Multi-Objective Immune-Commensal-Evolutionary Programming for Total Production Cost and Total System Loss Minimization via Integrated Economic Dispatch and Distributed Generation Installation
Abstract
:1. Introduction
2. Proposed Weighted-Sum Multi-Objective Immune-Commensal-Evolutionary Programming for Total Production Cost and Total System Loss Minimization
- is the production cost of ith generating unit, and
- is the real power output of the ith generating unit.
- , and are the cost coefficients of the ith generating unit and
- is the number of dispatchable generating units:
- is the conductance of line,
- and are the voltage magnitude and angle of bus , respectively,
- and are the voltage magnitude and angle of bus , respectively, and
- is the number of lines in the system.
- Step 1: Generate decision variable
- Step 2: Cloning process
- is weighted objective function,
- is weight coefficient for the first objective function,
- is weight coefficient for the second objective function
- is the first objective function (total production cost minimization) and
- is the second objective function (total system loss minimization).
- Step 3: Mutation process
- is the offspring of the ith individual,
- is the parent of individual,
- is the fittest individual and
- is another individual besides the ith individual.
- Step 4: Combination process
- Step 5: Ranking and selection process
- Step 6: Convergence test
- is the maximum fitness value and
- is the minimum fitness value.
3. Results and Discussion
3.1. MOICEP-Based Technique for Basic Economic Dispatch Problem
3.1.1. For = 0.9 and = 0.1
3.1.2. For = 0.5 and = 0.5
3.1.3. For = 0.1 and = 0.9
3.2. MOICEP-Based Technique for Economic Dispatch Problem with Prohibited Operating Zones
3.2.1. For = 0.9 and = 0.1
3.2.2. For = 0.5 and = 0.5
3.2.3. For = 0.1 and = 0.9
3.3. MOICEP-Based Technique for Economic Dispatch Problem with Valve-Point Loading Effect
3.3.1. For = 0.9 and = 0.1
3.3.2. For = 0.5 and = 0.5
3.3.3. For = 0.1 and = 0.9
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mehigan, L.; Deane, J.P.; Gallachóir, B.P.Ó.; Bertsch, V. A review of the role of distributed generation (DG) in future electricity systems. Energy 2018, 163, 822–836. [Google Scholar] [CrossRef]
- Zhan, J.; Wu, Q.H.; Guo, C.; Zhou, X. Economic Dispatch With Non-Smooth Objectives—Part I: Local Minimum Analysis. IEEE Trans. Power Syst. 2015, 30, 710–721. [Google Scholar] [CrossRef]
- Thenmalar, K.; Anujak, S.; Ramesh, S. Multi-Objective economic emission load dispatch solution using wolf’s method in various generation plants with wind power penetration. In Proceedings of the 2014 International Conference on Electronics and Communication Systems, ICECS 2014, Coimbatore, Tamilnadu, 13–14 February 2014; pp. 1–13. [Google Scholar]
