Sustainability of Shallow Geothermal Energy for Building Air-Conditioning
Abstract
:1. Introduction
- Reducing the heating and power loads of the HVAC system and power appliances (see Section 1.1);
- Shifting the heating and power generation to renewable energy systems (see Section 1.2).
1.1. Energy Efficiency
1.2. Energy Transition
- Photo-voltaic (PV) panels, integrated into vertical walls or roof, to generate electricity for self-consumption. According to their size, the panels cover part or the whole annual electricity need.
- Solar-thermal electric systems, using the heat from solar radiation for electricity generation.
- Solar-thermal heating systems, as on-site thermal collectors, to produce hot water by the solar radiation.
1.3. Ground-Source Heat Pumps
- HPs consume electricity to extract heat from a low-temperature source and produce higher-temperature thermal energy. According to the nature of the colder source, the generated heat is about 2–4 times greater than the consumed electricity, and therefore, most of the output energy is renewable.
- HPs produce thermal energy with high efficiency. Nowak [32] compare the energy demanded to produce a thermal energy unit by HPs and traditional fossil fuels systems; their results show the HPs more efficient than conventional heating systems up to four times; similar benefits also emerge in terms of CO emissions per produced kWh that can be three times lower than fossil-fueled heating systems.
2. Life-Cycle Impact Assessment of Shallow Geothermal Energy
3. Sustainability of a Ground-Source Heat-Pump System by Energy Performance
3.1. Thermodynamic Cycle and Efficiency
3.1.1. Energy
3.1.2. Exergy
3.2. Optimization of the System Components: Compressor, Ground Heat Exchanger, and Refrigerant
3.2.1. Ground-Source Heat Exchangers
3.2.2. Compressor
3.2.3. Refrigerant
3.2.4. Absorption Cycles
3.2.5. Life-Cycle Climate Performance
3.2.6. Temperature Optimization
3.2.7. Borehole Optimization
3.3. Building Management Strategies
3.3.1. Thermal Output Sizing and Thermal Storage
3.3.2. Monitoring Systems and Management Optimization
3.3.3. Advanced and Integrated Solutions
4. Site and Locations
5. Discussion
- The optimization studies of the ground heat exchanger configuration distinguish two main GHE categories, the vertical and horizontal setups. Although horizontal GHEs present lower impact than vertical wells, the choice between two configurations mainly depends on land availability: at fixed COP, the horizontal configuration needs a land area of 6.5 times higher than vertical boreholes. The key parameters influencing the heat exchange from the ground: (i) the flow rate of the heat transfer fluid, (ii) the pipe size, (iii) the borehole heat exchanger diameter, (iv) the pipe–pipe spacing (i.e., shank spacing), (v) the grout thermal conductivity, (vi) the pipe thermal conductivity, and (vii) the borehole depth. The borehole thermal resistance derives from all these parameters, and its reduction enhances the heat exchange with the ground.
- The optimization of the GSHP system design and operation aims to avoid oversizing the heat pump and GHE, keeping the system functioning as much as possible close to its total nominal capacity, where it delivers the best performance. Furthermore, the SPF tends to decrease over the long term due to the alteration of the undisturbed ground temperature; therefore, the annual operation should balance the annual heat extraction (winter) and injection (summer) from the ground as much as possible. An effective strategy is to couple the GSHP to thermal storage, separating the system operation from the building peak loads; this will reduce the HP and GHE sizes since these components have to cover the daily energy needs of the user instead of the instantaneous peak load. Storing the thermal energy as latent instead of sensible heat will reduce space occupation and increase the energy and environmental performance.
- The environmental studies investigate the relations between the GSHP sustainability and the properties of the installation site as the thermal conductivity of the ground, the soil properties and its water content, the frequency of meteorological events, the climatic variations, and the soil permeability. Further, several difficulties arise to balance the thermal exchange with the ground and avoid the performance degradation over extended periods in particularly cold or hot climates. Of great interest are the applications of GIS platforms to seek the best installation sites for a GSHP system via multi-criteria decision. Such a technique for site assessment includes both thermo-physical features reported above and energy flows of the buildings and infrastructures, taking into account the grade of the anthropization of the environment. The multi-criteria decision approach is particularly suitable to support the GSHPs installation in high energy-density urban agglomerations, where the environmental benefits are more significant than in rural areas.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agreement, P. Paris agreement. In Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change (21st Session, 2015: Paris); Retrived December. HeinOnline; United Nations Framework Convention on Climate Change: New York, NY, USA, 2015; Volume 4, p. 2017. [Google Scholar]
- GlobalABC, IEA, U. GlobalABC Roadmap for Buildings and Construction 2020-2050. 2020. Available online: https://www.iea.org/reports/globalabc-roadmap-for-buildings-and-construction-2020-2050 (accessed on 27 October 2021).
- Forster, P.M.; Forster, H.I.; Evans, M.J.; Gidden, M.J.; Jones, C.D.; Keller, C.A.; Lamboll, R.D.; Le Quéré, C.; Rogelj, J.; Rosen, D.; et al. Current and future global climate impacts resulting from COVID-19. Nat. Clim. Chang. 2020, 10, 913–919. [Google Scholar] [CrossRef]
- Parliament, E. Directive (EU) 2018/844 of the European Parliament and the Council amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency. Off. J. Eur. Union L 2018, 844, 1–17. [Google Scholar]
- Gaur, A.S.; Fitiwi, D.Z.; Curtis, J. Heat pumps and our low-carbon future: A comprehensive review. Energy Res. Soc. Sci. 2021, 71, 101764. [Google Scholar] [CrossRef]
- Singh, A.; Berghorn, G.; Joshi, S.; Syal, M. Review of life-cycle assessment applications in building construction. J. Archit. Eng. 2011, 17, 15–23. [Google Scholar] [CrossRef]
- Asdrubali, F.; Baldassarri, C.; Fthenakis, V. Life cycle analysis in the construction sector: Guiding the optimization of conventional Italian buildings. Energy Build. 2013, 64, 73–89. [Google Scholar] [CrossRef]
- Bonamente, E.; Cotana, F. Carbon and energy footprints of prefabricated industrial buildings: A systematic life cycle assessment analysis. Energies 2015, 8, 12685–12701. [Google Scholar] [CrossRef] [Green Version]
- UNI-Standard. UNI EN ISO 14044:2021—Environmental Management—Life Cycle Assessment—Requirements and Guidelines. 2021. Available online: https://store.uni.com/catalogo/norme/root-categorie-tc/uni/uni-ct-004/uni-en-iso-14044-2021?___store=en&josso_back_to=https%3A%2F%2Fstore.uni.com%2Fjosso-security-check.php&josso_cmd=login_optional&josso_partnerapp_host=store.uni.com&___from_store=it (accessed on 27 October 2021).
