In Situ Binder-Free and Hydrothermal Growth of Nanostructured NiCo2S4/Ni Electrodes for Solid-State Hybrid Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Details
2.2. Hydrothermal Synthesis of NiCo2S4 Powder and Binder-Using Electrode Preparation
2.3. Chemical Bath Deposition (CBD) of NiCo2S4 on Ni Foam as Binder-Free Electrode
2.4. Electrochemical Measurements
2.5. Assembly of Hybrid Supercapacitor
2.6. Characterization Techniques
2.7. Electrochemical Characterization
3. Results and Discussion
3.1. Structural and Morphological Analysis of NiCo2S4
3.2. Electrochemical Performance of NiCo2S4 Materials
3.3. Electrochemical Measurements of NiCo2S4/Activated Carbon Hybrid Supercapacitors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, J.; Yang, P.; Wang, Y.; Qi, T.; Lei, Y.; Li, C.M. Puzzles and confusions in supercapacitor and battery: Theory and solutions. J. Power Sources 2018, 401, 213–223. [Google Scholar] [CrossRef]
- Chen, G.Z. Supercapacitor and supercapattery as emerging electrochemical energy stores. Int. Mater. Rev. 2017, 62, 173–202. [Google Scholar] [CrossRef] [Green Version]
- Okhay, O.; Tkach, A. Graphene/Reduced Graphene Oxide-Carbon Nano tubes Composite Electrodes: From Capacitive to Battery-Type Behaviour. Nanomaterials 2021, 11, 1240. [Google Scholar] [CrossRef] [PubMed]
- Gogotsi, Y.; Penner, R.M. Energy storage in nanomaterials–capacitive, pseudocapacitive, or battery-like? ACS Nano 2018, 12, 2081–2083. Available online: https://pubs.acs.org/doi/full/10.1021/acsnano.8b01914 (accessed on 15 October 2021). [CrossRef] [Green Version]
- Zuo, W.; Li, R.; Zhou, C.; Li, Y.; Xia, J.; Liu, J. Battery-supercapacitor hybrid devices: Recent progress and future prospects. Adv. Sci. 2017, 4, 1600539. [Google Scholar] [CrossRef]
- Shao, Y.; El−Kady, M.F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R.B. Design and mechanisms of hybrid supercapacitors. Chem. Rev. 2018, 118, 9233–9280. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. hybrid supercapacitor electrodes and devices. Adv. Mater. 2017, 29, 1605336. [Google Scholar] [CrossRef]
- González, A.; Goikolea, E.; Barrena, J.A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 2016, 58, 1189–1206. [Google Scholar] [CrossRef]
- Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high−rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.; Ashby, D.S.; Butts, D.M.; DeBlock, R.H.; Wei, Q.; Lau, J.; Dunn, B. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 2020, 5, 5–19. [Google Scholar] [CrossRef]
- Wu, X.; Huang, B.; Wang, Q.; Wang, Y. Wide potential and high energy density for an hybrid aqueous supercapacitor. J. Mater. Chem. A 2019, 7, 19017–19025. [Google Scholar] [CrossRef]
- Kulkarni, P.; Nataraj, S.; Balakrishna, R.G.; Nagaraju, D.; Reddy, M. Nanostructured binary and ternary metal sulfides: Synthesis methods and their application in energy conversion and storage devices. J. Mater. Chem. A 2017, 5, 22040–22094. [Google Scholar] [CrossRef]
- Zheng, M.; Xiao, X.; Li, L.; Gu, P.; Dai, X.; Tang, H.; Hu, Q.; Xue, H.; Pang, H. Hierarchically nanostructured transition metal oxides for supercapacitors. Sci. China Mater. 2018, 61, 185–209. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, K.; Kalpana, D.; Renganathan, N. Synthesis and characterization of ZnCo2O4 nanomaterial for symmetric supercapacitor applications. Ionics 2009, 15, 107–110. [Google Scholar] [CrossRef]
