Improving Forecast Reliability for Geographically Distributed Photovoltaic Generations
Abstract
:1. Introduction
- (1)
- We propose a method to develop boundaries for PIs based on past forecast errors. The case study shows that the boundaries are stable and functional for multiple PVs based on actual PV generation data.
- (2)
- A multi-step PV forecasting scheme for geographically distributed PVs in a specific area is proposed. The case study shows that the proposed scheme improves the forecasting reliability with real PV generation data.
- (3)
- The performance of the proposed multi-step PV forecasting scheme was evaluated with a long-term simulation case as continuous 30 days. The statistical analysis indicates that the proposed scheme improves the root mean square error (RMSE) and mean average percentage error (MAPE) for deterministic forecasting. In addition, the PI cover rate and the width of the PI for probabilistic forecasting are improved compared to conventional single PV forecast methods.
2. Forecast Methodology
2.1. Ensemble Forecasting with Prediction Intervals
- (i)
- Check if forecast models need to be updated
- (ii)
- Train each forecast model with training data
- Step 1.
- k-means classifies the observed PV generation records with 50 clusters. In this case, the k = 50 is experimentally chosen. Then, the predictors such as temperature and weather conditions corresponding with each timestamp are classified in each cluster.
- Step 2.
- Train naive Bayes classifier model by the classified observed and kernel distribution function for predictors.
- Step 3.
- The trained naive Bayes classifier classifies the unknown predictors as test data with each cluster.
- Step 4.
- The centroid of each cluster, which is determined in Step1, is the forecasted PV generation value.
- (iii)
- Find the best weight for each forecast model
- (iv)
- Derive error distribution from the ensemble model
- (v)
- Forecast deterministic PV generation by the ensemble model
- (vi)
- Make prediction interval from error distribution and deterministic forecasting
2.2. Multiple Forecast Model
3. Case Study
3.1. Given Data Set and Premises
3.2. Simulation Results
3.2.1. Forecast Result on the Best and Worst Day
3.2.2. Statistical Analysis of Forecast Result in the Whole Forecast Duration
4. Conclusions
- Advantage:
- Disadvantage:
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haghdadi, N.; Bruce, A.; MaCgill, I.; Passey, R. Impact of Distributed Photovoltaic Systems on Zone Substation Peak Demand. IEEE Trans. Sustain. Energy 2018, 9, 621–629. [Google Scholar] [CrossRef]
- Nagarajan, A.; Ayyanar, R. Design and Strategy for the Deployment of Energy Storage Systems in a Distribution Feeder with Penetration of Renewable Resources. IEEE Trans. Sustain. Energy 2015, 6, 1085–1092. [Google Scholar] [CrossRef]
- Kodaira, D.; Jung, W.; Han, S. Optimal Energy Storage System Operation for Peak Reduction in a Distribution Network Using a Prediction Interval. IEEE Trans. Smart Grid 2020, 11, 2208–2217. [Google Scholar] [CrossRef]
- Khosravi, A.; Nahavandi, S.; Creighton, D. Construction of optimal prediction intervals for load forecasting problems. IEEE Trans. Power Syst. 2010, 25, 1496–1503. [Google Scholar] [CrossRef] [Green Version]
- Chai, S.; Xu, Z.; Jia, Y.; Wong, W.K. A Robust Spatiotemporal Forecasting Framework for Photovoltaic Generation. IEEE Trans. Smart Grid 2020, 11, 5370–5382. [Google Scholar] [CrossRef]
- Agoua, X.G.; Girard, R.; Kariniotakis, G. Photovoltaic power forecasting: Assessment of the impact of multiple sources of spatio-temporal data on forecast accuracy. Energies 2021, 14, 1432. [Google Scholar] [CrossRef]
- Agoua, X.G.; Girard, R.; Kariniotakis, G. Probabilistic Models for Spatio-Temporal Photovoltaic Power Forecasting. IEEE Trans. Sustain. Energy 2019, 10, 780–789. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, E.; Hurka, J.; Heinemann, D.; Beyer, H.G. Irradiance Forecasting for the Power Prediction of Grid-Connected Photovoltaic Systems. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 2, 2–10. [Google Scholar] [CrossRef]