- Sartori, T.; Drogemuller, R.; Omrani, S.; Lamari, F. A schematic framework for Life Cycle Assessment (LCA) and Green Building Rating System (GBRS). J. Build. Eng. 2021, 38, 102180. [Google Scholar] [CrossRef]
- Adalberth, K.; Almgren, A.; Petersen, E.H. Life cycle assessment of four multi-family buildings. Int. J. Low Energy Sustain. Build. 2001, 2, 1–21. [Google Scholar]
- Chang, Y.; Ries, R.J.; Wang, Y. Life-cycle energy of residential buildings in China. Energy Policy 2013, 62, 656–664. [Google Scholar] [CrossRef]
- Ramesh, T.; Prakash, R.; Shukla, K. Life cycle energy analysis of buildings: An overview. Energy Build. 2010, 42, 1592–1600. [Google Scholar] [CrossRef]
- Romani, Z.; Draoui, A.; Allard, F. Metamodeling the heating and cooling energy needs and simultaneous building envelope optimization for low energy building design in Morocco. Energy Build. 2015, 102, 139–148. [Google Scholar] [CrossRef]
- Asadi, S.; Hassan, M.; Beheshti, A. Development and validation of a simple estimating tool to predict heating and cooling energy demand for attics of residential buildings. Energy Build. 2012, 54, 12–21. [Google Scholar] [CrossRef]
- Di Perna, C.; Stazi, F.; Casalena, A.U.; D’orazio, M. Influence of the internal inertia of the building envelope on summertime comfort in buildings with high internal heat loads. Energy Build. 2011, 43, 200–206. [Google Scholar] [CrossRef]
- Basińska, M.; Kaczorek, D.; Koczyk, H. Economic and Energy Analysis of Building Retrofitting Using Internal Insulations. Energies 2021, 14, 2446. [Google Scholar] [CrossRef]
- Sartori, I.; Hestnes, A.G. Energy use in the life cycle of conventional and low-energy buildings: A review article. Energy Build. 2007, 39, 249–257. [Google Scholar] [CrossRef]
- Winther, B.N.; Hestnes, A.G. Solar versus green: the analysis of a Norwegian row house. Sol. Energy 1999, 66, 387–393. [Google Scholar] [CrossRef]
- Song, K.; Kim, S.; Park, M.; Lee, H.S. Energy efficiency-based course timetabling for university buildings. Energy 2017, 139, 394–405. [Google Scholar] [CrossRef]
- Wei, W.; Skye, H.M. Residential net-zero energy buildings: Review and perspective. Renew. Sustain. Energy Rev. 2021, 142, 110859. [Google Scholar]
- Mbungu, N.T.; Naidoo, R.M.; Bansal, R.C.; Siti, M.W.; Tungadio, D.H. An overview of renewable energy resources and grid integration for commercial building applications. J. Energy Storage 2020, 29, 101385. [Google Scholar] [CrossRef]
- Ferguson, A.; Kelly, N.; Weber, A.; Griffith, B. Modelling residential-scale combustion-based cogeneration in building simulation. J. Build. Perform. Simul. 2009, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Alanne, K.; Söderholm, N.; Sirén, K.; Beausoleil-Morrison, I. Techno-economic assessment and optimization of Stirling engine micro-cogeneration systems in residential buildings. Energy Convers. Manag. 2010, 51, 2635–2646. [Google Scholar] [CrossRef]
- Holik, M.; Živić, M.; Virag, Z.; Barac, A.; Vujanović, M.; Avsec, J. Thermo-economic optimization of a Rankine cycle used for waste-heat recovery in biogas cogeneration plants. Energy Convers. Manag. 2021, 232, 113897. [Google Scholar] [CrossRef]
- Cotana, F.; Messineo, A.; Petrozzi, A.; Coccia, V.; Cavalaglio, G.; Aquino, A. Comparison of ORC turbine and stirling engine to produce electricity from gasified poultry waste. Sustainability 2014, 6, 5714–5729. [Google Scholar] [CrossRef] [Green Version]
- Soares, R.B.; Martins, M.F.; Gonçalves, R.F. A conceptual scenario for the use of microalgae biomass for microgeneration in wastewater treatment plants. J. Environ. Manag. 2019, 252, 109639. [Google Scholar] [CrossRef]
- Di Marcoberardino, G.; Chiarabaglio, L.; Manzolini, G.; Campanari, S. A techno-economic comparison of micro-cogeneration systems based on polymer electrolyte membrane fuel cell for residential applications. Appl. Energy 2019, 239, 692–705. [Google Scholar] [CrossRef]
- Harrison, J.; On, E. Stirling engine systems for small and micro combined heat and power (CHP) applications. In Small and Micro Combined Heat and Power (CHP) Systems; Elsevier: Amsterdam, The Netherlands, 2011; pp. 179–205. [Google Scholar]
- Macchi, E.; Astolfi, M. Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications; Woodhead Publishing: Sawston, UK, 2016. [Google Scholar]
- Jafary, S.; Khalilarya, S.; Shawabkeh, A.; Wae-hayee, M.; Hashemian, M. A complete energetic and exergetic analysis of a solar powered trigeneration system with two novel organic Rankine cycle (ORC) configurations. J. Clean. Prod. 2021, 281, 124552. [Google Scholar] [CrossRef]
- Nowak, T. Heat Pumps: Integrating Technologies to Decarbonise Heating and Cooling; European Copper Institute: Brussels, Belgium, 2018. [Google Scholar]
- Osterman, E.; Stritih, U. Review on compression heat pump systems with thermal energy storage for heating and cooling of buildings. J. Energy Storage 2021, 39, 102569. [Google Scholar] [CrossRef]
- Torio, H.; Angelotti, A.; Schmidt, D. Exergy analysis of renewable energy-based climatisation systems for buildings: A critical view. Energy Build. 2009, 41, 248–271. [Google Scholar] [CrossRef]
- Do, S.L.; Haberl, J.S. A Review of Ground Coupled Heat Pump Models Used in Whole-Building Computer Simulation Programs. 2010. Available online: https://oaktrust.library.tamu.edu/handle/1969.1/93221 (accessed on 4 August 2021).