- Jakob, W.; Blume, C. Pareto optimization or cascaded weighted sum: A comparison of concepts. Algorithms 2014, 7, 166–185. [Google Scholar] [CrossRef] [Green Version]
- Marler, R.T.; Arora, J.S. The weighted sum method for multi-objective optimization: New insights. Struct. Multidiscip. Optim. 2010, 41, 853–862. [Google Scholar] [CrossRef]
- Musau, M. Multi Area Multi Objective Dynamic Economic Dispatch with Renewable Energy and Emissions. In Proceedings of the 2016 IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, 4–8 April 2016; pp. 112–117. [Google Scholar]
- Roy, N.; Ghosh, A.; Sanyal, K. Normal Boundary Intersection based multi-objective Harmony Search algorithm for environmental Economic Load Dispatch problem. In Proceedings of the 2016 IEEE 6th International Conference on Power Systems, ICPS 2016, New Delhi, India, 4–6 March 2016; pp. 1–6. [Google Scholar]
- Mohanty, P.S. Multi-objective economic emission load dispatch with nonlinear fuel cost and noninferior emission level functions for IEEE-118 bus system. In Proceedings of the 2nd International Conference on Electronics and Communication Systems (ICECS), Coimbatore, India, 26–27 February 2015; pp. 1371–1376. [Google Scholar]
- Mao, M.; Ji, M.; Dong, W.; Chang, L. Multi-objective economic dispatch model for a microgrid considering reliability. In Proceedings of the 2nd International Symposium on Power Electronics for Distributed Generation Systems, PEDG 2010, Hefei, China, 16–18 June 2010; pp. 993–998. [Google Scholar]
- Man-Im, A.; Ongsakul, W.; Singh, J.G.; Boonchuay, C. Multi-objective economic dispatch considering wind generation uncertainty using non-dominated sorting particle swarm optimization. In Proceedings of the 2014 International Conference and Utility Exhibition on Green Energy for Sustainable Development, ICUE 2014, Pattaya City, Thailand, 19–21 March 2014; pp. 19–21. [Google Scholar]
- Bilil, H.; Ellaia, R.; Maaroufi, M. A New Multi-objective Particle Swarm Optimization for Economic Environmental Dispatch. In Proceedings of the 2012 IEEE International Conference on Complex Systems (ICCS), Agadir, Morocco, 5–6 November 2012; Volume 3, pp. 1–6. [Google Scholar]
- Shen, X.; Zou, D.; Duan, N.; Zhang, Q. An efficient fitness-based differential evolution algorithm and a constraint handling technique for dynamic economic emission dispatch. Energy 2019, 186, 1–28. [Google Scholar] [CrossRef]
- Yuan, G.; Yang, W. Study on optimization of economic dispatching of electric power system based on Hybrid Intelligent Algorithms (PSO and AFSA). Energy 2019, 183, 926–935. [Google Scholar] [CrossRef]
- Rahmat, N.A. Computational Intelligence Based Technique for Solving Economic Dispatch Problem. Ph.D. Thesis, Universiti Teknologi MARA, Shah Alam, Malaysia, 2016. [Google Scholar]
