Asymmetric Split-Gate 4H-SiC MOSFET with Embedded Schottky Barrier Diode for High-Frequency Applications
Abstract
:1. Introduction
2. Device Structure and Optimization
2.1. Proposed Device Structure
2.2. Key Parameter Optimization
3. Electrical Characteristics Analysis
3.1. Static Characteristics
3.2. Dynamic Characteristics
4. Proposed Fabrication Process
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paul, T. Wide bandgap semiconductor power devices for energy efficient systems. In Proceedings of the 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Blacksburg, VA, USA, 2–4 November 2015; pp. 402–405. [Google Scholar]
- Baliga, B.J. Fundamentals of Power Semiconductor Devices; Springer: New York, NY, USA, 2008. [Google Scholar]
- Godignon, P.; Soler, V.; Cabello, M.; Montserrat, J.; Rebollo, J.; Knoll, L.; Bianda, E.; Mihaila, A. New Trends in High Voltage MOSFET Based on Wide Band Gap Materials. In Proceedings of the International Semiconductor Conference (CAS), Sinaia, Romania, 11–14 October 2017. [Google Scholar]
- Zhang, M.; Wei, J.; Jiang, H.; Chen, K.J.; Cheng, C.H. Low ON-Resistance SiC Trench/Planar MOSFET With Reduced OFF-State Oxide Field and Low Gate Charges. IEEE Electron. Device Lett. 2016, 37, 1458–1461. [Google Scholar]
- Cooper, J.A.; Agarwal, A. SiC power-switching devices-the second electronics revolution? Proc. IEEE 2002, 90, 956–968. [Google Scholar] [CrossRef]
- Agarwal, A.; Baliga, B.J.; Francois, M.M.A.; Maxwell, E.; Berliner, N.; Papageorge, M. 3.3kV 4H-SiC Planar-Gate MOSFETs Manufactured using Gen-5 PRESiCE™ Technology in a 4-inch Wafer Commercial Foundry. In Proceedings of the SoutheastCon 2021, Atlanta, GA, USA, 10–13 March 2021; pp. 1–4. [Google Scholar]
- Baba, M.; Tawara, T.; Morimoto, T.; Harada, S.; Takei, M.; Kimura, H. Ultra-Low Specific on-Resistance Achieved in 3.3 kV-Class SiC Superjunction MOSFET 2021. In Proceedings of the 3rd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Nagoya, Japan, 30 May–3 June 2021; pp. 83–86. [Google Scholar]
- Krishnaswami, S. Gate oxide reliability of 4H-SiC MOS devices. In Proceedings of the IEEE International Reliability Physics Symposium (IRPS), San Jose, CA, USA, 17–21 April 2005; pp. 592–593. [Google Scholar]
- Vudumula, P.; Kotamraju, S. Design and Optimization of 1.2-kV SiC Planar Inversion MOSFET Using Split Dummy Gate Concept for High-Frequency Applications. IEEE Electron. Device Lett. 2019, 66, 5266–5271. [Google Scholar] [CrossRef]
- Han, K.; Baliga, B.J.; Sung, W. Split-Gate 1.2-kV 4H-SiC MOSFET: Analysis and Experimental Validation. IEEE Electron. Device Lett. 2017, 38, 1437–1440. [Google Scholar] [CrossRef]
- Ishigaki, T.; Tatsunori, M.; Kinoshita, K.; Morikawa, T.; Oda, T.; Fujita, R.; Konishi, K.; Mori, Y.; Shima, A. 2019 Analysis of Degradation Phenomena in Bipolar Degradation Screening Process for SiC-MOSFETs. In Proceedings of the 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), Shanghai, China, 19–23 May 2019; pp. 259–262. [Google Scholar]
- Conrad, M.; De Doncker, R.W. Avoiding reverse recovery effects in super junction MOSFET based half-bridges. In Proceedings of the 2015 IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Aachen, Germany, 22–25 June 2015; pp. 1–5. [Google Scholar]