- Omer, A.M. Ground-source heat pumps systems and applications. Renew. Sustain. Energy Rev. 2008, 12, 344–371. [Google Scholar] [CrossRef]
- Somogyi, V.; Sebestyén, V.; Nagy, G. Scientific achievements and regulation of shallow geothermal systems in six European countries–A review. Renew. Sustain. Energy Rev. 2017, 68, 934–952. [Google Scholar] [CrossRef]
- Lund, J.W.; Toth, A.N. Direct utilization of geothermal energy 2020 worldwide review. Geothermics 2020, 90, 101915. [Google Scholar] [CrossRef]
- Asdrubali, F.; Baldinelli, G.; D’Alessandro, F.; Scrucca, F. Life cycle assessment of electricity production from renewable energies: Review and results harmonization. Renew. Sustain. Energy Rev. 2015, 42, 1113–1122. [Google Scholar] [CrossRef]
- Saner, D.; Juraske, R.; Kübert, M.; Blum, P.; Hellweg, S.; Bayer, P. Is it only CO2 that matters? A life cycle perspective on shallow geothermal systems. Renew. Sustain. Energy Rev. 2010, 14, 1798–1813. [Google Scholar] [CrossRef]
- Blum, P.; Campillo, G.; Münch, W.; Kölbel, T. CO2 savings of ground source heat pump systems–A regional analysis. Renew. Energy 2010, 35, 122–127. [Google Scholar] [CrossRef]
- Bayer, P.; Saner, D.; Bolay, S.; Rybach, L.; Blum, P. Greenhouse gas emission savings of ground source heat pump systems in Europe: A review. Renew. Sustain. Energy Rev. 2012, 16, 1256–1267. [Google Scholar] [CrossRef]
- Greening, B.; Azapagic, A. Domestic heat pumps: Life cycle environmental impacts and potential implications for the UK. Energy 2012, 39, 205–217. [Google Scholar] [CrossRef]
- Rodríguez, J.; Bangueses, I.; Castro, M. Life cycle analysis of a geothermal heatpump installation and comparison with a conventional fuel boiler system in a nursery school in Galicia (Spain). In EPJ Web of Conferences; EDP Sciences: Les Ulis, France, 2012; Volume 33, p. 05003. [Google Scholar]
- Hong, T.; Kim, J.; Chae, M.; Park, J.; Jeong, J.; Lee, M. Sensitivity analysis on the impact factors of the GSHP system considering energy generation and environmental impact using LCA. Sustainability 2016, 8, 376. [Google Scholar] [CrossRef] [Green Version]
- Bonamente, E.; Aquino, A. Life-cycle assessment of an innovative ground-source heat pump system with upstream thermal storage. Energies 2017, 10, 1854. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.R.; Ghimire, S.N.; Wemeyi, E.; Zanjani, R.; Zhao, L. Life cycle sustainability assessment of geothermal heating and cooling system: UIC case study. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 205, p. 07003. [Google Scholar]
- Marinelli, S.; Lolli, F.; Butturi, M.A.; Rimini, B.; Gamberini, R. Environmental performance analysis of a dual-source heat pump system. Energy Build. 2020, 223, 110180. [Google Scholar] [CrossRef]
- Pratiwi, A.S.; Trutnevyte, E. Life cycle assessment of shallow to medium-depth geothermal heating and cooling networks in the State of Geneva. Geothermics 2021, 90, 101988. [Google Scholar] [CrossRef]
- EGEC (European Geothermal Congress), Geothermal Market Report. 2020. Available online: https://www.egec.org/media-publications/egec-geothermal-market-report-2020/ (accessed on 27 October 2021).
- Pratiwi, A.S.; Trutnevyte, E. Review of Life Cycle Assessments of Geothermal Heating Systems. In Proceedings of the World Geothermal Congress 2021, Reykjavik, Iceland, 24–27 October 2021. [Google Scholar]
- Casasso, A.; Sethi, R. Assessment and minimization of potential environmental impacts of ground source heat pump (GSHP) systems. Water 2019, 11, 1573. [Google Scholar] [CrossRef] [Green Version]
- Vienken, T.; Kreck, M.; Dietrich, P. Monitoring the impact of intensive shallow geothermal energy use on groundwater temperatures in a residential neighborhood. Geotherm. Energy 2019, 7, 1–14. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, L.; Meng, F.; Sun, F. Influences of the Thomson effect on the performance of a thermoelectric generator-driven thermoelectric heat pump combined device. Entropy 2018, 20, 29. [Google Scholar] [CrossRef] [Green Version]
- Bottarelli, M.; González Gallero, F.J. Energy Analysis of a Dual-Source Heat Pump Coupled with Phase Change Materials. Energies 2020, 13, 2933. [Google Scholar] [CrossRef]
- Shin, J.S.; Park, J.W.; Kim, S.H. Measurement and Verification of Integrated Ground Source Heat Pumps on a Shared Ground Loop. Energies 2020, 13, 1752. [Google Scholar] [CrossRef] [Green Version]
- Lyu, W.; Li, X.; Yan, S.; Jiang, S. Utilizing shallow geothermal energy to develop an energy efficient HVAC system. Renew. Energy 2020, 147, 672–682. [Google Scholar] [CrossRef]
- Parliament, E. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off. J. Eur. Union L 2009, 140, 47. [Google Scholar]
- EN 14511-1:2018—Air Conditioners, Liquid Chilling Packages and Heat Pumps for Space Heating and Cooling And process Chillers, with Electrically Driven Compressors—Part 1: Terms and Definitions. Available online: https://shop.bsigroup.com/products/air-conditioners-liquid-chilling-packages-and-heat-pumps-for-space-heating-and-cooling-and-process-chillers-with-electrically-driven-compressors-terms-and-definitions?pid=000000000030328754 (accessed on 27 October 2021).
- Biomass for Power Generation. Technical Report, IRENA: International Renewable Energy Agency, 2012. Available online: https://www.irena.org/publications/2012/Jun/Renewable-Energy-Cost-Analysis—Biomass-for-Power-Generation (accessed on 12 August 2021).