- Sankar, K.V.; Selvan, R.K. Fabrication of flexible fiber supercapacitor using covalently grafted CoFe2O4/reduced graphene oxide/polyaniline and its electrochemical performances. Electrochim. Acta 2016, 213, 469–481. [Google Scholar] [CrossRef]
- Prasankumar, T.; Vigneshwaran, J.; Bagavathi, M.; Jose, S. Expeditious and eco−friendly synthesis of spinel LiMn2O4 and its potential for fabrication of supercapacitors. J. Alloy. Compd. 2020, 834, 155060. [Google Scholar] [CrossRef]
- Annamalai, K.; Tao, Y.-S. A hierarchically porous CuCo2S4/graphene composite as an electrode material for supercapacitors. New Carbon Mater. 2016, 31, 336–342. [Google Scholar]
- Hu, W.; Chen, R.; Xie, W.; Zou, L.; Qin, N.; Bao, D. CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous hybrid supercapacitor applications. ACS Appl. Mater. Interfaces 2014, 6, 19318–19326. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, G.; Huang, Z.; Lu, Q.; Yu, B.; Evariste, U.; Ma, P. Decoration of hollow mesoporous carbon spheres by NiCo2S4 nanoparticles as electrode materials for hybrid supercapacitors. ACS Appl. Energy Mater. 2019, 2, 8079–8089. [Google Scholar] [CrossRef]
- Wu, Z.; Pu, X.; Ji, X.; Zhu, Y.; Jing, M.; Chen, Q.; Jiao, F. High energy density hybrid supercapacitors from mesoporous NiCo2S4 nanosheets. Electrochim. Acta 2015, 174, 238–245. [Google Scholar] [CrossRef]
- Cai, D.; Wang, D.; Wang, C.; Liu, B.; Wang, L.; Liu, Y.; Li, Q.; Wang, T. Construction of desirable NiCo2S4 nanotube arrays on nickel foam substrate for pseudocapacitors with enhanced performance. Electrochim. Acta 2015, 151, 35–41. [Google Scholar] [CrossRef]
- Huang, Y.; Shi, T.; Jiang, S.; Cheng, S.; Tao, X.; Zhong, Y.; Liao, G.; Tang, Z. Enhanced cycling stability of NiCo2S4@ NiO core−shell nanowire arrays for all−solid−state hybrid supercapacitors. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef]
- Gao, Y.P.; Huang, K.J. NiCo2S4 materials for supercapacitor applications. Chem. Asian J. 2017, 12, 1969–1984. [Google Scholar] [CrossRef]
- Shen, L.; Wang, J.; Xu, G.; Li, H.; Dou, H.; Zhang, X. NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv. Energy Mater. 2015, 5, 1400977. [Google Scholar] [CrossRef]
- Guan, B.Y.; Yu, L.; Wang, X.; Song, S.; Lou, X.W. Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv. Mater. 2017, 29, 1605051. [Google Scholar] [CrossRef]
- Xia, C.; Li, P.; Gandi, A.N.; Schwingenschlögl, U.; Alshareef, H.N. Is NiCo2S4 really a semiconductor? Chem. Mater. 2015, 27, 6482–6485. [Google Scholar] [CrossRef] [Green Version]
- Lu, F.; Zhou, M.; Li, W.; Weng, Q.; Li, C.; Xue, Y.; Jiang, X.; Zeng, X.; Bando, Y.; Golberg, D. Engineering sulfur vacancies and impurities in NiCo2S4 nanostructures toward optimal supercapacitive performance. Nano Energy 2016, 26, 313–323. [Google Scholar] [CrossRef]
- Yang, J.; Ma, M.; Sun, C.; Zhang, Y.; Huang, W.; Dong, X. Hybrid NiCo2S4@MnO2 heterostructures for high−performance supercapacitor electrodes. J. Mater. Chem. A 2015, 3, 1258–1264. [Google Scholar] [CrossRef]
- Chang, W.-S.; Wu, C.-C.; Jeng, M.-S.; Cheng, K.-W.; Huang, C.-M.; Lee, T.-C. Ternary Ag–In–S polycrystalline films deposited using chemical bath deposition for photoelectrochemical applications. Mater. Chem. Phys. 2010, 120, 307–312. [Google Scholar] [CrossRef]
- Fic, K.; Meller, M.; Menzel, J.; Frackowiak, E. Around the thermodynamic limitations of supercapacitors operating in aqueous electrolytes. Electrochim. Acta 2016, 206, 496–503. [Google Scholar] [CrossRef]