Setting | Weight Coefficients | Fitness Function | ||
---|---|---|---|---|
Total Production Cost | Total System Loss | |||
1 | 1 | 0 | ✓ | ☓ |
2 | 0.9 | 0.1 | ✓ | ✓ |
3 | 0.8 | 0.2 | ✓ | ✓ |
4 | 0.7 | 0.3 | ✓ | ✓ |
5 | 0.6 | 0.4 | ✓ | ✓ |
6 | 0.5 | 0.5 | ✓ | ✓ |
7 | 0.4 | 0.6 | ✓ | ✓ |
8 | 0.3 | 0.7 | ✓ | ✓ |
9 | 0.2 | 0.8 | ✓ | ✓ |
10 | 0.1 | 0.9 | ✓ | ✓ |
11 | 0 | 1.0 | ☓ | ✓ |
Optimization Technique | MOICEP | MOEP | MOAIS | |
---|---|---|---|---|
Locations of DGs (Bus no.) | Lo1 | 29 | 19 | 19 |
Lo2 | 9 | 28 | 28 | |
Lo3 | 5 | 5 | 25 | |
Sizes of DGs (MW) | DG1 | 5.00 | 4.62 | 4.62 |
DG2 | 50.00 | 27.70 | 27.70 | |
DG3 | 100.00 | 75.81 | 101.63 | |
Generating Unit Output (MW) | PG1 | 16.42 | 58.48 | 32.36 |
PG2 | 20.00 | 48.66 | 48.66 | |
PG5 | 15.00 | 23.32 | 23.32 | |
PG8 | 26.21 | 16.87 | 16.87 | |
PG11 | 23.26 | 17.19 | 17.19 | |
PG13 | 28.95 | 13.33 | 13.33 | |
Total Production Cost ($/h) | 355.91 | 463.64 | 402.50 | |
Total System Loss (MW) | 1.44 | 2.60 | 2.28 |
Optimization Technique | MOICEP | MOEP | MOAIS | |
---|---|---|---|---|
Locations of DGs (Bus no.) | Lo1 | 25 | 33 | 33 |
Lo2 | 22 | 10 | 10 | |
Lo3 | 13 | 40 | 40 | |
Sizes of DGs (MW) | DG1 | 4.84 | 2.66 | 2.66 |
DG2 | 49.99 | 36.55 | 36.55 | |
DG3 | 150.00 | 141.03 | 141.03 | |
Generating Unit Output (MW) | PG1 | 137.42 | 191.80 | 191.80 |
PG2 | 47.83 | 6.68 | 6.68 | |
PG5 | 22.57 | 58.45 | 58.45 | |
PG6 | 71.59 | 68.68 | 68.68 | |
PG8 | 381.87 | 323.93 | 323.93 | |
PG9 | 39.43 | 93.04 | 93.04 | |
PG12 | 355.16 | 346.93 | 346.93 | |
Total Production Cost ($/h) | 33,285.97 | 35,369.69 | 35,369.69 | |
Total System Loss (MW) | 9.90 | 18.95 | 18.95 |
Optimization Technique | MOICEP | MOEP | MOAIS | |
---|---|---|---|---|
Locations of DGs (Bus no.) | Lo1 | 29 | 27 | 19 |
Lo2 | 21 | 7 | 28 | |
Lo3 | 5 | 5 | 25 | |
Sizes of DGs (MW) | DG1 | 5.00 | 4.06 | 4.62 |
DG2 | 31.87 | 33.33 | 27.70 | |
DG3 | 101.63 | 60.69 | 94.86 | |
Generating Unit Output (MW) | PG1 | 18.54 | 21.75 | 32.36 |
PG2 | 24.51 | 60.95 | 48.66 | |
PG5 | 15.00 | 38.82 | 23.32 | |
PG8 | 35.00 | 15.13 | 16.87 | |
PG11 | 30.00 | 26.73 | 17.19 | |
PG13 | 30.00 | 24.18 | 13.33 | |
Total Production Cost ($/h) | 402.50 | 557.01 | 429.30 | |
Total System Loss (MW) | 1.40 | 2.25 | 2.28 |
Optimization Technique | MOICEP | MOEP | MOAIS | |
---|---|---|---|---|
Locations of DGs (Bus no.) | Lo1 | 35 | 45 | 34 |
Lo2 | 38 | 30 | 23 | |
Lo3 | 3 | 55 | 11 | |
Sizes of DGs (MW) | DG1 | 3.65 | 3.53 | 3.44 |
DG2 | 44.23 | 24.77 | 40.05 | |
DG3 | 68.97 | 132.47 | 92.34 | |
Generating Unit Output (MW) | PG1 | 206.60 | 237.10 | 24.14 |
PG2 | 16.24 | 25.01 | 53.09 | |
PG5 | 34.87 | 120.52 | 91.62 | |
PG6 | 52.04 | 47.13 | 40.76 | |
PG8 | 351.68 | 278.28 | 450.99 | |
PG9 | 81.82 | 60.04 | 71.83 | |
PG12 | 400.55 | 335.20 | 397.14 | |