- Ikeda, S.; Choi, W.; Ooka, R. Optimization method for multiple heat source operation including ground source heat pump considering dynamic variation in ground temperature. Appl. Energy 2017, 193, 466–478. [Google Scholar] [CrossRef]
- Sivasakthivel, T.; Murugesan, K.; Sahoo, P. Optimization of ground heat exchanger parameters of ground source heat pump system for space heating applications. Energy 2014, 78, 573–586. [Google Scholar] [CrossRef]
- Staffell, I.; Brett, D.; Brandon, N.; Hawkes, A. A review of domestic heat pumps. Energy Environ. Sci. 2012, 5, 9291–9306. [Google Scholar] [CrossRef]
- Figueroa, I.C.; Picard, D.; Helsen, L. Short-term modeling of hybrid geothermal systems for Model Predictive Control. Energy Build. 2020, 215, 109884. [Google Scholar] [CrossRef]
- Ommen, T.; Jensen, J.K.; Meesenburg, W.; Jørgensen, P.H.; Pieper, H.; Markussen, W.B.; Elmegaard, B. Generalized COP estimation of heat pump processes for operation off the design point of equipment. In Proceedings of the 25th IIR International Congress of Refrigeration (ICR 2019). International Institute of Refrigeration, Montréal, QC, Canada, 24–30 August 2019; p. 648. [Google Scholar]
- Pieper, H.; Krupenski, I.; Markussen, W.B.; Ommen, T.; Siirde, A.; Volkova, A. Method of linear approximation of COP for heat pumps and chillers based on thermodynamic modelling and off-design operation. Energy 2021, 230, 120743. [Google Scholar] [CrossRef]
- Qian, H.; Wang, Y. Modeling the interactions between the performance of ground source heat pumps and soil temperature variations. Energy Sustain. Dev. 2014, 23, 115–121. [Google Scholar] [CrossRef]
- Dincer, I. The role of exergy in energy policy making. Energy Policy 2002, 30, 137–149. [Google Scholar] [CrossRef]
- Aquino, A.; Poesio, P. Off-Design Exergy Analysis of Convective Drying Using a Two-Phase Multispecies Model. Energies 2021, 14, 223. [Google Scholar] [CrossRef]
- Lucia, U.; Simonetti, M.; Chiesa, G.; Grisolia, G. Ground-source pump system for heating and cooling: Review and thermodynamic approach. Renew. Sustain. Energy Rev. 2017, 70, 867–874. [Google Scholar] [CrossRef]
- Morosuk, T.; Tsatsaronis, G. A new approach to the exergy analysis of absorption refrigeration machines. Energy 2008, 33, 890–907. [Google Scholar] [CrossRef]
- Rosen, M.A.; Dincer, I.; Kanoglu, M. Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy 2008, 36, 128–137. [Google Scholar] [CrossRef]
- Hepbasli, A.; Akdemir, O. Energy and exergy analysis of a ground source (geothermal) heat pump system. Energy Convers. Manag. 2004, 45, 737–753. [Google Scholar] [CrossRef]
- Akpinar, E.K.; Hepbasli, A. A comparative study on exergetic assessment of two ground-source (geothermal) heat pump systems for residential applications. Build. Environ. 2007, 42, 2004–2013. [Google Scholar] [CrossRef]
- Bi, Y.; Wang, X.; Liu, Y.; Zhang, H.; Chen, L. Comprehensive exergy analysis of a ground-source heat pump system for both building heating and cooling modes. Appl. Energy 2009, 86, 2560–2565. [Google Scholar] [CrossRef]
- Li, R.; Ooka, R.; Shukuya, M. Theoretical analysis on ground source heat pump and air source heat pump systems by the concepts of cool and warm exergy. Energy Build. 2014, 75, 447–455. [Google Scholar] [CrossRef]
- Cui, P.; Li, X.; Man, Y.; Fang, Z. Heat transfer analysis of pile geothermal heat exchangers with spiral coils. Appl. Energy 2011, 88, 4113–4119. [Google Scholar] [CrossRef]
- DOE(USA). Types of Geothermal Heat Pump Systems. 2015. Available online: http://www.ifpenergiesnouvelles.com/ (accessed on 18 August 2021).
- Aresti, L.; Christodoulides, P.; Florides, G.A. An investigation on the environmental impact of various Ground Heat Exchangers configurations. Renew. Energy 2021, 171, 592–605. [Google Scholar] [CrossRef]
- Schiffmann, J.; Favrat, D. Experimental investigation of a direct driven radial compressor for domestic heat pumps. Int. J. Refrig. 2009, 32, 1918–1928. [Google Scholar] [CrossRef]
- Biao, X.; Tongyi, H.; Lin, H.; Yan, Y.; Yuying, S.; Wei, W. Experimental study of an improved air-source heat pump system with a novel three-cylinder two-stage variable volume ratio rotary compressor. Int. J. Refrig. 2019, 100, 343–353. [Google Scholar] [CrossRef]
- Wang, L.; Ma, G.; Ma, A.; Liu, Y.; Zhou, F. Experimental investigations on a heat pump system for ventilation heat recovery of a novel dual-cylinder rotary compressor. Int. J. Refrig. 2019, 108, 26–36. [Google Scholar] [CrossRef]
- Smith, M.; Bevacqua, A.; Tembe, S.; Lal, P. Life cycle analysis (LCA) of residential ground source heat pump systems: A comparative analysis of energy efficiency in New Jersey. Sustain. Energy Technol. Assessments 2021, 47, 101364. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Montzka, S.; Fraser, P.; Butler, J.; Cunnold, D.; Daniel, J.; Derwent, R.; Lal, S.; McCulloch, A.; Oram, D.; Reeves, C.; et al. Scientific assessment of ozone depletion: 2002. 2003. Available online: https://acd-ext.gsfc.nasa.gov/Documents/O3_Assessments/Docs/WMO_2002/scientific-assessment2002.pdf (accessed on 27 October 2021).
- Wu, W.; Skye, H.M. Progress in ground-source heat pumps using natural refrigerants. Int. J. Refrig. 2018, 92, 70–85. [Google Scholar] [CrossRef]
- Kim, Y.J.; Chang, K.S. Development of a thermodynamic performance-analysis program for CO2 geothermal heat pump system. J. Ind. Eng. Chem. 2013, 19, 1827–1837. [Google Scholar] [CrossRef]
- Jin, Z.; Eikevik, T.; Neksa, P.; Hafner, A.; Ding, G.; Hu, H. Transient simulation of R744 hybrid ground coupled heat pump with modelica. In Proceedings of the 11th IIR Gustav Lorentzen Conference on Natural Refrigerants, Hangzhou, China, 31 August–2 September 2014. [Google Scholar]
- Eslami-Nejad, P.; Ouzzane, M.; Aidoun, Z. Modeling of a two-phase CO2-filled vertical borehole for geothermal heat pump applications. Appl. Energy 2014, 114, 611–620. [Google Scholar] [CrossRef]
- Austin, B.T.; Sumathy, K. Parametric study on the performance of a direct-expansion geothermal heat pump using carbon dioxide. Appl. Therm. Eng. 2011, 31, 3774–3782. [Google Scholar] [CrossRef]
- Ghazizade-Ahsaee, H.; Ameri, M. Energy and exergy investigation of a carbon dioxide direct-expansion geothermal heat pump. Appl. Therm. Eng. 2018, 129, 165–178. [Google Scholar] [CrossRef]
- Choi, J.; Kang, B.; Cho, H. Performance comparison between R22 and R744 solar-geothermal hybrid heat pumps according to heat source conditions. Renew. Energy 2014, 71, 414–424. [Google Scholar] [CrossRef]
- Chargui, R.; Sammouda, H.; Farhat, A. Geothermal heat pump in heating mode: Modeling and simulation on TRNSYS. Int. J. Refrig. 2012, 35, 1824–1832. [Google Scholar] [CrossRef]
- Kim, W.; Choi, J.; Cho, H. Performance analysis of hybrid solar-geothermal CO2 heat pump system for residential heating. Renew. Energy 2013, 50, 596–604. [Google Scholar] [CrossRef]
- Hu, H.; Eikevik, T.M.; Neksa, P.; Hafner, A.; Ding, G.; Huang, Q.; Ye, J. Performance analysis of an R744 ground source heat pump system with air-cooled and water-cooled gas coolers. Int. J. Refrig. 2016, 63, 72–86. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Eikevik, T.M.; Nekså, P.; Hafner, A. A steady and quasi-steady state analysis on the CO2 hybrid ground-coupled heat pumping system. Int. J. Refrig. 2017, 76, 29–41. [Google Scholar] [CrossRef]
- Palm, B. Ammonia in low capacity refrigeration and heat pump systems. Int. J. Refrig. 2008, 31, 709–715. [Google Scholar] [CrossRef]
- Zajacs, A.; Lalovs, A.; Borodinecs, A.; Bogdanovics, R. Small ammonia heat pumps for space and hot tap water heating. Energy Procedia 2017, 122, 74–79. [Google Scholar] [CrossRef]
- Antonijevic, D.; Komatina, M. Sustainable sub-geothermal heat pump heating in Serbia. Renew. Sustain. Energy Rev. 2011, 15, 3534–3538. [Google Scholar] [CrossRef]
- Catalog of Water Chilling Package and Heat Pumps Model LEW. Available online: https://www.hennlich.ru/fileadmin/user_upload/KATEGORIEN/G-Term_Waerme_und_Kaeltetechnik/chillers/dokumente/Instalace_a_%C3%BAdr%C5%BEba_LEW_Aj.pdf (accessed on 27 October 2021).