- Carrière, T.; Silva, R.A.e.; Zhuang, F.; Saint-Drenan, Y.-M.; Blanc, P. A New Approach for Satellite-Based Probabilistic Solar Forecasting with Cloud Motion Vectors. Energies 2021, 14, 4951. [Google Scholar] [CrossRef]
- Pedro, H.T.C.; Larson, D.P.; Coimbra, C.F.M. A comprehensive dataset for the accelerated development and benchmarking of solar forecasting methods. J. Renew. Sustain. Energy 2019, 11, 036102. [Google Scholar] [CrossRef] [Green Version]
- Mellit, A.; Pavan, A.M.; Ogliari, E.; Leva, S.; Lughi, V. Advanced methods for photovoltaic output power forecasting: A review. Appl. Sci. 2020, 10, 487. [Google Scholar] [CrossRef] [Green Version]
- Pierro, M.; Bucci, F.; De Felice, M.; Maggioni, E.; Moser, D.; Perotto, A.; Spada, F.; Cornaro, C. Multi-Model Ensemble for day ahead prediction of photovoltaic power generation. Sol. Energy 2016, 134, 132–146. [Google Scholar] [CrossRef]
- Chow, C.W.; Belongie, S.; Kleissl, J. Cloud motion and stability estimation for intra-hour solar forecasting. Sol. Energy 2015, 115, 645–655. [Google Scholar] [CrossRef]
- Horn, B.K.P.; Schunck, B.G. Determining optical flow. Comput. Vis. 1981, 17, 185–203. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, Y.; Kameda, Y.; Kondoh, J. A Power-Forecasting Method for Geographically Distributed PV Power Systems using Their Previous Datasets. Energies 2019, 12, 4815. [Google Scholar] [CrossRef] [Green Version]
- Wen, H.; Du, Y.; Chen, X.; Lim, E.; Wen, H.; Jiang, L.; Xiang, W. Deep Learning Based Multistep Solar Forecasting for PV Ramp-Rate Control Using Sky Images. IEEE Trans. Ind. Inform. 2021, 17, 1397–1406. [Google Scholar] [CrossRef]
- Al-Dahidi, S.; Ayadi, O.; Alrbai, M.; Adeeb, J. Ensemble approach of optimized artificial neural networks for solar photovoltaic power prediction. IEEE Access 2019, 7, 81741–81758. [Google Scholar] [CrossRef]
- Hwang, J.T.G.; Ding, A.A. Prediction Intervals for Artificial Neural Networks. J. Am. Stat. Assoc. 1997, 92, 748–757. [Google Scholar] [CrossRef]
- De Veaux, R.D.; Schumi, J.; Schweinsberg, J.; Ungar, L.H. Prediction intervals for neural networks via nonlinear regression. Technometrics 1998, 40, 273–282. [Google Scholar] [CrossRef]
- MacKay, D.J.C. The Evidence Framework Applied to Classification Networks. Neural Comput. 1992, 4, 720–736. [Google Scholar] [CrossRef]
- Nix, D.A.; Weigend, A.S. Estimating the mean and variance of the target probability distribution. IEEE Int. Conf. Neural Netw.-Conf. Proc. 1994, 1, 55–60. [Google Scholar]
- Heskes, T. Practical confidence and prediction intervals. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 1997; pp. 176–182. [Google Scholar]
- Khosravi, A.; Nahavandi, S.; Creighton, D.; Atiya, A.F. Comprehensive review of neural network-based prediction intervals and new advances. IEEE Trans. Neural Netw. 2011, 22, 1341–1356. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, A.; Nahavandi, S.; Creighton, D. Prediction Intervals for Short-Term Wind Farm Power Generation Forecasts. IEEE Trans. Sustain. Energy 2013, 4, 602–610. [Google Scholar] [CrossRef]
- Ahmed, R.; Sreeram, V.; Mishra, Y.; Arif, M.D. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renew. Sustain. Energy Rev. 2020, 124, 109792. [Google Scholar] [CrossRef]
- Park, S.; Han, S.; Son, Y. Demand power forecasting with data mining method in smart grid. In Proceedings of the 2017 IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia), Auckland, New Zealand, 4–7 December 2017; pp. 1–6. [Google Scholar]
- Function Fitting Neural Network—MATLAB & Simulink—MathWorks. 2021. Available online: https://www.mathworks.com/help/deeplearning/ref/fitnet.html;jsessionid=aefb10cd790c33d77ace7a56705a (accessed on 26 October 2021).
- Long Short-Term Memory Networks—MATLAB & Simulink—MathWorks. Available online: https://jp.mathworks.com/help/deeplearning/ug/long-short-term-memory-networks.html?lang=en (accessed on 2 September 2021).
- Algorithm Implementation Codes on GitHub. Available online: https://github.com/daisukekodaira/Improving-Forecast-Reliability-for-Geographically-Distributed-Photovoltaic-Generations (accessed on 26 October 2021).
