, Z.; Wei, Q. Adaptive thermal comfort models for homes for older people in Shanghai, China. Energy Build. 2020, 215, 109918. [Google Scholar] [CrossRef]
- Jin, Y.; Carpenter, M.; Weller, R.B.; Tabor, D.; Payne, S.R. The effect of indoor thermal and humidity condition on the oldest-old people’s comfort and skin condition in winter. Build. Environ. 2020, 174, 106790. [Google Scholar] [CrossRef]
- Shao, T.; Jin, H. A field investigation on the winter thermal comfort of residents in rural houses at different latitudes of northeast severe cold regions, China. J. Build. Eng. 2020, 32, 101476. [Google Scholar] [CrossRef]
Construction | Two-Story Wooden Structure | |
Total floor area | 132.25 m2 | |
First-floor area | 75.56 m2 | |
Second-floor area | 56.69 m2 | |
Insulation | Wall | Glass wool (t = 100 mm) Phenol foam (t = 30 mm) |
Roof | Glass wool (t = 300 mm) | |
Foundation | Polystyrene foam (t = 100 mm) | |
Window | Low-E triple glass (Filled with Argon gas) | |
Sash | Resin sash | |
UA value | 0.29 W·m2/K |
Air Conditioner | Heating capacity (I) | 2800 W (600~6600) |
Power consumption (II) | 540 W (105~1980) | |
Heating capacity (low temperature) (III) | 4800 W | |
Power consumption (low temperature) (IV) | 1750 W | |
Heating capacity (extremely low temperature) | 2800 W | |
Annual performance factor (APF) | 5.9 | |
Ventilation System | Supply air | 145 m3/h |
Exhaust air | 154 m3/h | |
Power consumption | 32.5 W |
Measurement Item | Equipment | Resolution | Accuracy | Manufacture |
---|---|---|---|---|
Air temperature | Thermo recorder RTR-503 | 0.1 °C | ±0.3 °C | T&D corporation |
Globe temperature | Thermo recorder TR-71wf | |||
Relative humidity | Thermo recorder RTR-503 | 1% | 5% | |
Air velocity | Climomaster 6501 Climomaster 6541-21 | 0.01 m/s | ±0.02 m/s | Nihon Kanomax corporation |
Heat flux | Heat flux sensor (50 mm × 50 mm) | - | - | Etodenki corporation |
10s | 20s | 30s | 40s | 50s | 60s | Total | |
---|---|---|---|---|---|---|---|
Male | 3 | 6 | 20 | 6 | 5 | 5 | 45 |
Female | 0 | 13 | 27 | 8 | 8 | 6 | 62 |
Thermal Sensation | Thermal Sensation (Ankle Level) | Affective Evaluation | Thermal Preference | Personal Acceptability |
---|---|---|---|---|
+3: hot | +3: hot | 0: comfortable | +1: warmer | 0: acceptable |
+2: warm | +2: warm | −1: slightly uncomfortable | 0: no change | −1: not acceptable |
+1: slightly warm | +1: slightly warm | −2: uncomfortable | −1: cooler | |
0: neutral | 0: neutral | −3: very uncomfortable | ||
−1: slightly cool | −1: slightly cool | −4: extremely uncomfortable | ||
−2: cool | −2: cool | |||
−3: cold | −3: cold |
Option | Icl(clo) | Option | Icl(clo) | Option | Icl(clo) |
---|---|---|---|---|---|
