How Does Digitization Succeed in the Municipal Water Sector? The WaterExe4.0 Meta-Study Identifies Barriers as well as Success Factors, and Reveals Expectations for the Future
Abstract
:1. Introduction
2. Materials and Methods
- Literature and market research;
- Online survey;
- Expert interviews;
- User workshops.
- -
- Digital information base for decision support systems in water management (digitization of maps, databases available via application programming interface (API), etc.);
- -
- Digitization of production—“smart” infrastructure, robot structures, equipment with artificial intelligence (AI), analytics, satellites and drones, distribution systems, transport, water supply and sanitation, etc. Analytics and big data—analytics platforms for all sectors of the water industry: water content prediction, negative impacts of water, water consumption, transboundary and climate risks;
- -
- Digitization of distribution—traceability of a resource from “source to consumer” based on blockchain technologies, exchange for the distribution of water resources and ecosystem services.
3. Results and Discussion
3.1. From Sensor to Network Management—Technological Diversity vs. Implementation Barriers
3.2. Where the Water Industry Is Stuck When It Comes to Digitization
“Uncomplicated use”
“Showing how projects are actually implemented in practice”.
“Does it make sense? is the question we ask ourselves. If something analogue already doesn’t meet today’s requirements in terms of sustainability, realisation time, benefits, it doesn’t make sense when it’s digitally enhanced”.
“Digitization is a means to an end, the focus is on solving problems”.
“In principle, the most important factor was always the integration of all employees concerned. From the cooperation, processes and needs could be analysed as quickly as possible and implemented using the best practice method”.
“What can the organisation (still) achieve?”
“Finding relevant use cases. After all, digitization should not be an end in itself, but should bring benefits and solve problems”.
“The most important thing is the practical benefit of a project. This must not be imposed, but must be supported by all participants. Different understanding of goals and contents endanger a project. In the application phase, the user himself must be able to operate it. Otherwise, the value of a project is lost”.
3.3. The Role of Cost and Competence Analysis for Digitization
3.4. Water Management of the Future—What Direction Does It Go?
3.5. WaterExe4.0 in the International Context
3.6. Multi-Criteria Approach
3.7. Reflection of Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Randhahn, A.; Kerbusch, J.; Gaaß, M.; Richter, D. Digitalisierung—Segen oder Fluch für den Klimaschutz. In Klima; Springer: Berlin, Germany, 2020; pp. 180–194. [Google Scholar]
- Kröhling, A. Digitalisierung—Technik für eine nachhaltige Gesellschaft. In CSR und Digitalisierung; Springer: Berlin, Germany, 2017; pp. 23–49. [Google Scholar]
- Balogun, A.L.; Marks, D.; Sharma, R.; Shekhar, H.; Balmes, C.; Maheng, D.; Arshad, A.; Salehi, P. Assessing the potentials of digitalization as a tool for climate change adaptation and sustainable development in urban centres. In Sustainable Cities and Society; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Wehn, U.; Montalvo, C. Exploring the dynamics of water innovation: Foundations for water innovation studies. J. Clean. Prod. 2018, 171, S1–S19. [Google Scholar] [CrossRef]
- Müller-Czygan, G.; Wimmer, M.; Wagner, C.; Tarsyuk, V. WaterExe4.0—Results of the first meta-study on digitization in the water industry in the German-speaking region. Proceedings of the Eu-ropean Wastewater Management Conference 2021, 28–29 September 2021 at Birmingham/Online. Available online: www.ewwmconference.com (accessed on 5 May 2021).