- Zhao, C.; Zheng, W. A review for aqueous electrochemical supercapacitors. Front. Energy Res. 2015, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- Pérez−Madrigal, M.M.; Edo, M.G.; Alemán, C. Powering the future: Application of cellulose−based materials for supercapacitors. Green Chem. 2016, 18, 5930–5956. [Google Scholar] [CrossRef]
- Suganya, N.; Jaisankar, V.; Sivakumar, E. Conducting polymeric hydrogel electrolyte based on carboxymethylcellulose and polyacrylamide/polyaniline for supercapacitor applications. Int. J. Nanosci. 2018, 17, 1760003. [Google Scholar] [CrossRef]
- Timperman, L.; Béguin, F.; Frackowiak, E.; Anouti, M. Comparative study of two protic ionic liquids as electrolyte for electrical double−layer capacitors. J. Electrochem. Soc. 2013, 161, A228. [Google Scholar] [CrossRef]
- Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539. [Google Scholar] [CrossRef] [PubMed]
- Erusappan, E.; Pan, G.-T.; Chung, H.-Y.; Chong, S.; Thiripuranthagan, S.; Yang, T.C.-K.; Huang, C.-M. Hierarchical nickel–cobalt oxide and glucose−based carbon electrodes for hybrid supercapacitor with high energy density. J. Taiwan Inst. Chem. Eng. 2020, 112, 330–336. [Google Scholar] [CrossRef]
- Yadav, A.A. Influence of electrode mass−loading on the properties of spray deposited Mn3O4 thin films for electrochemical supercapacitors. Thin Solid Film. 2016, 608, 88–96. [Google Scholar] [CrossRef]
- Böckenfeld, N.; Jeong, S.; Winter, M.; Passerini, S.; Balducci, A. Natural, cheap and environmentally friendly binder for supercapacitors. J. Power Sources 2013, 221, 14–20. [Google Scholar] [CrossRef]
- Tsai, Y.-C.; Yang, W.-D.; Lee, K.-C.; Huang, C.-M. An effective electrodeposition mode for porous MnO2/Ni foam composite for hybrid supercapacitors. Materials 2016, 9, 246. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Gong, Y.; Pan, C. Facile synthesis of hybrid CNTs/NiCo 2 S 4 composite for high performance supercapacitors. Sci. Rep. 2016, 6, 1–7. [Google Scholar]
- He, X.; Liu, Q.; Liu, J.; Li, R.; Zhang, H.; Chen, R.; Wang, J. High−performance all−solid−state hybridal supercapacitors based on petal−like NiCo2S4/Polyaniline nanosheets. Chem. Eng. J. 2017, 325, 134–143. [Google Scholar] [CrossRef]
- Zhao, F.; Huang, W.; Shi, Q.; Zhou, D.; Zhao, L.; Zhang, H. Low temperature fabrication of hydrangea−like NiCo2S4 as electrode materials for high performance supercapacitors. Mater. Lett. 2017, 186, 206–209. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-Y.; Dhaiveegan, P.; Michalska, M.; Lin, J.-Y. Morphology−controlled synthesis of nanosphere−like NiCo2S4 as cathode materials for high−rate hybrid supercapacitors. Electrochim. Acta 2018, 274, 208–216. [Google Scholar] [CrossRef]
- Gervas, C.; Khan, M.D.; Zhang, C.; Zhao, C.; Gupta, R.K.; Carleschi, E.; Doyle, B.P.; Revaprasadu, N. Effect of cationic disorder on the energy generation and energy storage applications of NixCo3−xS4 thiospinel. RSC Adv. 2018, 8, 24049–24058. [Google Scholar] [CrossRef] [Green Version]
- Chang, X.; Li, W.; Liu, Y.; He, M.; Zheng, X.; Bai, J.; Ren, Z. Hierarchical NiCo2S4@ NiCoP core−shell nanocolumn arrays on nickel foam as a binder−free supercapacitor electrode with enhanced electrochemical performance. J. Colloid Interface Sci. 2019, 538, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Arulepp, M.; Leis, J.; Lätt, M.; Miller, F.; Rumma, K.; Lust, E.; Burke, A. The advanced carbide−derived carbon based supercapacitor. J. Power Sources 2006, 162, 1460–1466. [Google Scholar] [CrossRef]