- Petroleum, Q. Gas (Production & Safety) Act 2004. MineralReA89. pdf. Available online: http://www.legislation.qld.gov.au/LEGISLTN/CURRENT/M (accessed on 27 October 2021).
- Ruiz-Calvo, F.; Cervera-Vázquez, J.; Montagud, C.; Corberán, J.M. Reference data sets for validating and analyzing GSHP systems based on an eleven-year operation period. Geothermics 2016, 64, 538–550. [Google Scholar] [CrossRef]
- Montagud, C.; Corberán, J.; Montero, A.; Urchueguía, J. Analysis of the energy performance of a ground source heat pump system after five years of operation. Energy Build. 2011, 43, 3618–3626. [Google Scholar] [CrossRef]
- Urchueguía, J.; Zacarés, M.; Corberán, J.; Montero, A.; Martos, J.; Witte, H. Comparison between the energy performance of a ground coupled water to water heat pump system and an air to water heat pump system for heating and cooling in typical conditions of the European Mediterranean coast. Energy Convers. Manag. 2008, 49, 2917–2923. [Google Scholar] [CrossRef]
- Sagia, Z.; Rakopoulos, C. Alternative refrigerants for the heat pump of a ground source heat pump system. Appl. Therm. Eng. 2016, 100, 768–774. [Google Scholar] [CrossRef]
- Maddah, S.; Goodarzi, M.; Safaei, M.R. Comparative study of the performance of air and geothermal sources of heat pumps cycle operating with various refrigerants and vapor injection. Alex. Eng. J. 2020, 59, 4037–4047. [Google Scholar] [CrossRef]
- Bobbo, S.; Fedele, L.; Curcio, M.; Bet, A.; De Carli, M.; Emmi, G.; Poletto, F.; Tarabotti, A.; Mendrinos, D.; Mezzasalma, G.; et al. Energetic and exergetic analysis of low global warming potential refrigerants as substitutes for R410A in ground source heat pumps. Energies 2019, 12, 3538. [Google Scholar] [CrossRef] [Green Version]
- Eslami-Nejad, P.; Nguyen, A.; Cimmino, M.; Bastani, A.; Badache, M. Performance comparison of a vertical direct expansion geothermal evaporator: Part I, single U-pipe using different refrigerants. Int. J. Refrig. 2020, 116, 119–128. [Google Scholar] [CrossRef]
- Sharqawy, M.H.; Mokheimer, E.M.; Badr, H.M. Effective pipe-to-borehole thermal resistance for vertical ground heat exchangers. Geothermics 2009, 38, 271–277. [Google Scholar] [CrossRef]
- Srikhirin, P.; Aphornratana, S.; Chungpaibulpatana, S. A review of absorption refrigeration technologies. Renew. Sustain. Energy Rev. 2001, 5, 343–372. [Google Scholar] [CrossRef]
- Liu, C.; Han, W.; Wang, Z.; Zhang, N.; Kang, Q.; Liu, M. Proposal and assessment of a new solar space heating system by integrating an absorption-compression heat pump. Appl. Energy 2021, 294, 116966. [Google Scholar] [CrossRef]
- Macía, A.; Bujedo, L.A.; Magraner, T.; Chamorro, C.R. Influence parameters on the performance of an experimental solar-assisted ground-coupled absorption heat pump in cooling operation. Energy Build. 2013, 66, 282–288. [Google Scholar] [CrossRef]
- Song, Z.; Wang, N.; You, S.; Wang, Y.; Zhang, H.; Wei, S.; Zheng, X.; Guo, J. Integration of geothermal water into secondary network by absorption-heat-pump-assisted district heating substations. Energy Build. 2019, 202, 109403. [Google Scholar] [CrossRef]
- Li, Y.; Fu, L.; Zhang, S.; Zhao, X. A new type of district heating system based on distributed absorption heat pumps. Energy 2011, 36, 4570–4576. [Google Scholar] [CrossRef]
- Wu, W.; Wang, B.; You, T.; Shi, W.; Li, X. A potential solution for thermal imbalance of ground source heat pump systems in cold regions: Ground source absorption heat pump. Renew. Energy 2013, 59, 39–48. [Google Scholar] [CrossRef]
- Yang, C.; Seo, S.; Takata, N.; Thu, K.; Miyazaki, T. The life cycle climate performance evaluation of low-GWP refrigerants for domestic heat pumps. Int. J. Refrig. 2021, 121, 33–42. [Google Scholar] [CrossRef]
- Andersen, S. The Implications to the Montreal Protocol of the Inclusion of HFCs and PFCs in the Kyoto Protocol. In Report of the TEAP HFC and PFC Task Force; UNEP: Nairobi, Kenya, 1999. [Google Scholar]
- Hafner, A.; Nekså, P.; Pettersen, J. Life Cycle Climate Performance (LCCP) of mobile air-conditioning systems with HFC-134a, HFC-152a and R-744. Proc. Mob. Air Cond. Summit 2004, 15, 1–13. [Google Scholar]
- Lee, H.; Troch, S.; Hwang, Y.; Radermacher, R. LCCP evaluation on various vapor compression cycle options and low GWP refrigerants. Int. J. Refrig. 2016, 70, 128–137. [Google Scholar] [CrossRef]
- Botticella, F.; De Rossi, F.; Mauro, A.; Vanoli, G.; Viscito, L. Multi-criteria (thermodynamic, economic and environmental) analysis of possible design options for residential heating split systems working with low GWP refrigerants. Int. J. Refrig. 2018, 87, 131–153. [Google Scholar] [CrossRef]
- Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C.; Metallo, A. HFO1234yf as a drop-in replacement for R134a in domestic refrigerators: A life cycle climate performance analysis. Int. J. Heat Technol. 2016, 34, S212–S218. [Google Scholar] [CrossRef] [Green Version]
- Kerme, E.D.; Fung, A.S. Comprehensive simulation based thermal performance comparison between single and double U-tube borehole heat exchanger and sensitivity analysis. Energy Build. 2021, 241, 110876. [Google Scholar] [CrossRef]
- Diao, N.R.; Zeng, H.Y.; Fang, Z.H. Improvement in modeling of heat transfer in vertical ground heat exchangers. HVAC&R Res. 2004, 10, 459–470. [Google Scholar]
- Conti, P.; Testi, D.; Grassi, W. Revised heat transfer modeling of double-U vertical ground-coupled heat exchangers. Appl. Therm. Eng. 2016, 106, 1257–1267. [Google Scholar] [CrossRef]