- Ajami, N.K.; Thompson, B.H., Jr.; David, G.V. The Path to Water Innovation; Standford Woods Institute for Environment: Stanford, CA, USA, 2014. [Google Scholar]
- Ipektsidis, B.; Remotti, L.A.; Rumpf, G.; Spanos, Y.; Soderquist, K.; Vonortas, N.; Damvakeraki, T.; Montalvo, C.; Bulavskaya, T.; Dröes, M.; et al. R&D Investments and Structural Change in Sectors, Report to the General Directorate of Research and Innovation; Eur. Comm. Bruss: Brussels, Belgium, 2016. [Google Scholar]
- Kuipers, B.S.; Higgs, M.; Kickert, W.; Tummers, L.; Grandia, J.; Van der Voet, J. The management of change in public organizations: A literature review. Public Adm. 2014, 92, 1–20. [Google Scholar] [CrossRef]
- Norbert, T.; Ritz, A. Das Innovationsmanagement zur Neuausrichtung öffentlicher Institutionen. In Public Management; Springer: Wiesbaden, Germany, 2017; pp. 117–164. [Google Scholar]
- Wybrands, M. Literaturanalyse von Anwendungsfällen, Technologien und Datenquellen im Kontext Wasserinfrastruktur in Smart Cities. In Smart Cities/Smart Regions—Technische Wirtschaftliche und Gesellschaftliche Innovationen; Springer: Wiesbaden, Germany, 2019; pp. 69–83. [Google Scholar]
- Müller-Czygan, G. KOMMUNAL 4.0—Produkte und Lösungen für eine Durchgängige IT-und IoT-Kommunikation für die Wasserwirtschaft. gwf Praxisbuch Wasser 4.0; Vulkan-Verlag: Essen, Germany, 2018. [Google Scholar]
- von Ditfurth, H. Towards Smart Water—Die Zukunft der deutschen Wasserwirtschaft in einer vernetzten Welt. In Smart City–Made in Germany; Springer: Wiesbaden, Germany, 2020; pp. 351–361. [Google Scholar]
- Malewski, C.; Spies, K.-H. TaMIS–Ein Baustein zur Digitalisierung für das Risikomanagement an Talsperren. In Wasserbauwerke im Bestand-Sanierung, Umbau, Ersatzneubau und Rückbau; conference transcript; Dresdner Wasserbaukolloquium: Dresden, Germany, 2018; pp. 221–227. [Google Scholar]
- Hahne, L.; Abecker, A.; Bruns, J.; Jolk, C.; Wiggett, J. Integriertes Water Governance Support System am Beispiel des Olifants Flusseinzugsgebietes (Südafrika). In Umweltinformationssysteme—Wie verändert die Digitalisierung unsere Gesellschaft? Springer: Wiesbaden, Germany, 2021; pp. 89–103. [Google Scholar]
- Gahr, A.; Wazinski, P.; Andreas, N. Water Management 4.0 in the Bitterfeld-Wolfen Chemical Park. In Chemie Ingenieur Technik; Wiley-VCH: Weinheim, Germany, 2019; pp. 1375–1381. [Google Scholar]
- Keilholz, P.; Spinnreker-Czichon, D.; Huttner, P.; Augstein, A.; Borsdorff, D.; Erdle, K.; Ahlers, S.; Deubel, A. Bewässerung 4.0: Ein möglicher Ansatz zur weiteren Optimierung der Bewässerung. Korrespondenz Wasserwirtschaft: Boden, Germany, 2019; pp. 510–517. [Google Scholar]
- Schüttrumpf, H. Smart Hydraulic Structures-Wohin führt uns der Weg. In Interdisziplinärer Wasserbau im digitalen Wandel; Selbstverlag der Technischen Universität Dresden: Dresden, Germany, 2020; pp. 3–10. [Google Scholar]
- Saßl, C. Das Wasserrecht im Informationszeitalter–Neue Rechtsfragen des modernen Informations-und Entscheidungsmanagements für wasserwirtschaftliche Daseinsvorsorge und ökologischen Gewässerschutz. In Deutsches Verwaltungsblatt; Wolters Kluver Deutschland: Kölle, Germany, 2016; pp. 896–898. [Google Scholar]
- Weber, K. Rechtliche Aspekte der Digitalisierung in der Siedlungswasserwirtschaft. In Österreichische Wasser-Und Abfallwirtschaft; Springer Science & Business Media: Berlin, Germany, 2019; pp. 369–373. [Google Scholar]