Total Production Cost ($/h) | 37,513.91 | 38,111.41 | 37,752.82 | |
Total System Loss (MW) | 9.90 | 13.26 | 14.61 |
Optimization Technique | MOICEP | MOEP | MOAIS | |
---|---|---|---|---|
Locations of DGs (Bus no.) | Lo1 | 29 | 27 | 19 |
Lo2 | 21 | 7 | 28 | |
Lo3 | 5 | 5 | 25 | |
Sizes of DGs (MW) | DG1 | 5.00 | 4.06 | 4.62 |
DG2 | 29.77 | 33.33 | 27.70 | |
DG3 | 86.49 | 60.69 | 101.63 | |
Generating Unit Output (MW) | PG1 | 18.65 | 21.75 | 32.36 |
PG2 | 27.91 | 60.95 | 48.66 | |
PG5 | 22.01 | 38.82 | 23.32 | |
PG8 | 34.96 | 15.13 | 16.87 | |
PG11 | 30.00 | 26.73 | 17.19 | |
PG13 | 30.00 | 24.18 | 13.33 | |
Total Production Cost ($/h) | 461.64 | 557.01 | 402.50 | |
Total System Loss (MW) | 1.39 | 2.25 | 2.28 |
Optimization Technique | MOICEP | MOEP | MOAIS | |
---|---|---|---|---|
Locations of DGs (Bus no.) | Lo1 | 25 | 45 | 34 |
Lo2 | 23 | 30 | 23 | |
Lo3 | 13 | 55 | 11 | |
Sizes of DGs (MW) | DG1 | 4.99 | 3.53 | 3.44 |
DG2 | 44.63 | 24.77 | 40.05 | |
DG3 | 123.36 | 132.47 | 92.34 | |
Generating Unit Output (MW) | PG1 | 125.84 | 237.10 | 24.14 |
PG2 | 26.37 | 25.01 | 53.09 | |
PG5 | 87.41 | 120.52 | 91.62 | |
PG6 | 95.96 | 47.13 | 40.76 | |
PG8 | 238.78 | 278.28 | 450.99 | |
PG9 | 100.00 | 60.04 | 71.83 | |
PG12 | 409.98 | 335.20 | 397.14 | |
Total Production Cost ($/h) | 36,159.62 | 38,111.41 | 37,752.82 | |
Total System Loss (MW) | 6.52 | 13.26 | 14.61 |
Gen. Unit | Prohibited Zones | Cost Coefficients | |||||
---|---|---|---|---|---|---|---|
Zone 1 | Zone 2 | ||||||
1 | 50 | 200 | 55–66 | 80–120 | 0.00375 | 2.00 | 0 |
2 | 20 | 80 | 21–24 | 45–55 | 0.01750 | 1.75 | 0 |
5 | 15 | 50 | 30–36 | - | 0.06250 | 1.00 | 0 |
8 | 10 | 35 | 25–30 | - | 0.00834 | 3.25 | 0 |
11 | 10 | 30 | 25–28 | - | 0.02500 | 3.00 | 0 |
13 | 10 | 30 | 24–30 | - | 0.02500 | 3.00 | 0 |
Gen. Unit | Prohibited Zones | Cost Coefficients | |||||
---|---|---|---|---|---|---|---|
Zone 1 | Zone 2 | ||||||
1 | 0 | 575.88 | 10–50 | 480–520 | 0.0775795 | 20 | 0 |
2 | 0 | 100 | 5–10 | 75–80 | 0.0100000 | 40 | 0 |
3 | 0 | 140 | 10–25 | 100–110 | 0.2500000 | 20 | 0 |
6 | 0 | 100 | 5–10 | - | 0.0100000 | 40 | 0 |
8 | 0 | 550 | 10–30 | - | 0.0222222 | 20 | 0 |
9 | 0 | 100 | 5–10 | - | 0.0100000 | 40 | 0 |
12 | 0 | 410 | 10–35 | - | 0.0322581 | 20 | 0 |
Optimization Technique | MOICEP | MOEP | MOAIS | |
---|---|---|---|---|
Locations of DGs (Bus no.) | Lo1 | 29 | 24 | 24 |
Lo2 | 21 | 15 | 15 | |
Lo3 | 5 | 22 | 22 | |
Sizes of DGs (MW) | DG1 | 5.00 | 4.03 | 4.03 |
DG2 | 50.00 | 49.60 | 49.60 | |
DG3 | 100.00 | 68.27 | 68.27 | |
Generating Unit Output (MW) | PG1 | 12.26 | 19.48 | 19.48 |
PG2 | 26.70 | 44.96 | 44.96 | |
PG5 | 27.43 | 39.54 | 39.54 | |
PG8 | 34.25 | 32.76 | 32.76 | |
PG11 | 10.27 | 15.25 | 15.25 | |
PG13 | 19.20 | 13.33 | 13.33 | |