T-shirt | 0.08 | Knee sock (thick) | 0.06 | Walking shorts | 0.08 |
Long underwear top | 0.20 | Panty hose | 0.02 | Straight trousers (thin) | 0.15 |
Long underwear bottoms | 0.15 | Sleeveless, scoop-neck blouse | 0.12 | Straight trousers (thick) | 0.24 |
Skirt (thin) | 0.14 | Short-sleeved, dress shirt | 0.19 | Sweatpants | 0.28 |
Skirt (thick) | 0.23 | Short-sleeved, knit sport shirt | 0.17 | Overalls | 0.30 |
Sleeveless, scoop neck (thin) | 0.23 | Long-sleeved, dress shirt | 0.25 | Sleeveless vest (thin) | 0.10 |
Sleeveless, scoop neck (thick) | 0.27 | Long-sleeved, flannel shirt | 0.34 | Sleeveless vest (thick) | 0.17 |
Short-sleeved shirtdress (thin) | 0.29 | Long-sleeved, sweatshirt | 0.34 | Single-breasted (thin) | 0.36 |
Long-sleeved shirtdress (thin) | 0.33 | Sleeveless vest (thin) | 0.13 | Single breasted (thick) | 0.44 |
Long-sleeved shirtdress (thick) | 0.47 | Sleeveless vest (thick) | 0.22 | Double-breasted (thin) | 0.42 |
Ankle-length athletic socks | 0.02 | Long-sleeved (thin) | 0.25 | Double-breasted (thick) | 0.48 |
Calf-length socks | 0.03 | Long-sleeved (thick) | 0.36 | (Free description) |
Density (kg/m3) | Specific Heat (J/kg·K) | Thermal Conductivity (W/m·K) | |
---|---|---|---|
Insulation | 28.6 | 1470 | 0.025 |
Concrete | 2220.0 | 850 | 1.600 |
Sandy soil | 1507.0 | 850 | 0.488 |
Cohesive soil | 1361.0 | 850 | 0.350 |
Distance from the Foundation Wall (mm) | 0–455 | 455–910 | 910–1365 | 1365–1820 | 1820–2275 | 2275–2730 | 2730–3185 | 3185–3640 |
---|---|---|---|---|---|---|---|---|
Convection heat transfer coefficient (W/m2·K) | 6.38 | 5.99 | 5.99 | 7.94 | 7.16 | 5.6 | 6.77 | 5.99 |
Radiant heat transfer coefficient (W/m2·K) | 5.04 | 5.04 | 5.04 | 5.04 | 5.11 | 5.11 | 5.11 | 5.11 |
Heat transfer coefficient (W/m2·K) | 11.4 | 11.0 | 11.0 | 13.0 | 12.3 | 10.7 | 11.9 | 11.1 |
Surface temperature (°C) | Sine wave Minimum 22 °C (1 August), Maximum 32 °C (1 February) | Sine wave Minimum 22 °C (1 August), Maximum 34 °C (1 February) |
Original | Case1 | Case2 | Case3 | |
---|---|---|---|---|
Model | ||||
Thermal conductivity | 0.025 W/m·K | 0.025 W/m·K | 0.025 W/m·K | 0.025 W/m·K |
Thickness | Vertical: 100 mm Horizontal: 100 mm | Vertical: 100 mm Horizontal: 100 mm | Vertical: 100 mm Horizontal: 100 mm | Vertical: 100 mm Skirt: 100 mm |
Length | L = 300 mm | L = 455~3640 mm | L1 = 455~3640 mm | L2 = 100~1000 mm |
Measurement Item | Unit | Sample size | Max. | Min. | Mean | S.D. | Median |
---|---|---|---|---|---|---|---|
Air temperature (0.1 m above the floor) | °C | 107 | 23.9 | 20.8 | 23.0 | 0.7 | 23.3 |
Air temperature (1.1 m above the floor) | °C | 107 | 24.9 | 21.8 | 23.6 | 0.8 | 23.9 |
Air temperature (1.7 m above the floor) | °C | 107 | 25.1 | 21.8 | 23.8 | 0.9 | 24.1 |