- Mei, B.-A.; Munteshari, O.; Lau, J.; Dunn, B.; Pilon, L. Physical interpretations of Nyquist plots for EDLC electrodes and devices. J. Phys. Chem. C 2018, 122, 194–206. [Google Scholar] [CrossRef]
- Ismail, M.M.; Hemaanandhan, S.; Mani, D.; Arivanandhan, M.; Anbalagan, G.; Jayavel, R. Facile preparation of Mn3O4/rGO hybrid nanocomposite by sol–gel in situ reduction method with enhanced energy storage performance for supercapacitor applications. J. Sol−Gel Sci. Technol. 2020, 93, 703–713. [Google Scholar] [CrossRef]
- Saravanan, T.; Anandan, P.; Shanmugam, M.; Azhagurajan, M.; Mohamed Ismail, M.; Arivanandhan, M.; Hayakawa, Y.; Jayavel, R. Facile synthesis of Yb2O3–graphene nanocomposites for enhanced energy and environmental applications. Polym. Bull. 2020, 77, 3891–3906. [Google Scholar] [CrossRef]
- Mei, B.-A.; Lau, J.; Lin, T.; Tolbert, S.H.; Dunn, B.S.; Pilon, L. Physical interpretations of electrochemical impedance spectroscopy of redox active electrodes for electrical energy storage. J. Phys. Chem. C 2018, 122, 24499–24511. [Google Scholar] [CrossRef]
- Pan, G.-T.; Chong, S.; Yang, T.C.-K.; Huang, C.-M. Electrodeposited porous Mn1.5Co1.5O4/Ni composite electrodes for high−voltage hybrid supercapacitors. Materials 2017, 10, 370. [Google Scholar] [CrossRef]
- Fan, Y.-M.; Liu, Y.; Liu, X.; Liu, Y.; Fan, L.-Z. Hierarchical porous NiCo2S4−rGO composites for high−performance supercapacitors. Electrochim. Acta 2017, 249, 1–8. [Google Scholar] [CrossRef]
- Hou, L.; Bao, R.; Chen, Z.; Rehan, M.; Tong, L.; Pang, G.; Yuan, C. Comparative investigation of hollow mesoporous NiCo2S4 ellipsoids with enhanced pseudo−capacitances towards high−performance hybrid supercapacitors. Electrochim. Acta 2016, 214, 76–84. [Google Scholar] [CrossRef]
- Prabaharan, S.; Vimala, R.; Zainal, Z. Nanostructured mesoporous carbon as electrodes for supercapacitors. J. Power Sources 2006, 161, 730–736. [Google Scholar] [CrossRef]
- Huang, Y.; Cheng, M.; Xiang, Z.; Cui, Y. Facile synthesis of NiCo2S4/CNTs nanocomposites for high−performance supercapacitors. R. Soc. Open Sci. 2018, 5, 180953. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Liu, H.; Song, Z.; Ma, T.; Xie, J. Self−assembling NiCo2S4 nanorods arrays and T−Nb2O5 nanosheets/three−dimensional nitrogen−doped garphene hybrid nanoarchitectures for advanced hybrid supercapacitor. Chem. Eng. J. 2020, 392, 123669. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, B.; Hei, J.; Gao, D.; Xu, X.; Wei, Z.; Wu, H. Self−assembled synthesis of waxberry−like open hollow NiCo2S4 with enhanced capacitance for high−performance hybrid asymmetric supercapacitors. Electrochimica Acta 2020, 347, 136314. [Google Scholar] [CrossRef]
- Li, R.; Wang, S.; Huang, Z.; Lu, F.; He, T. NiCo2S4@Co(OH)2 core−shell nanotube arrays in situ grown on Ni foam for high performances hybrid supercapacitors. J. Power Sources 2016, 312, 156–164. [Google Scholar] [CrossRef]
- Zhao, Y.; He, X.; Chen, R.; Liu, Q.; Liu, J.; Song, D.; Zhang, H.; Dong, H.; Li, R.; Zhang, M. Hierarchical NiCo2S4@ CoMoO4 core−shell heterostructures nanowire arrays as advanced electrodes for flexible all−solid−state hybrid supercapacitors. Appl. Surf. Sci. 2018, 453, 73–82. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.; Cheng, J.; Shi, Y.; Zhang, Q.; Dou, P.; Xu, X. Skeleton networks of graphene wrapped double−layered polypyrrole/polyaniline nanotubes for supercapacitor applications. J. Mater. Sci. 2018, 53, 787–798. [Google Scholar] [CrossRef]