- Marcotte, B.; Bernier, M. Experimental validation of a TRC model for a double U-tube borehole with two independent circuits. Appl. Therm. Eng. 2019, 162, 114229. [Google Scholar] [CrossRef]
- Li, J.; Xu, W.; Li, J.; Huang, S.; Li, Z.; Qiao, B.; Yang, C.; Sun, D.; Zhang, G. Heat extraction model and characteristics of coaxial deep borehole heat exchanger. Renew. Energy 2021, 169, 738–751. [Google Scholar] [CrossRef]
- Yu, H.; Xu, T.; Yuan, Y.; Gherardi, F.; Feng, B.; Jiang, Z.; Hu, Z. Enhanced heat extraction for deep borehole heat exchanger through the jet grouting method using high thermal conductivity material. Renew. Energy 2021, 177, 1102–1115. [Google Scholar] [CrossRef]
- Liu, J.; Wang, F.; Gao, Y.; Zhang, Y.; Cai, W.; Wang, M.; Wang, Z. Influencing factors analysis and operation optimization for the long-term performance of medium-deep borehole heat exchanger coupled ground source heat pump system. Energy Build. 2020, 226, 110385. [Google Scholar] [CrossRef]
- Zhou, K.; Mao, J.; Li, Y.; Xiang, J. Parameters optimization of borehole and internal thermal resistance for single U-tube ground heat exchangers using Taguchi method. Energy Convers. Manag. 2019, 201, 112177. [Google Scholar] [CrossRef]
- Antony, J.; Antony, F.J. Teaching the Taguchi method to industrial engineers. Work Study 2001, 50, 141–149. [Google Scholar] [CrossRef]
- Keshavarzzadeh, A.H.; Zanjani, A.M.; Gharali, K.; Dusseault, M.B. Multi-objective evolutionary-based optimization of a ground source heat exchanger geometry using various optimization techniques. Geothermics 2020, 86, 101861. [Google Scholar] [CrossRef]
- Bayer, P.; de Paly, M.; Beck, M. Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling. Appl. Energy 2014, 136, 445–453. [Google Scholar] [CrossRef]
- Li, C.; Mao, J.; Zhang, H.; Li, Y.; Xing, Z.; Zhu, G. Effects of load optimization and geometric arrangement on the thermal performance of borehole heat exchanger fields. Sustain. Cities Soc. 2017, 35, 25–35. [Google Scholar] [CrossRef]
- Thangavel, S.; Verma, V.; Tarodiya, R.; Kaliyaperumal, P. A study on optimization of horizontal ground heat exchanger parameters for space heating application. Mater. Today Proc. 2021, 47, 2293–2298. [Google Scholar] [CrossRef]
- Hesse, J.C.; Schedel, M.; Diedel, R.; Sass, I. Influence of swelling and non-swelling clays on the thermal properties of grouting materials for borehole heat exchangers. Appl. Clay Sci. 2021, 210, 106154. [Google Scholar] [CrossRef]
- Dongellini, M.; Naldi, C.; Morini, G.L. Sizing effects on the energy performance of reversible air-source heat pumps for office buildings. Appl. Therm. Eng. 2017, 114, 1073–1081. [Google Scholar] [CrossRef]
- McMahon, R.; Santos, H.; Mourão, Z.S. Practical considerations in the deployment of ground source heat pumps in older properties—A case study. Energy Build. 2018, 159, 54–65. [Google Scholar] [CrossRef]
- Seo, B.M.; Lee, K.H. Detailed analysis on part load ratio characteristics and cooling energy saving of chiller staging in an office building. Energy Build. 2016, 119, 309–322. [Google Scholar] [CrossRef]
- Bonamente, E.; Moretti, E.; Buratti, C.; Cotana, F. Design and monitoring of an innovative geothermal system including an underground heat-storage tank. Int. J. Green Energy 2016, 13, 822–830. [Google Scholar] [CrossRef]
- Bode, G.; Fütterer, J.; Müller, D. Mode and storage load based control of a complex building system with a geothermal field. Energy Build. 2018, 158, 1337–1345. [Google Scholar] [CrossRef] [Green Version]
- Lubis, L.I.; Kanoglu, M.; Dincer, I.; Rosen, M.A. Thermodynamic analysis of a hybrid geothermal heat pump system. Geothermics 2011, 40, 233–238. [Google Scholar] [CrossRef]
- Seo, B.M.; Hong, S.H.; Choi, J.M.; Lee, K.H. Part load ratio characteristics and energy saving performance of standing column well geothermal heat pump system assisted with storage tank in an apartment. Energy 2019, 174, 1060–1078. [Google Scholar]
- Crawley, D.B.; Lawrie, L.K.; Winkelmann, F.C.; Buhl, W.F.; Huang, Y.J.; Pedersen, C.O.; Strand, R.K.; Liesen, R.J.; Fisher, D.E.; Witte, M.J.; et al. EnergyPlus: Creating a new-generation building energy simulation program. Energy Build. 2001, 33, 319–331. [Google Scholar] [CrossRef]
- Alkhwildi, A.; Elhashmi, R.; Chiasson, A. Parametric modeling and simulation of Low temperature energy storage for cold-climate multi-family residences using a geothermal heat pump system with integrated phase change material storage tank. Geothermics 2020, 86, 101864. [Google Scholar] [CrossRef]
- Bonamente, E.; Aquino, A. Environmental performance of innovative ground-source heat pumps with PCM energy storage. Energies 2019, 13, 117. [Google Scholar] [CrossRef] [Green Version]
- Piselli, C.; Guastaveglia, A.; Romanelli, J.; Cotana, F.; Pisello, A.L. Facility Energy Management Application of HBIM for Historical Low-Carbon Communities: Design, Modelling and Operation Control of Geothermal Energy Retrofit in a Real Italian Case Study. Energies 2020, 13, 6338. [Google Scholar] [CrossRef]
- Duus, K.; Schmitz, G. Experimental investigation of sustainable and energy efficient management of a geothermal field as a heat source and heat sink for a large office building. Energy Build. 2021, 235, 110726. [Google Scholar] [CrossRef]
- Shin, J.S.; Kim, S.H.; Park, J.W. Economic analysis of integrated ground source heat pumps on a shared ground loop. Energies 2020, 13, 2928. [Google Scholar] [CrossRef]