Total Production Cost ($/h) | 380.05 | 503.05 | 503.05 | |
Total System Loss (MW) | 1.71 | 3.81 | 3.81 |
Optimization Technique | MOICEP | MOEP | MOAIS | |
---|---|---|---|---|
Locations of DGs (Bus no.) | Lo1 | 25 | 50 | 50 |
Lo2 | 14 | 33 | 33 | |
Lo3 | 13 | 10 | 10 | |
Sizes of DGs (MW) | DG1 | 3.87 | 3.62 | 3.62 |
DG2 | 50.00 | 23.72 | 23.72 | |
DG3 | 150.00 | 120.12 | 120.12 | |
Generating Unit Output (MW) | PG1 | 121.07 | 201.79 | 201.79 |
PG2 | 96.27 | 0.77 | 0.77 | |
PG5 | 43.92 | 53.68 | 53.68 | |
PG6 | 34.14 | 41.75 | 41.75 | |
PG8 | 379.12 | 377.72 | 377.72 | |
PG9 | 41.12 | 58.90 | 58.90 | |
PG12 | 342.59 | 381.48 | 381.48 | |
Total Production Cost ($/h) | 33,315.31 | 36,146.27 | 36,146.27 | |
Total System Loss (MW) | 11.29 | 12.75 | 12.75 |
Optimization Technique | MOICEP | MOEP | MOAIS | |
---|---|---|---|---|
Locations of DGs (Bus no.) | Lo1 | 29 | 23 | 23 |
Lo2 | 5 | 10 | 10 | |
Lo3 | 9 | 27 | 27 | |
Sizes of DGs (MW) | DG1 | 5.00 | 3.84 | 3.84 |
DG2 | 45.57 | 42.29 | 42.29 | |
DG3 | 81.18 | 54.73 | 54.73 | |
Generating Unit Output (MW) | PG1 | 3.99 | 57.48 | 57.48 |
PG2 | 53.22 | 20.05 | 20.05 | |
PG5 | 41.51 | 42.07 | 42.07 | |
PG8 | 17.06 | 17.98 | 17.98 | |
PG11 | 10.14 | 18.35 | 18.35 | |
PG13 | 27.56 | 30.00 | 30.00 | |
Total Production Cost ($/h) | 492.48 | 559.24 | 559.24 | |
Total System Loss (MW) | 1.84 | 3.34 | 3.34 |
Optimization Technique | MOICEP | MOEP | MOAIS | |
---|---|---|---|---|
Locations of DGs (Bus no.) | Lo1 | 57 | 50 | 50 |
Lo2 | 36 | 33 | 33 | |
Lo3 | 43 | 10 | 10 | |
Sizes of DGs (MW) | DG1 | 4.52 | 3.62 | 3.62 |
DG2 | 44.13 | 23.72 | 23.72 | |
DG3 | 101.28 | 120.12 | 120.12 | |
Generating unit output (MW) | PG1 | 182.78 | 201.79 | 201.79 |
PG2 | 57.29 | 0.77 | 0.77 | |
PG5 | 68.03 | 53.68 | 53.68 | |
PG6 | 73.47 | 41.75 | 41.75 | |
PG8 | 363.59 | 377.72 | 377.72 | |
PG9 | 29.91 | 58.90 | 58.90 | |
PG12 | 337.61 | 381.48 | 381.48 | |
Total Production Cost ($/h) | 35,926.32 | 36,146.27 | 36,146.27 | |
Total System Loss (MW) | 11.83 | 12.75 | 12.75 |
Optimization Technique | MOICEP | MOEP | MOAIS | |
---|---|---|---|---|
Locations of DGs (Bus no.) | Lo1 | 29 | 23 | 23 |
Lo2 | 21 | 10 | 10 | |
Lo3 | 5 | 27 | 27 | |
Sizes of DGs (MW) | DG1 | 5.00 | 3.84 | 3.84 |
DG2 | 27.69 | 42.29 | 42.29 | |
DG3 | 85.03 | 54.73 | 54.73 | |
Generating Unit Output (MW) | PG1 | 13.55 | 57.48 | 57.48 |
PG2 | 38.62 | 20.05 | 20.05 | |
PG5 | 27.96 | 42.07 | 42.07 | |
PG8 | 34.17 | 17.98 | 17.98 | |
PG11 | 16.25 | 18.35 | 18.35 | |
PG13 | 36.61 | 30.00 | 30.00 | |
Total Production Cost ($/h) | 517.76 | 559.24 | 559.24 | |
Total System Loss (MW) | 1.49 | 3.34 | 3.34 |
Optimization Technique | MOICEP | MOEP | MOAIS | |
---|---|---|---|---|
Locations of DGs (Bus no.) | Lo1 | 21 | 3 | 3 |
Lo2 | 26 | 53 | 53 | |
Lo3 | 13 | 16 | 16 | |