- Lu, X.; Liu, T.; Zhai, T.; Wang, G.; Yu, M.; Xie, S.; Ling, Y.; Liang, C.; Tong, Y.; Li, Y. Improving the cycling stability of metal–nitride supercapacitor electrodes with a thin carbon shell. Adv. Energy Mater. 2014, 4, 1300994. [Google Scholar] [CrossRef]
- Ismail, M.M.; Vigneshwaran, J.; Arunbalaji, S.; Mani, D.; Arivanandhan, M.; Jose, S.P.; Jayavel, R. Antimonene nanosheets with enhanced electrochemical performance for energy storage applications. Dalton Trans. 2020, 49, 13717–13725. [Google Scholar] [CrossRef] [PubMed]
Material and Substrate | Synthesis Method | Morphology | Potential Window Full Cell | Specific Capacitance or Capacity | Energy Density | Power Density | Cyclic Stability | Ref. |
---|---|---|---|---|---|---|---|---|
NiCo2S4-Ni foam | Hydrothermal | Mesoporous nanosheet | 1.6 V | 744 Fg−1 @ 1 Ag−1 | 25.5 Wh/kg | 8 kW/kg | 93.4% 1500 cycles | [20] |
NiCo2S4/polyaniline-Carbon Cloth | Hydrothermal/chemical oxidative polymerization | Petal-like nanosheet | 1.6 V | 1879 Fg−1 @ 1 Ag−1 | 54.6 Wh/kg | 27.1 W/kg | 72% | [41] |
NiCo2S4-Ni foam | Hydrothermal | Hydrangea flower | — | 1475 Fg−1 @ 3 Ag−1 | 78.1% | [42] | ||
NiCo2S4/graphene hydrogel−Ni foam | Hydrothermal | Nanosphere | 1.6 V | 23 mAg−1 @1 Ag−1 | 23.38 Wh/kg | 1.16 kW/kg | 91.4% 5000 cycles | [43] |
NiCo2S4/rGO−Ni foam | Hydrothermal | Hierarchic porous | 1.5 V | 1107 Fg−1 @ 1 Ag−1 | 36 Wh/kg | 1.6 kW/kg | 85% 8000 cycles | [44] |
Hollow mesoporous NiCo2S4−Ni foam | Hydrothermal | Ellipsoids | 1.5 V | 607 Fg−1 @ 3 Ag−1 | 28.9 Wh/kg | 187.5 W/kg | 71.9% 2500 cycles | [53] |
NiCo2S4 | Hydrothermal | Nanosheets | 1.7 | 844 Cg−1 @ 1 Ag−1 | 25.8 Wh/kg | 8kW/kg | 72.5% | [57] |
NiCo2S4@Co(OH)2−Ni foam | In situ hydrothermal growth | Core–shell nanotube array | 1.6 V | 9.6 F/cm2 @ 2 mA/cm2 | 35.89 Wh/kg | 0.4 kW/kg | 70.1% | [58] |
NiCo2S4@CoMoO4 (core−shell)−carbon cloth | Hydrothermal | Core–shell nanowire arrays | 1.6 V | 2118.8 Fg−1 @ 1 Ag−1 | 66.6 Wh/Kg | 0.8 kW/Kg | 85.6% 5000 cycles | [59] |
NCS(PW)/Ni/AC | Hydrothermal | Nanohierarchical structure | 2.6 V | 311.7 Cg−1 @ 1 Ag−1 | 51.24 Wh/Kg | 13 kW/kg | 14% 1500 cycles | This work |
NCS(CBD)/Ni/AC | Chemical bath deposition | Spherical morphology | 2.6 V | 198.6 Cg−1 @ 1 Ag−1 | 29.1 Wh/Kg | 13 kW/kg | 52% 1500 cycles | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, M.M.; Hong, Z.-Y.; Arivanandhan, M.; Yang, T.C.-K.; Pan, G.-T.; Huang, C.-M. In Situ Binder-Free and Hydrothermal Growth of Nanostructured NiCo2S4/Ni Electrodes for Solid-State Hybrid Supercapacitors. Energies 2021, 14, 7114. https://doi.org/10.3390/en14217114
Ismail MM, Hong Z-Y, Arivanandhan M, Yang TC-K, Pan G-T, Huang C-M. In Situ Binder-Free and Hydrothermal Growth of Nanostructured NiCo2S4/Ni Electrodes for Solid-State Hybrid Supercapacitors. Energies. 2021; 14(21):7114. https://doi.org/10.3390/en14217114
Chicago/Turabian StyleIsmail, M. Mohamed, Zhong-Yun Hong, M. Arivanandhan, Thomas Chung-Kuang Yang, Guan-Ting Pan, and Chao-Ming Huang. 2021. "In Situ Binder-Free and Hydrothermal Growth of Nanostructured NiCo2S4/Ni Electrodes for Solid-State Hybrid Supercapacitors" Energies 14, no. 21: 7114. https://doi.org/10.3390/en14217114
APA StyleIsmail, M. M., Hong, Z. -Y., Arivanandhan, M., Yang, T. C. -K., Pan, G. -T., & Huang, C. -M. (2021). In Situ Binder-Free and Hydrothermal Growth of Nanostructured NiCo2S4/Ni Electrodes for Solid-State Hybrid Supercapacitors. Energies, 14(21), 7114. https://doi.org/10.3390/en14217114