Globe temperature | °C | 107 | 25.0 | 21.9 | 23.7 | 0.8 | 24.0 |
Operative temperature | °C | 107 | 25.0 | 21.9 | 23.7 | 0.8 | 24.0 |
Relative humidity | % | 107 | 45.0 | 20.0 | 38.3 | 7.9 | 42.0 |
Air velocity | m/s | 107 | 0.14 | 0.02 | 0.07 | 0.0 | 0.07 |
Clothing insulation | clo | 107 | 2.04 | 0.34 | 1.16 | 0.3 | 1.15 |
Evaluation Item | The Numbers of Sample | ||||||
---|---|---|---|---|---|---|---|
Thermal Sensation | cold | cool | slightly cool | neutral | slightly warm | warm | hot |
1 | 0 | 0 | 8 | 32 | 59 | 7 | |
0.9% | 0% | 0% | 7.5% | 29.9% | 55.2% | 6.5% | |
Thermal Sensation (Ankle Level) | cold | cool | slightly cool | neutral | slightly warm | warm | hot |
1 | 2 | 7 | 24 | 28 | 45 | 0 | |
0.9% | 1.9% | 6.5% | 22.4% | 26.2% | 42.1% | 0% | |
Affective Evaluation | comfortable | slightly uncomfortable | uncomfortable | very uncomfortable | extremely uncomfortable | ||
95 | 11 | 1 | 0 | 0 | |||
88.8% | 10.3% | 0.9% | 0% | 0% | |||
Thermal Preference | cooler | no change | warmer | ||||
14 | 88 | 5 | |||||
13.1% | 82.2% | 4.7% | |||||
Personal Acceptability | acceptable | not acceptable | |||||
101 | 6 | ||||||
94.9% | 5.6% |
Reference | Country/Location | Climate | Sample | Age | Operation | Equation | tn |
---|---|---|---|---|---|---|---|
Oseland_1994 [48] | (Database of UK) | - | - | 20–77 | AC | TSV = 0.24to − 0.15 | 17.0 |
Wang_2003 [49] | Harbin, China | very cold and dry | 120 | 14–80 | - | TSV = 0.302to − 6.506 | 21. |
Wang_2006 | Harbin, China | very cold and dry | 59 | 14–80 | - | TSV = 0.199to − 4.158 | 20.9 1 |
[50] | 61 | - | TSV = 0.243to − 5.330 | 21.9 2 | |||
Tobita et al._2007 | Kansai, Japan | Cfa | 396 | - | Mixed | TSV = 0.12ET * + 2.81 | 9.9 |
[51] | TSV = 0.13tg + 2.70 | 9.9 3 | |||||
TSV = 0.14to + 2.47 | 10.9 3 | ||||||
TSV = 0.14ET * + 2.45 | 10.9 3 | ||||||
Rijal et al._2010 | Banke, Nepal | sub-tropical | 264 | - | NV | - | 16.2 |
[52] | (Griffiths 0.33) | 18.3 | |||||
Bhaktapur, Nepal | temperate | 616 | - | NV | - | 15.2 | |
(Griffiths 0.33) | 20.9 | ||||||
Dhading, Nepal | temperate | 352 | - | NV | - | 24.2 | |
(Griffiths 0.33) | 26.8 | ||||||
Kaski, Nepal | temperate | 176 | - | NV | - | 18.0 | |
(Griffiths 0.33) | 18.2 | ||||||
Solukhumbu, Nepal | cold climate | 528 | - | NV | - | 13.4 | |
(Griffiths 0.33) | 14.7 | ||||||
all | - | 1936 | 17–60 | NV | TSV = 0.0509tg − 1.2373 | 24.3 | |
(Griffiths 0.33) | 17.3 | ||||||
Wang et al._2010 [53] | Harbin, China | very cold and dry | 432 | 20–60 | NV | - | 21.5 |
Wang et al._2011 [54] | Harbin, China | very cold and dry | 174 | 20–60 | no heating | TSV = 0.0915ta − 2.2977 | 25.1 |
heating | TSV = 0.1074ta − 2.189 | 20.4 | |||||