Sizes of DGs (MW) | DG1 | 4.99 | 4.87 | 4.87 |
DG2 | 34.73 | 28.54 | 28.54 | |
DG3 | 150.00 | 77.88 | 77.88 | |
Generating Unit Output (MW) | PG1 | 148.50 | 175.15 | 175.15 |
PG2 | 1.04 | 10.46 | 10.46 | |
PG5 | 81.08 | 93.14 | 93.14 | |
PG6 | 76.86 | 83.34 | 83.34 | |
PG8 | 254.90 | 319.71 | 319.71 | |
PG9 | 99.82 | 65.86 | 65.86 | |
PG12 | 405.81 | 402.63 | 402.63 | |
Total Production Cost ($/h) | 35,184.12 | 38,362.28 | 38,362.28 | |
Total System Loss (MW) | 6.94 | 10.80 | 10.80 |
Optimization Technique | MOICEP | MOEP | MOAIS | |
---|---|---|---|---|
Locations of DGs (Bus no.) | Lo1 | 26 | 25 | 29 |
Lo2 | 5 | 27 | 4 | |
Lo3 | 9 | 7 | 18 | |
Sizes of DGs (MW) | DG1 | 5.00 | 1.06 | 2.50 |
DG2 | 50.00 | 35.98 | 39.45 | |
DG3 | 100.00 | 93.41 | 1.30 | |
Generating Unit Output (MW) | PG1 | 8.39 | 3.75 | 13.23 |
PG2 | 20.00 | 51.78 | 22.77 | |
PG5 | 22.29 | 31.26 | 18.40 | |
PG8 | 34.46 | 33.52 | 30.59 | |
PG11 | 15.30 | 11.00 | 23.90 | |
PG13 | 30.00 | 25.23 | 16.34 | |
Total Production Cost ($/h) | 11,817.81 | 13,331.25 | 11,627.07 | |
Total System Loss (MW) | 2.04 | 3.61 | 13.32 |
Optimization Technique | MOICEP | MOEP | MOAIS | |
---|---|---|---|---|
Locations of DGs (Bus no.) | Lo1 | 26 | 33 | 33 |
Lo2 | 10 | 10 | 10 | |
Lo3 | 14 | 40 | 40 | |
Sizes of DGs (MW) | DG1 | 5.00 | 2.66 | 2.66 |
DG2 | 49.96 | 36.55 | 36.55 | |
DG3 | 149.98 | 141.03 | 141.03 | |
Generating Unit Output (MW) | PG1 | 132.46 | 191.82 | 191.82 |
PG2 | 43.98 | 6.68 | 6.68 | |
PG5 | 49.48 | 58.44 | 58.44 | |
PG6 | 72.02 | 68.67 | 68.67 | |
PG8 | 327.03 | 323.93 | 323.93 | |
PG9 | 73.78 | 93.04 | 93.04 | |
PG12 | 356.90 | 346.92 | 346.92 | |
Total Production Cost ($/h) | 32,560.84 | 35,369.69 | 35,369.69 | |
Total System Loss (MW) | 9.78 | 18.95 | 18.95 |
Optimization Technique | MOICEP | MOEP | MOAIS | |
---|---|---|---|---|
Locations of DGs (Bus no.) | Lo1 | 18 | 16 | 19 |
Lo2 | 9 | 19 | 28 | |
Lo3 | 5 | 9 | 5 | |
Sizes of DGs (MW) | DG1 | 5.00 | 3.35 | 4.62 |
DG2 | 50.00 | 43.05 | 27.70 | |
DG3 | 100.00 | 79.51 | 101.63 | |
Generating Unit Output (MW) | PG1 | 7.05 | 12.77 | 32.36 |
PG2 | 20.00 | 39.05 | 48.66 | |
PG5 | 15.00 | 46.04 | 23.32 | |
PG8 | 34.65 | 26.30 | 16.87 | |
PG11 | 24.78 | 13.01 | 17.18 | |
PG13 | 28.42 | 23.63 | 13.33 | |
Total Production Cost ($/h) | 11,758.98 | 13,340.00 | 13,178.04 | |
Total System Loss (MW) | 1.50 | 3.31 | 2.28 |
Optimization Technique | MOICEP | MOEP | MOAIS | |
---|---|---|---|---|
Locations of DGs (Bus no.) | Lo1 | 25 | 45 | 45 |
Lo2 | 22 | 30 | 30 | |
Lo3 | 13 | 55 | 55 | |
Sizes of DGs (MW) | DG1 | 4.97 | 3.53 | 3.53 |
DG2 | 42.96 | 24.77 | 24.77 | |
DG3 | 150.00 | 132.47 | 132.47 | |
Generating Unit Output (MW) | PG1 | 131.64 | 237.10 | 237.10 |
PG2 | 36.11 | 25.01 | 25.01 | |
PG5 | 65.13 | 120.52 | 120.52 | |
PG6 | 72.78 | 47.13 | 47.13 | |