- Zimmermann, M.; Schramm, E.; Ebert, B. Siedlungswasserwirtschaft im Zeitalter der Digitalisierung: Cybersicherheit als Achillesferse. TATuP-Zeitschrift für Technikfolgenabschätzung in Theorie und Praxis 2020, 29, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Rasekh, A.; Hassanzadeh, A.; Mulchandani, S.; Modi, S.; Banks, M.K. Smart water networks and cyber security. J. Water Resour. Plan. Manag. 2016, 142, 01816004. [Google Scholar]
- Oelmann, M.; Czichy, C.; Beele, R. Smart Water Teil 3—Wie die Digitalisierung die Anforderungen an die akademische Ausbildung verändert; Energie|Wasser-Praxis: Bonn, Germany, 2018; pp. 2–9. [Google Scholar]
- Hormann, L.; Stuhl, S. The Value of Data for the German Water-and Wastewater industry. In Proceedings of the 11th International Conference on Mangement, Enterprise and Benchmarking (MEB 2018), Budapest, Hungary, 27–28 April 2018. [Google Scholar]
- Seetharaman, P.; Mathew, S.K.; Sein, M.K.; Tallamraju, R.B. Being (more) human in a digitized world. Inf. Syst. Front. 2020, 22, 529–532. [Google Scholar] [CrossRef] [PubMed]
- Eigenstetter, M. Ensuring Trust in and Acceptance of Digitalization and Automation: Contributions of Human Factors and Ethics. In Proceedings of the International Conference on Human-Computer Interaction, Copenhagen, Denmark, 19–24 July 2020; Springer: Cham, Switzerland; pp. 254–266.
- Mvulirwenande, S.; Wehn, U. Promoting Smart Water Systems in Developing Countries Through Innovation Partnerships: Evidence from VIA Water-Supported Projects in Africa. In ICT for Smart Water Systems: Measurements and Data; Springer: Wiesbaden, Germany, 2019. [Google Scholar]
- Kim, K.G. Development of an integrated smart water grid model as a portfolio of climate smart cities. J. Smart Cities 2019, 3, 23–34. [Google Scholar]
- Espinosa Apráez, B.; Lavrijssen, S. Exploring the regulatory challenges of a possible rollout of smart water meters in the Netherlands. Competition and Regulation in Network Industries 2018, 19, 159–179. [Google Scholar] [CrossRef] [Green Version]
- Jiada, L.; Yang, X.; Sitzenfrei, R. Rethinking the framework of smart water system: A review. Water 2020, 12, 412. [Google Scholar]
- Müller-Czygan, G. Industrie 4.0 in der Wasserwirtschaft. In Innovation Race—Wegweisende Prinzipien für das Management von FuE-Projekten; Dortans, P., Ed.; Murmann: Hamburg, Germany, 2021; pp. 160–177. [Google Scholar]
- Merzlikina, Y.B. Digitalization of Water Sector: Problems and Possibilities. In Proceedings of the XV International Scientific-Practical Symposium and Exhibition «Clean Water of Russia», Ekaterinburg, Russia, 23–27 September 2019; pp. 155–160. [Google Scholar]
- Owen, D.A.L. Smart Water Technologies and Techniques: Data Capture and Analysis for Sustainable Water Management; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Kluge, T.; Libbe, J. Transformationsmanagement für eine nachhaltige Wasserwirtschaft. Handreichung zur Realisierung neuartiger Infrastrukturlösungen im Bereich Wasser und Abwasser; research report; Institut für sozial-ökologische Forschung–ISOE: Frankfurt, Germany, 2010. [Google Scholar]
- Tauchmann, H.; Hafkesbrink, J.; Nisipeanu, P.; Thomzik, M.; Bäumer, A.; Brauer, A.; Schroll, M. Innovationen für eine nachhaltige Wasserwirtschaft: Einflussfaktoren und Handlungsbedarf; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Flick, U. Triangulation als Rahmen für die Verknüpfung qualitativer und quantitativer Forschung. In Qualitative Forschung; Springer: Wiesbaden, Germany, 2014; pp. 185–191. [Google Scholar]