- Agyeman, K.A.; Kim, G.; Jo, H.; Park, S.; Han, S. An Ensemble Stochastic Forecasting Framework for Variable Distributed Demand Loads. Energies 2020, 13, 2658. [Google Scholar] [CrossRef]
- Møller, M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1993, 6, 525–533. [Google Scholar] [CrossRef]
- Kim, T.; Ko, W.; Kim, J. Analysis and impact evaluation of missing data imputation in day-ahead PV generation forecasting. Appl. Sci. 2019, 9, 204. [Google Scholar] [CrossRef] [Green Version]
- MathWorks. Visualize Summary Statistics with Box Plot. 2021. Available online: https://jp.mathworks.com/help/stats/boxplot.html?lang=en (accessed on 23 August 2021).
PV ID | The Number of Total Records | The Number of Missing Record | Missing Rate [%] |
---|---|---|---|
(i) | 7722 | 494 | 6.4 |
(ii) | 7722 | 754 | 9.8 |
(iii) | 7722 | 410 | 5.3 |
(iv) | 7722 | 188 | 2.4 |
(v) | 7722 | 864 | 11.2 |
Cover Rate [%] | PI Width [kW] | MAPE [%] | RMSE [kW] | ||||||
---|---|---|---|---|---|---|---|---|---|
Single | Multi | Single | Multi | Single | Multi | Single | Multi | ||
PV (i) | M + 2σ | 89.0 | 91.6 | 2.659 | 1.624 | 92.7 | 81.6 | 0.755 | 0.566 |
Median (M) | 86.4 | 86.4 | 2.578 | 1.581 | 67.1 | 60.9 | 0.684 | 0.479 | |
M − 2σ | 83.8 | 81.2 | 2.497 | 1.537 | 41.5 | 40.3 | 0.614 | 0.392 | |
PV (ii) | M + 2σ | 87.0 | 94.8 | 1.442 | 0.797 | 69.5 | 24.8 | 0.386 | 0.196 |
Median (M) | 81.8 | 90.9 | 1.403 | 0.788 | 44.7 | 19.4 | 0.355 | 0.166 | |
M − 2σ | 76.6 | 87.0 | 1.364 | 0.780 | 20.0 | 14.1 | 0.324 | 0.136 | |
PV (iii) | M + 2σ | 94.8 | 98.1 | 1.622 | 0.906 | 47.7 | 18.0 | 0.415 | 0.192 |
Median (M) | 90.9 | 95.5 | 1.574 | 0.887 | 36.6 | 15.1 | 0.377 | 0.153 | |
M − 2σ | 87.0 | 92.8 | 1.525 | 0.867 | 25.6 | 12.1 | 0.339 | 0.113 | |
PV (iv) | M + 2σ | 90.3 | 93.5 | 7.196 | 4.086 | 53.1 | 28.2 | 1.794 | 0.939 |
Median (M) | 86.4 | 90.9 | 7.073 | 4.051 | 42.4 | 21.3 | 1.613 | 0.845 | |
M − 2σ | 82.5 | 88.3 | 6.950 | 4.015 | 31.7 | 14.4 | 1.432 | 0.751 | |
PV (v) | M + 2σ | 96.1 | 90.3 | 1.232 | 0.897 | 63.6 | 39.3 | 0.365 | 0.216 |
Median (M) | 90.9 | 86.4 | 1.218 | 0.894 | 46.2 | 33.0 | 0.335 | 0.188 | |
M − 2σ | 85.7 | 82.5 | 1.205 | 0.890 | 28.7 | 26.8 | 0.304 | 0.160 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kodaira, D.; Tsukazaki, K.; Kure, T.; Kondoh, J. Improving Forecast Reliability for Geographically Distributed Photovoltaic Generations. Energies 2021, 14, 7340. https://doi.org/10.3390/en14217340
Kodaira D, Tsukazaki K, Kure T, Kondoh J. Improving Forecast Reliability for Geographically Distributed Photovoltaic Generations. Energies. 2021; 14(21):7340. https://doi.org/10.3390/en14217340
Chicago/Turabian StyleKodaira, Daisuke, Kazuki Tsukazaki, Taiki Kure, and Junji Kondoh. 2021. "Improving Forecast Reliability for Geographically Distributed Photovoltaic Generations" Energies 14, no. 21: 7340. https://doi.org/10.3390/en14217340
APA StyleKodaira, D., Tsukazaki, K., Kure, T., & Kondoh, J. (2021). Improving Forecast Reliability for Geographically Distributed Photovoltaic Generations. Energies, 14(21), 7340. https://doi.org/10.3390/en14217340