- Ghiaus, C. Free-running building temperature and HVAC climatic suitability. Energy Build. 2003, 35, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Shortall, R.; Davidsdottir, B.; Axelsson, G. Geothermal energy for sustainable development: A review of sustainability impacts and assessment frameworks. Renew. Sustain. Energy Rev. 2015, 44, 391–406. [Google Scholar] [CrossRef]
- García-Gil, A.; Vázquez-Suñe, E.; Alcaraz, M.M.; Juan, A.S.; Sánchez-Navarro, J.Á.; Montlleó, M.; Rodríguez, G.; Lao, J. GIS-supported mapping of low-temperature geothermal potential taking groundwater flow into account. Renew. Energy 2015, 77, 268–278. [Google Scholar] [CrossRef]
- Tissen, C.; Menberg, K.; Benz, S.A.; Bayer, P.; Steiner, C.; Götzl, G.; Blum, P. Identifying key locations for shallow geothermal use in Vienna. Renew. Energy 2021, 167, 1–19. [Google Scholar] [CrossRef]
- Tinti, F.; Kasmaee, S.; Elkarmoty, M.; Bonduà, S.; Bortolotti, V. Suitability evaluation of specific shallow geothermal technologies using a GIS-based multi criteria decision analysis implementing the analytic hierarchic process. Energies 2018, 11, 457. [Google Scholar] [CrossRef] [Green Version]
- Viesi, D.; Galgaro, A.; Visintainer, P.; Crema, L. GIS-supported evaluation and mapping of the geo-exchange potential for vertical closed-loop systems in an Alpine valley, the case study of Adige Valley (Italy). Geothermics 2018, 71, 70–87. [Google Scholar] [CrossRef]
- Farouki, O.T. Thermal Properties of Soils; Technical report; Cold Regions Research and Engineering Lab: Hanover, NH, USA, 1981. [Google Scholar]
- Drefke, C.; Schedel, M.; Stegner, J.; Balzer, C.; Hinrichsen, V.; Sass, I. Measurement method of thermal properties of cementitious bedding materials and unsaturated soils: Hydraulic influence on thermal parameters. Geotech. Test. J. 2017, 40, 160–170. [Google Scholar] [CrossRef]
- Bertermann, D.; Klug, H.; Morper-Busch, L. A pan-European planning basis for estimating the very shallow geothermal energy potentials. Renew. Energy 2015, 75, 335–347. [Google Scholar] [CrossRef]
- Gonzalez, R.G.; Verhoef, A.; Vidale, P.L.; Main, B.; Gan, G.; Wu, Y. Interactions between the physical soil environment and a horizontal ground coupled heat pump, for a domestic site in the UK. Renew. Energy 2012, 44, 141–153. [Google Scholar] [CrossRef]
- Wu, R.; Tinjum, J.M.; Likos, W.J. Coupled thermal conductivity dryout curve and soil–water characteristic curve in modeling of shallow horizontal geothermal ground loops. Geotech. Geol. Eng. 2015, 33, 193–205. [Google Scholar] [CrossRef]
- Di Sipio, E.; Bertermann, B. Thermal properties variations in soil bodies for very shallow geothermal application: Overview of ITER Project. Int. Agrophys. 2018. Submitted for publication. [Google Scholar]
- Nowamooz, H.; Nikoosokhan, S.; Lin, J.; Chazallon, C. Finite difference modeling of heat distribution in multilayer soils with time-spatial hydrothermal properties. Renew. Energy 2015, 76, 7–15. [Google Scholar] [CrossRef]
- Guan, X.; Huang, J.; Guo, N.; Bi, J.; Wang, G. Variability of soil moisture and its relationship with surface albedo and soil thermal parameters over the Loess Plateau. Adv. Atmos. Sci. 2009, 26, 692–700. [Google Scholar] [CrossRef]
- Liu, H.; Wang, B.; Fu, C. Relationships between surface albedo, soil thermal parameters and soil moisture in the semi-arid area of Tongyu, northeastern China. Adv. Atmos. Sci. 2008, 25, 757–764. [Google Scholar] [CrossRef]
- Song, W.K.; Cui, Y.J.; Tang, A.M.; Ding, W.Q.; Tran, T.D. Experimental study on water evaporation from sand using environmental chamber. Can. Geotech. J. 2014, 51, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Roxy, M.; Sumithranand, V.; Renuka, G. Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at Astronomical Observatory, Thiruvananthapuram, south Kerala. J. Earth Syst. Sci. 2010, 119, 507–517. [Google Scholar] [CrossRef]
- Ozgener, O.; Ozgener, L.; Tester, J.W. A practical approach to predict soil temperature variations for geothermal (ground) heat exchangers applications. Int. J. Heat Mass Transf. 2013, 62, 473–480. [Google Scholar] [CrossRef]
- Xing, L.; Spitler, J.D.; Li, L.; Hu, P. Model for Ground Temperature Estimations and its Impact on Horizontal Ground Heat Exchanger Design. 2017. Available online: https://hdl.handle.net/11244/49340 (accessed on 27 October 2021).
- Nikoosokhan, S.; Nowamooz, H.; Chazallon, C. Temperature variations in unfrozen soils with variable hydrothermal properties. Eur. J. Soil Sci. 2015, 66, 378–388. [Google Scholar] [CrossRef]
- Leong, W.; Tarnawski, V.; Aittomäki, A. Effect of soil type and moisture content on ground heat pump performance: Effet du type et de l’humidité du sol sur la performance des pompes à chaleur à capteurs enterrés. Int. J. Refrig. 1998, 21, 595–606. [Google Scholar] [CrossRef]
- Di Sipio, E.; Bertermann, D. Factors influencing the thermal efficiency of horizontal ground heat exchangers. Energies 2017, 10, 1897. [Google Scholar] [CrossRef] [Green Version]
- Morrone, B.; Coppola, G.; Raucci, V. Energy and economic savings using geothermal heat pumps in different climates. Energy Convers. Manag. 2014, 88, 189–198. [Google Scholar] [CrossRef]
- MCS, D. 022: Ground Heat Exchanger Look-Up Tables: Supplementary Material to MIS 3005. Available online: https://www.gshp.org.uk/pdf/MIS_3005_Ground_loop_sizing_tables.pdf (accessed on 27 October 2021).