PG8 | 273.04 | 278.28 | 278.28 | |
PG9 | 100.00 | 60.04 | 60.04 | |
PG12 | 381.24 | 335.20 | 335.20 | |
Total Production Cost ($/h) | 33,447.51 | 38,013.28 | 38,013.28 | |
Total System Loss (MW) | 7.10 | 13.26 | 13.26 |
Optimization Technique | MOICEP | MOEP | MOAIS | |
---|---|---|---|---|
Locations of DGs (Bus no.) | Lo1 | 29 | 27 | 19 |
Lo2 | 22 | 4 | 28 | |
Lo3 | 5 | 5 | 5 | |
Sizes of DGs (MW) | DG1 | 5.00 | 3.12 | 4.62 |
DG2 | 28.71 | 35.20 | 27.70 | |
DG3 | 86.75 | 50.38 | 101.63 | |
Generating Unit Output (MW) | PG1 | 12.52 | 26.03 | 32.36 |
PG2 | 41.12 | 60.73 | 48.66 | |
PG5 | 20.46 | 38.78 | 23.32 | |
PG8 | 35.00 | 33.37 | 16.87 | |
PG11 | 29.18 | 17.67 | 17.18 | |
PG13 | 26.12 | 20.39 | 13.33 | |
Total Production Cost ($/h) | 13,472.72 | 15,179.41 | 13,178.04 | |
Total System Loss (MW) | 1.47 | 2.34 | 2.28 |
Optimization Technique | MOICEP | MOEP | MOAIS | |
---|---|---|---|---|
Locations of DGs (Bus no.) | Lo1 | 29 | 45 | 45 |
Lo2 | 22 | 30 | 30 | |
Lo3 | 13 | 55 | 55 | |
Sizes of DGs (MW) | DG1 | 1.03 | 3.53 | 3.53 |
DG2 | 44.02 | 24.77 | 24.77 | |
DG3 | 59.53 | 132.47 | 132.47 | |
Generating Unit Output (MW) | PG1 | 143.43 | 237.10 | 237.10 |
PG2 | 54.96 | 25.01 | 25.01 | |
PG5 | 84.08 | 120.52 | 120.52 | |
PG6 | 79.60 | 47.13 | 47.13 | |
PG8 | 309.65 | 278.28 | 278.28 | |
PG9 | 85.57 | 60.04 | 60.04 | |
PG12 | 397.27 | 335.20 | 335.20 | |
Total Production Cost ($/h) | 38,352.96 | 38,013.28 | 38,013.28 | |
Total System Loss (MW) | 8.35 | 13.26 | 13.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansor, M.H.; Musirin, I.; Othman, M.M. Multi-Objective Immune-Commensal-Evolutionary Programming for Total Production Cost and Total System Loss Minimization via Integrated Economic Dispatch and Distributed Generation Installation. Energies 2021, 14, 7733. https://doi.org/10.3390/en14227733
Mansor MH, Musirin I, Othman MM. Multi-Objective Immune-Commensal-Evolutionary Programming for Total Production Cost and Total System Loss Minimization via Integrated Economic Dispatch and Distributed Generation Installation. Energies. 2021; 14(22):7733. https://doi.org/10.3390/en14227733
Chicago/Turabian StyleMansor, Mohd Helmi, Ismail Musirin, and Muhammad Murtadha Othman. 2021. "Multi-Objective Immune-Commensal-Evolutionary Programming for Total Production Cost and Total System Loss Minimization via Integrated Economic Dispatch and Distributed Generation Installation" Energies 14, no. 22: 7733. https://doi.org/10.3390/en14227733
APA StyleMansor, M. H., Musirin, I., & Othman, M. M. (2021). Multi-Objective Immune-Commensal-Evolutionary Programming for Total Production Cost and Total System Loss Minimization via Integrated Economic Dispatch and Distributed Generation Installation. Energies, 14(22), 7733. https://doi.org/10.3390/en14227733