Liu et al._2017 [55] | China | HSCW | 2652 | 20–60 | NV | TSV = 0.066to − 1.39 | 21.0 |
Jiao et al._2017 | Shaghai, China | subtropical humid monsoon | 342 | over 70 | NV | TSV = 0.079to − 1.310 | 16.6 |
[56] | (Griffiths 0.5) | 14.2 | |||||
(Griffiths 0.33) | 14.0 | ||||||
(Griffiths 0.25) | 13.7 | ||||||
Wang et al._2018 [57] | Shaghai, China | subtropical humid monsoon | 342 | 70-98 | NV | TSV = 0.078to − 1.306 | 16.7 |
Gautam et al._2019 | Mustang, Nepal | cold | 60 | 14–86 | - | (Griffiths 0.5) | 13.8 4 |
[58] | (Griffiths 0.33) | 14.7 5 | |||||
Kavrepalanchok, Nepal | temperate | 85 | 14–86 | - | (Griffiths 0.5) | 17.9 4 | |
(Griffiths 0.33) | 18.5 5 | ||||||
Sarlahi, Nepal | sub-tropical | 130 | 14–86 | - | (Griffiths 0.5) | 23.1 4 | |
(Griffiths 0.33) | 22.8 5 | ||||||
Xiong et al._2019 | Wuhan, China | HSCW | 212 | 14–74 | Mixed | TSV = 0.10tin − 1.94 | 19.4 6 |
[59] | Luotuoao, China | HSCW | 631 | 14–74 | Mixed | TSV = 0.09tin − 1.45 | 16.1 6 |
Jiao et al.,_2020 [60] | Shanghai, China | subtropical humid monsoon | 342 | over 70 | NV | TSV = 0.076to − 1.273 | 16.8 |
Jin et al._2020 [61] | Edinburgh, Scotland, UK | - | - | 83–94 | AC | - | 22.7 |
Shao and Jin_2020 [62] | Harbin, China | severely cold | 100 | - | AC | TSV = 0.2203to − 3.7013 | 16.8 |
Changchun, China | severely cold | 100 | - | AC | TSV = 0.2467to − 4.0579 | 16.4 | |
Shenyang, China | severely cold | 100 | - | AC | TSV = 0.2322to − 3.715 | 16.0 | |
- | below 44 | AC | TSV = 0.197to − 3.299 | 16.8 | |||
- | 44–59 | AC | TSV = 0.206to − 3.424 | 16.6 | |||
- | over 60 | AC | TSV = 0.213to − 3.511 | 16.5 | |||
- | AC | TSV = 0.205to − 3.350 | 16.3 1 | ||||
- | AC | TSV = 0.217to − 3.639 | 16.8 2 | ||||
This study_2020 | Saku, Japan | Cfa | 107 | 10–60 | AC | (Griffiths 0.5) | 20.5 |
(Griffiths 0.33) | 18.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikeda, H.; Ooi, Y.; Nakaya, T. Underfloor Heating Using Room Air Conditioners with Air Source Heat Pump in a Foundation Insulation House. Energies 2021, 14, 7034. https://doi.org/10.3390/en14217034
Ikeda H, Ooi Y, Nakaya T. Underfloor Heating Using Room Air Conditioners with Air Source Heat Pump in a Foundation Insulation House. Energies. 2021; 14(21):7034. https://doi.org/10.3390/en14217034
Chicago/Turabian StyleIkeda, Hiroki, Yasushi Ooi, and Takashi Nakaya. 2021. "Underfloor Heating Using Room Air Conditioners with Air Source Heat Pump in a Foundation Insulation House" Energies 14, no. 21: 7034. https://doi.org/10.3390/en14217034
APA StyleIkeda, H., Ooi, Y., & Nakaya, T. (2021). Underfloor Heating Using Room Air Conditioners with Air Source Heat Pump in a Foundation Insulation House. Energies, 14(21), 7034. https://doi.org/10.3390/en14217034