- Cuhls, K. Methoden 4.4 der Prospektiven Technologiebetrachtung/Technikvorausschau; Technikfolgenabschätzung: Handbuch für Wissenschaft und Praxis; Nomos Verlag: Mannheim, Germany, 2021; p. 321. [Google Scholar]
- Gläser, J.; Laudel, G. Experteninterviews und Qualitative Inhaltsanalyse: Als Instrumente Rekonstruierender Untersuchungen; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Niebert, K.; Gropengießer, H. Leitfadengestützte Interviews. In Methoden in der Naturwissenschaftsdidaktischen Forschung; Springer: Berlin/Heidelberg, Germany, 2014; pp. 121–132. [Google Scholar]
- Mey, G.; Ruppel, P.-S. Qualitative Forschung Sozialpsychologie und Sozialtheorie; Springer: Wiesbaden, Germany, 2018. [Google Scholar]
- Mayring, P. Qualitative content analysis: Demarcation, varieties, developments. In Forum Qualitative Sozialforschung/Forum: Qualitative Social Research; Freie Universität Berlin: Berlin, Germany, 2019; Volume 20. [Google Scholar]
- Thaler, T.; Seebauer, S.; Rogger, M.; Dworak, T.; Winkler, C. Erweiterung von Kosten-Nutzen-Analysen im Hochwassermanagement durch Berücksichtigung sozialer und psychologischer Verwundbarkeit. Österreichische Wasser-und Abfallwirtschaft 2021, 1–7. [Google Scholar] [CrossRef]
- Schwien, L. Erweiterung der Kosten-Nutzen-Analyse von Regenwasserbehandlungsanlagen um die Indikatoren Ökobilanz und Mikroklima. Doctoral Dissertation, Hochschule für Angewandte Wissenschaften Hamburg, Hamburg, Germany, 2021. [Google Scholar]
- Holländer, R. Chancen und Herausforderungen der Verknüpfungen der Systeme in der Wasserwirtschaft (Wasser 4.0); Dessau Umweltbundesamt: Dessau-Roßlau, Germany, 2019. [Google Scholar]
- Müller-Czygan, G. Smart Water—How to Master the Future Challenges of Water Management; Chandrasekaran, P.T., Javaid, M.S., Sadiq, A., Eds.; Resoruces of Water 2020; IntechOpen: London, UK, 2020; pp. 19–33. [Google Scholar]
- Schuster, O.; Wimmer, M. Smarte digitale Transformation in der Wasserwirtschaft; Hof University of Applied Sciences: Hof, Germany, 2018. [Google Scholar]
- Klenk, T.; Nullmeier, F.; Wewer, G. Auf dem Weg zum digitalen Staat? Stand und Perspektiven der Digitalisierung in Staat und Verwaltung. In Handbuch Digitalisierung in Staat und Verwaltung; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–22. [Google Scholar]
- Funke, D. Innovation im Kontext der öffentlichen Verwaltung: Management von Hindernissen und Blockaden bei Veränderungen; Diplomica Verlag: Hamburg, Germany, 2014. [Google Scholar]
- Martini, M. Transformation der Verwaltung durch Digitalisierung. In Verwaltungspraxis und Verwaltungswissenschaft; Nomos Verlag: Mannheim, Germany, 2018; pp. 11–68. [Google Scholar]
- Stoffels, M.; Ziemer, C. Digitalization in the process industries-Evidence from the German water in dustry. J. Bus. Chem. 2017, 14. [Google Scholar]
- Oelmann, M. Ergebnisse des Digitalisierungsindexes. In Energie Wasser Praxis; Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH: Bonn, Germany, 2021. [Google Scholar]
- Deutsche Nachhaltigkeitsstrategie-Weiterentwicklung 2021. Available online: https://www.bundesregierung.de/resource/blob/998006/1873516/3d3b15cd92d0261e7a0bcdc8f43b7839/2021-03-10-dns-2021-finale-langfassung-nicht-barrierefrei-data.pdf?download=1 (accessed on 1 November 2021).