- Kawahara, K.; Hino, S.; Sadamatsu, K.; Nakao, Y.; Yamashiro, Y.; Yamamoto, Y.; Iwamatsu, T.; Tomohisa, S.; Yamakawa, S. 6.5 kV schottky-barrier-diode-embedded SiC-MOSFET for compact full-unipolar module. In Proceedings of the 2017 29th International Symposium on Power Semiconductor Devices and IC’s (ISPSD), Sapporo, Japan, 28 May–1 June 2017; pp. 41–44. [Google Scholar]
- Soltau, N.; Wiesner, E.; Hatori, K. Switching Performance of 750A/3300V Dual SiC-Modules. Bodo’s Power Syst. 2019, 2, 26–28. [Google Scholar]
- Han, Z.; Bai, Y.; Chen, H.; Li, C.; Lu, J.; Song, G.; Liu, X. A trench/planar sic mosfet integrated with SBD (TPSBD) for low reverse recovery charge and low switching loss. Semicond. Sci. Technol. 2020, 35, 1–10. [Google Scholar] [CrossRef]
- Synopsys, Inc. TCAD SentaurusTM Device User Guide; Synopsys, Inc.: Mountain View, CA, USA, 2017. [Google Scholar]
- Sung, W.; Baliga, B.J. On Developing One-Chip Integration of 1.2 kV SiC MOSFET and JBS Diode (JBSFET). IEEE Trans. Ind. Electron. 2017, 64, 8206–8212. [Google Scholar] [CrossRef]
- Pan, Y.; Tian, L.; Wu, H.; Li, Y.; Yang, F. 3.3kV 4H-SiC JBS diodes with single-zone JTE termination. Microelectron. Eng. 2017, 181, 10–15. [Google Scholar] [CrossRef]
- Shenai, K.; Baliga, B.J. Monolithically integrated power MOSFET and Schottky diode with improved reverse recovery characteristics. IEEE Trans. Electron. Devices 1990, 37, 1167–1169. [Google Scholar] [CrossRef]
- Ahn, J.; Ting, W.; Kwong, D.L. Comparison of performance and reliability between MOSFETs with LPCVD gate oxide and thermal gate oxide. IEEE Trans. Electron. Devices 1991, 38, 2709–2710. [Google Scholar] [CrossRef]
- Saxena, R.S.; Kumar, M.J. Dual-Material-Gate Technique for Enhanced Transconductance and Breakdown Voltage of Trench Power MOSFETs. IEEE Trans. Electron. Devices 2009, 56, 517–522. [Google Scholar] [CrossRef]
- Rao, V.R.; Eisele, I.; Patrikar, R.M.; Sharma, D.K.; Vasi, J.; Grabolla, T. High-field stressing of LPCVD gate oxides. IEEE Electron. Device Lett. 1997, 18, 84–86. [Google Scholar]
- Sung, W.; Baliga, B.J. Monolithically Integrated 4H-SiC MOSFET and JBS Diode (JBSFET) Using a Single Ohmic/Schottky Process Scheme Applications. IEEE Electron. Device Lett. 2016, 37, 1605–1608. [Google Scholar] [CrossRef]
C-MOSFET | ASG-MOSFET | |
---|---|---|
RON,SP (mΩ·cm2) | 10.12 | 8.85 |
BV (V) | 4098 | 4141 |
BFOM (MW/cm2) | 1659.5 | 1937.6 |
Maximum EOX (MV/cm) | 2.74 | 2.02 |
VF,SBD (V) | 1.45 | 1.35 |
VF,Body (V) | 6.12 | 9.0 |
C-MOSFET | ASG-MOSFET | |
---|---|---|
CISS (nF/cm2) | 16.79 | 17.34 |
COSS (pF/cm2) | 369.79 | 369.71 |
CGD (pF/cm2) | 15.24 | 6.04 |
QRR (nC/cm2) | 1.18 | 1.26 |
EOFF (mJ/cm2) | 1.79 | 0.84 |
EON (mJ /cm2) | 4.01 | 3.19 |
ETotal (mJ/cm2) | 5.80 | 4.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cha, K.; Kim, K. Asymmetric Split-Gate 4H-SiC MOSFET with Embedded Schottky Barrier Diode for High-Frequency Applications. Energies 2021, 14, 7305. https://doi.org/10.3390/en14217305
Cha K, Kim K. Asymmetric Split-Gate 4H-SiC MOSFET with Embedded Schottky Barrier Diode for High-Frequency Applications. Energies. 2021; 14(21):7305. https://doi.org/10.3390/en14217305
Chicago/Turabian StyleCha, Kyuhyun, and Kwangsoo Kim. 2021. "Asymmetric Split-Gate 4H-SiC MOSFET with Embedded Schottky Barrier Diode for High-Frequency Applications" Energies 14, no. 21: 7305. https://doi.org/10.3390/en14217305
APA StyleCha, K., & Kim, K. (2021). Asymmetric Split-Gate 4H-SiC MOSFET with Embedded Schottky Barrier Diode for High-Frequency Applications. Energies, 14(21), 7305. https://doi.org/10.3390/en14217305