- Thermal Use of the Underground—Ground Source Heat Pump Systems. Technical report, Verein Deutsche Ingenieure (VDI). 2019. Available online: https://www.vdi.de/richtlinien/details/vdi-4640-blatt-2-thermal-use-of-the-underground-ground-source-heat-pump-systems (accessed on 27 October 2021).
- Kavanaugh, S.P.; Raerty, K. Ground-Source Heat Pumps—Design of Geothermal Systems for Commercial and Institutional Buildings. 1997. Available online: https://www.techstreet.com/standards/ground-source-heat-pumps-design-of-geothermal-systems-for-commercial-and-institutional-buildings?product_id=567237 (accessed on 27 October 2021).
- Eskilson, P. Thermal Analysis of Heat Extraction Boreholes. 1987. Available online: https://www.buildingphysics.com/download/Eskilson1987.pdf (accessed on 21 July 2021).
- Diersch, H.J.G. FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Harbaugh, A.W.; Banta, E.R.; Hill, M.C.; McDonald, M.G. Modflow-2000, the U. S. Geological Survey Modular Ground-Water Model-User Guide to Modularization Concepts and the Ground-Water Flow Process. Open-File report. U. S. Geological Survey. 2000, Volume 92, p. 134. Available online: https://inside.mines.edu/~epoeter/583CSM/DOC3_MODFLOW2000_ModConcepts_GWFlowProcess_ofr00-92.pdf (accessed on 21 July 2021).
- Hecht-Méndez, J.; Molina-Giraldo, N.; Blum, P.; Bayer, P. Evaluating MT3DMS for heat transport simulation of closed geothermal systems. Groundwater 2010, 48, 741–756. [Google Scholar] [CrossRef]
- Poppei, J.; Mayer, G.; Schwarz, R. Groundwater Energy Designer (GED), Computergestütztes Auslegungstool zur Wärme-und Kältenutzung von Grundwasser. Schlußber. von Colenco Power Eng. AG Auftr. Bundesamts Energ. Schweiz 2006, 70, 1–70. [Google Scholar]
- Garcia-Gil, A.; Vazquez-Sune, E.; Schneider, E.G.; Sánchez-Navarro, J.Á.; Mateo-Lazaro, J. Relaxation factor for geothermal use development–Criteria for a more fair and sustainable geothermal use of shallow energy resources. Geothermics 2015, 56, 128–137. [Google Scholar] [CrossRef]
- Walch, A.; Mohajeri, N.; Gudmundsson, A.; Scartezzini, J.L. Quantifying the technical geothermal potential from shallow borehole heat exchangers at regional scale. Renew. Energy 2021, 165, 369–380. [Google Scholar] [CrossRef]
- Bezelgues-Courtade, S.; Durst, P. Impacts Potentiels de la Géothermie Très Basse Energie sur le sol, le Sous-sol et les eaux Souterraines—Synthèse Bibliographique. Technical Report, Report BRGM/RP-59837-FR (Potential Impact of Shallow Geothermal Energy on . . ., 2009. Available online: http://infoterre.brgm.fr/rapports/RP-64910-FR.pdf (accessed on 27 October 2021).
- Sass, I.; Burbaum, U. Damage to the historic town of Staufen (Germany) caused by geothermal drillings through anhydrite-bearing formations. Acta Carsologica 2010, 39, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Fleuchaus, P.; Blum, P. Damage event analysis of vertical ground source heat pump systems in Germany. Geotherm. Energy 2017, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Bonte, M.; Zaadnoordijk, W.J.; Maas, K. A simple analytical formula for the leakage flux through a perforated aquitard. Groundwater 2015, 53, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Bucci, A.; Prevot, A.B.; Buoso, S.; De Luca, D.A.; Lasagna, M.; Malandrino, M.; Maurino, V. Impacts of borehole heat exchangers (BHEs) on groundwater quality: The role of heat-carrier fluid and borehole grouting. Environ. Earth Sci. 2018, 77, 1–11. [Google Scholar] [CrossRef]
Phase | Environmental Issues | Strategies for Sustainability |
---|---|---|
Installation | Fuel use by drilling machines. | Selection of the GHE setup most suitable to installation site (e.g., U-tube, co-axial). |
Fuel/materials use for the construction of geothermal probes. | Otimization of the boreholes number, length and depth. | |
Land excavation and occupation. | High thermal conductivity grouting. | |
Ground surface swelling. | Optimization of the GHE heat transfer efficiency. | |
Risks of subsidence and flooding. | Accurate sizing of the heat pump compared to the building thermal demand. | |
Contamination of underground and superficial aquifers. | HP running at its nominal capacity | |
Inclusion of a thermal storage | ||
Operation | GHG emissions by electricity consumption. | Balanced annual thermal injection/extraction to facilitate the soil temperature recovery. |
Unstable COP and SPF over long term. | Minimization of mutual interference among GHEs. | |
Component specific inefficiencies and entropy sources. | Minimization of power use and entropy generation of the compression group. | |
Direct and indirect emissions related to the refrigerant. | Maximization of compressor an evaporator efficiency. | |
Soil and acquifer contamination by anti-freeze leakages. | Optimization of the compressor configuration. | |
Propagation of contaminants. | Energy recover from the expansion valve. | |
Alteration of the undisturbed ground temperature. | Energy recover from the expansion valve. | |
Hybrid compression–absorption systems. | ||
Low-GWP/natural refrigerants. | ||
Use of the electricity from renewable energy sources. | ||
Dual-source HP/operation mode and innovative system configurations (e.g. [55,56,57]). | ||
Dynamic management of GSHP system according to building energy needs. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aquino, A.; Scrucca, F.; Bonamente, E. Sustainability of Shallow Geothermal Energy for Building Air-Conditioning. Energies 2021, 14, 7058. https://doi.org/10.3390/en14217058
Aquino A, Scrucca F, Bonamente E. Sustainability of Shallow Geothermal Energy for Building Air-Conditioning. Energies. 2021; 14(21):7058. https://doi.org/10.3390/en14217058
Chicago/Turabian StyleAquino, Andrea, Flavio Scrucca, and Emanuele Bonamente. 2021. "Sustainability of Shallow Geothermal Energy for Building Air-Conditioning" Energies 14, no. 21: 7058. https://doi.org/10.3390/en14217058
APA StyleAquino, A., Scrucca, F., & Bonamente, E. (2021). Sustainability of Shallow Geothermal Energy for Building Air-Conditioning. Energies, 14(21), 7058. https://doi.org/10.3390/en14217058