- Korrespondenz Abwasser. EU-Kommission legt Digitalziele 2030 vor; Korrespondenz Abwasser; Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. (DWA): Hennef, Germany, 2021; p. 240. [Google Scholar]
- Burrichter, B.; Quirmbach, M.; Oelmann, M.; Niemann, A. Künstliche Intelligenz in der Wasserwirtschaft. Korrespondenz Abwasser; Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e . V. (DWA): Hennef, Germany, 2021; pp. 94–101. [Google Scholar]
- Blumensaat, F.; Leitão, J.P.; Ort, C.; Rieckermann, J.; Scheidegger, A.; Vanrolleghem, P.A.; Villez, K. How urban storm-and wastewater management prepares for emerging opportunities and threats: Digital transformation, ubiquitous sensing, new data sources, and beyond-a horizon scan. Environ. Sci. Technol. 2019, 53, 8488–8498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cepa, K.; Chen, H.H.; Laakso, T.; Nelimarkka, M. Disrupting the Water Industry; Aalto University’s Multidisciplinary Institute of Digitalisation and Energy (MIDE): Espo, Finland, 2016; pp. 203–236. [Google Scholar]
- Wehn, U.; Montalvo, C. Exploring the dynamics of water innovation. J. Clean. Prod. 2014, 87, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Robles, T.; Alcarria, R.; de Andrés, D.M.; de la Cruz, M.N.; Calero, R.; Iglesias, S.; Lopez, M. An IoT based reference architecture for smart water management processes. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 2015, 6, 4–23. [Google Scholar]
- Gupta, A.; Mishra, S.; Bokde, N.; Kulat, K. Need of smart water systems in India. Int. J. Appl. Eng. Res. 2016, 11, 2216–2223. [Google Scholar]
- Gourbesville, P. Key challenges for smart water. Procedia Eng. 2016, 154, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Byeon, S.; Choi, G.; Maeng, S.; Gourbesville, P. Sustainable water distribution strategy with smart water grid. Sustainability 2015, 7, 4240–4259. [Google Scholar] [CrossRef] [Green Version]
- Moy de Vitry, M.; Schneider, M.Y.; Wani, O.F.; Manny, L.; Leitão, J.P.; Eggimann, S. Smart urban water systems: What could possibly go wrong? Environ. Res. Lett. 2019, 14, 081001. [Google Scholar] [CrossRef]
- Sprocati, R.; Blum, J.M. Digitization of the water sector-practical examples from around the world. In Proceedings of the 13th Annual Water Research Conference: Danish Water Forum, Copenhagen, Denmark, 31 January 2019; University of Copenhagen: Copenhagen, Denmark, 2019; p. 54. [Google Scholar]
- Jiménez, B.; Asano, T. (Eds.) Water Reuse: An International Survey of Current Practice, Issues and Needs; IWA: London, UK, 2008. [Google Scholar]
- National Research Council. Water Reuse: Potential for Expanding the Nation’s Water Supply through Reuse of Municipal Wastewater; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Angelakis, A.N.; Asano, T.; Bahri, A.; Jimenez, B.E.; Tchobanoglous, G. Water Reuse: From Ancient to Modern Times and the Future. Front. Environ. Sci. 2018, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Becker, D.; Jungfer, C.; Track, T. Integrated Industrial Water Management–Challenges, Solutions, and Future Priorities. Chem. Ing. Tech. 2019, 91, 1367–1374. [Google Scholar] [CrossRef]
- Fernández García, I.; Lecina, S.; Ruiz-Sánchez, M.C.; Vera, J.; Conejero, W.; Conesa, M.R.; Montesinos, P. Trends and challenges in irrigation scheduling in the semi-arid area of Spain. Water 2020, 12, 785. [Google Scholar] [CrossRef] [Green Version]
- Hartung, U. Extremwetterereignisse in der Landwirtschaft: Risikomanagement im Bundesländervergleich; Berichte über Landwirtschaft-Zeitschrift für Agrarpolitik und Landwirtschaft. Bundesministerium für Ernährung und Landwirtschaft 2020, 98, 3. [Google Scholar]
- Available online: https://www.hof-university.de/forschung/institut-fuer-wasser-und-energiemanagement/forschungsbereiche/wassermanagement-mit-aquakultur.html (accessed on 9 November 2021).
- Lafont, M.; Dupont, S.; Cousin, P.; Vallauri, A.; Dupont, C. Back to the future: IoT to improve aquaculture: Real-time monitoring and algorithmic prediction of water parameters for aquaculture needs. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; IEEE: Piscataway, NJ, USA; pp. 1–6.
- Monteleone, S.; De Moraes, E.A.; Maia, R.F. Analysis of the variables that affect the intention to adopt Precision Agriculture for smart water management in Agriculture 4.0 context. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Müller-Czygan, G. Empirical Study on the Significance of Learning Transfer and Implementation Factors in the Digitization Project KOMMUNAL 4.0 with Special Attention to the Interactions of Technology and Change Management. Master Thesis, Economic Psychology FOM University of Applied Science Münster, Essen, Germany, 2018. [Google Scholar]
Areas of Application | Application Maturity | Digitization Concept | Practical Relevance |
---|---|---|---|
Wastewater disposal Drinking water Water bodies Rainwater Process water/domestic water Sludge treatment | Idea/concept Development/demonstration phase Test phase/prototype Market-ready/continuous operation | Digital technology Business model method data analysis Data use Degree of networking | Benefit/effect Relevance Transferability Suitability as best practice |
Classic Factors | Arithmetic Mean | Variance | Standard Deviation |
---|---|---|---|
5 = great importance; 1 = less importance; and 0 = no importance | |||
Generous time budget | 2.84 | 1.83 | 1.35 |
Sufficient financial budget | 3.51 | 1.66 | 1.29 |
Communication across departments | 3.63 | 2.06 | 1.44 |
Competence of the project manager | 3.97 | 1.37 | 1.17 |
Staff competence | 4.00 | 1.19 | 1.09 |
Expertise from specialists | 3.68 | 1.59 | 1.26 |
Orientation towards available best practices | 3.02 | 1.89 | 1.38 |
Exchange with third parties who already have experience | 3.25 | 2.35 | 1.53 |
Further training offers | 2.31 | 2.18 | 1.48 |
∅ | 3.36 |
Obstacles | Arithmetic Mean | Variance | Standard Deviation |
---|---|---|---|
5 = great importance; 1 = less importance; and 0 = no importance | |||
Lack of financing | 2.52 | 3.96 | 1.99 |
No sufficient financing | 2.74 | 3.05 | 1.75 |
Total expenditure greater than expected | 3.36 | 1.70 | 1.31 |
Lack of internal competencies | 2.85 | 2.13 | 1.46 |
Lack of external competencies | 2.52 | 2.21 | 1.49 |
Lack of staff | 3.53 | 1.85 | 1.36 |
Lack of IT security | 2.30 | 1.75 | 1.32 |
Inadequate legislation | 1.83 | 2.93 | 1.71 |
Lack of best practices | 2.27 | 1.44 | 1.56 |
Missing guidelines and implementation aids | 2.32 | 2.39 | 1.55 |
No suitable further training opportunities | 1.92 | 2.36 | 1.54 |
∅ | 2.56 |
Benefits | Arithmetic Mean | Variance | Standard Deviation |
---|---|---|---|
5 = great importance; 1 = less importance; and 0 = no importance | |||
Time efficiency | 3.91 | 1.51 | 1.23 |
Cost efficiency | 3.63 | 1.51 | 1.23 |
Process efficiency | 4.23 | 1.08 | 1.04 |
Transparency of information | 4.25 | 1.16 | 1.08 |
Data access from anywhere | 3.98 | 1.73 | 1.31 |
Knowledge retention and transfer | 3.51 | 2.06 | 1.44 |
Security of supply and disposal | 3.42 | 2.97 | 1.44 |
Showing that you are up to date | 2.39 | 2.16 | 1.47 |
Making work easier for employees | 3.73 | 1.38 | 1.17 |
Danger detection/alerting | 3.77 | 1.83 | 1.35 |
Future-proofing | 3.99 | 1.58 | 1.26 |
∅ | 3.71 |
Success-Generating Factor | Nominations |
---|---|
Opportunities to Drive Digitization Forward | |
Pilot projects/best practice | 3 |
Generational change/cultural change/readiness for change | 2 |
Change in cooperation | 1 |
Develop management level | |
Engaging and listening to staff | 4 |
Common database of all sectors | 3 |
Further Success Factors | |
Competence/know-how | 3 |
Willingness of employees to participate | 1 |
Readiness of clients | 1 |
Recognizable added value | 15 |
User-friendliness/user-oriented | 7 |
Resources (time and money) | 3 |
Project planning | 1 |
Communication of projects | 2 |
IT security | 4 |
Key person (CEO/responsible person) | 2 |
Be able to present quick successes | 1 |
Transparency | 5 |
Acceptance (MA and people) | 10 |
Economic aspects | 1 |
Connectivity/networkability | 1 |
Interfaces | 1 |
Overall strategy | 4 |
Suitable (external) partners | 2 |
Preserve the tried and tested | 2 |
Education/training | 2 |
Data basis/inventory data | 4 |
Promising Technologies/Solutions of the Future | |
Create standard | 2 |
IoT | 1 |
Automatic maintenance/predictive maintenance | 2 |
Intelligent data analysis | 1 |
AI | 1 |
Sensors/data acquisition | 2 |
Central collection of all data | 1 |
Reasons for the Need of Digitization | |
Regulatory requirement to be able to present data as quickly as possible | 2 |
Skills of the Project Manager/Project Team | |
Availability for customers | 1 |
Online Survey | Expert Interview | Frequency | Proportion |
---|---|---|---|
Nomination | % | ||
Recognizable added value | 15 | 15.15 | |
Recognizable added value | 11 | 8.53 | |
Acceptance by users/staff | 10 | 10.10 | |
Acceptance by users/staff | 11 | 8.53 | |
User-friendliness/user-oriented | 7 | 7.07 | |
Pilot projects/best practice | 8 | 6.20 | |
Transparency | 5 | 5.05 | |
Key person | 7 | 5.43 | |
Overall strategy | 4 | 4.04 | |
Overall strategy | 7 | 5.43 |
Question | Average Value | Median |
---|---|---|
How well informed do you feel about assessment methodology of competences related to digitization. (1 = not at all, 5 = very detailed) | 2.3 | 2 |
How important is the competence assessment of your employees in relation to digitization for you? (1 = very low, 5 = very high) | 3.0 | 3 |
What role does the exact fit of your employees’ competences play in relation to a successful digitization project? (1 = no role, 5 = important role) | 3.4 | 3 |
What role does knowledge of all relevant costs play for you when deciding for or against a digitization project? (1 = no role, 5 = important role) | 3.1 | 3 |
How confident do you feel in being able to capture all the costs to be considered for a digitization project? (1 = very uncertain, 5 = very certain) | 2.6 | 3 |
How do you assess the information currently available to determine the costs to be considered for a digitization project? (1 = there is no available offer for this, 5 = very good offer available) | 2.8 | 2 |
What value would it have for you if the recording and individual assessment of all costs to be considered for a digitization project were offered by a new system? (1 = no importance, 5 = very high importance) | 3.6 | 4 |
Aspects of Sustainability in Future Digitization Projects | Nominations |
---|---|
Economic factor predominates | 2 |
Sustainability and digitization processes do not go together | 1 |
Social factor predominates (employees) | 1 |
Sustainability has been gaining importance for years | 2 |
Digitization supports sustainability | 8 |
Sustainability cannot be guaranteed for every project | 5 |
Efficiency is the real driver | 3 |
Sustainability is taken into account in decisions | 3 |
Circular economy | 3 |
Sustainability increases the acceptance of the project | 2 |
Persuasion through data leads to sustainability | 1 |
Sustainability is the solution to many challenges | 5 |
Local conditions determine the weighting of the three factors | 1 |
Standard projects prevent sustainability | 1 |
Future Success-Generating Factor | Nominations |
---|---|
Promising Technologies/Solutions of the Future | |
Cloud | 5 |
Creating standards | 4 |
Internet of things (IoT) | 3 |
Automatic maintenance/predictive maintenance | 6 |
Cyber-security | 6 |
Control via smartphone | 1 |
Building information modeling (BIM) | 3 |
Geographical information system (GIS) | 1 |
Intelligent data analysis | 3 |
Use of webcams/image processing | 2 |
Precipitation forecasts | 2 |
Event-related sewer network operation | 3 |
Digital twin | 2 |
AI | 5 |
Central data management | 3 |
Open source | 1 |
Sensors/data acquisition | 2 |
Smart meter | 1 |
Simulation | 1 |
Modeling | 1 |
Interfaces | 1 |
Hormone elimination in wastewater | 1 |
Summary of all data | 2 |
Operating assistants for plants | 1 |
Data availability | 1 |
Uniting different systems and processes | 1 |
Digitization of customer management | 1 |
Digital services | 1 |
Success Factors Mentioned by Participants from Online Survey and by Experts | Online Survey Ratings | Expert Ratings | Total Ratings |
---|---|---|---|
Opportunities to Drive Digitization Forward | |||
Pilot projects/best practice | 3 | 16 | 19 |
Generational change/cultural change/readiness for change | 2 | 6 | 8 |
Change in cooperation | 1 | 4 | 5 |
Developing the management level | 1 | 4 | 5 |
Engaging and listening to staff | 4 | 4 | 8 |
Common database for all areas | 3 | 2 | 5 |
Success Factors in Digitization Projects | |||
Competence/know-how | 3 | 8 | 11 |
Willingness of employees | 1 | 8 | 9 |
Recognizable added value | 15 | 22 | 37 |
Resources (time and money) | 3 | 10 | 13 |
IT security | 4 | 10 | 14 |
Key person (CEO/responsible person) | 2 | 14 | 16 |
Transparency | 5 | 2 | 7 |
Acceptance (staff and people) | 10 | 22 | 32 |
Economic aspects | 1 | 4 | 5 |
Connectivity/networkability | 1 | 2 | 3 |
Interfaces | 1 | 2 | 3 |
Overall strategy | 4 | 14 | 18 |
Suitable (external) partners | 2 | 10 | 12 |
Promising Technologies/Solutions of the Future | |||
IoT | 1 | 2 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller-Czygan, G.; Tarasyuk, V.; Wagner, C.; Wimmer, M. How Does Digitization Succeed in the Municipal Water Sector? The WaterExe4.0 Meta-Study Identifies Barriers as well as Success Factors, and Reveals Expectations for the Future. Energies 2021, 14, 7709. https://doi.org/10.3390/en14227709
Müller-Czygan G, Tarasyuk V, Wagner C, Wimmer M. How Does Digitization Succeed in the Municipal Water Sector? The WaterExe4.0 Meta-Study Identifies Barriers as well as Success Factors, and Reveals Expectations for the Future. Energies. 2021; 14(22):7709. https://doi.org/10.3390/en14227709
Chicago/Turabian StyleMüller-Czygan, Günter, Viktoriya Tarasyuk, Christian Wagner, and Manuela Wimmer. 2021. "How Does Digitization Succeed in the Municipal Water Sector? The WaterExe4.0 Meta-Study Identifies Barriers as well as Success Factors, and Reveals Expectations for the Future" Energies 14, no. 22: 7709. https://doi.org/10.3390/en14227709
APA StyleMüller-Czygan, G., Tarasyuk, V., Wagner, C., & Wimmer, M. (2021). How Does Digitization Succeed in the Municipal Water Sector? The WaterExe4.0 Meta-Study Identifies Barriers as well as Success Factors, and Reveals Expectations for the Future. Energies, 14(22), 7709. https://doi.org/10.3390/en14227709