Seismostratigraphic Interpretation of Upper Cretaceous Reservoir from the Carpathian Foreland, Southern Poland
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Data Description
3.2. Seismic Sequence Stratigraphy
3.3. Tectonostratigraphy
3.4. Seismic Attributes and Spectral Decomposition
3.4.1. Envelope, RMS Amplitude, Sweetness
3.4.2. Spectral Decomposition
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cook, T.D. Exploration History of South Texas Lower Cretaceous Carbonate Platform. Am. Assoc. Pet. Geol. Bull. 1979, 63, 32–49. [Google Scholar] [CrossRef]
- Roehl, P.O.; Choquette, P.W. Carbonate Petroleum Reservoirs; Springer: Berlin/Heidelberg, Germany, 1985; pp. 32–49. [Google Scholar] [CrossRef]
- Keeley, M.L.; Dungworth, G.; Floyd, C.S.; Forbes, G.A.; King, C.; McGarva, R.M.; Shaw, D. The Jurassic System in Northern Egypt: I. Regional Stratigraphy and Implications for Hydrocarbon Prospectivity. J. Pet. Geol. 1990, 13, 397–420. [Google Scholar] [CrossRef]
- Alsharhan, A.S.; Magara, K. Nature and Distribution of Porosity and Permeability in Jurassic Carbonate Reservoirs of the Arabian Gulf Basin. Facies 1995, 32, 237–253. [Google Scholar] [CrossRef]
- Gliniak, P.; Leśniak, G.; Laskowicz, R.; Such, P.; Urbaniec, A. The Facies Development and Reservoir Properties in Late Jurassic Carbonate Sediments in the Central Carpathian Foreland. In Deformation, Fluid Flow, and Reservoir Appraisal in Foreland Fold and Thrust Belts; Swennen, R., Roure, F., Granath, J.W., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 2004; Volume 1, pp. 347–355. [Google Scholar]
- Weissenberger, J.A.W.; Wierzbicki, R.A.; Harland, N.J. Carbonate Sequence Stratigraphy and Petroleum Geology of the Jurassic Deep Panuke Field, Offshore Nova Scotia, Canada. AAPG Mem. 2006, 88, 395–431. [Google Scholar] [CrossRef]
- Borgomano, J.; Masse, J.P.; Fenerci-Masse, M.; Fournier, F. Petrophysics of Lower Cretaceous Platform Carbonate Outcrops in Provence (SE France): Implications for Carbonate Reservoir Characterisation. J. Pet. Geol. 2013, 36, 5–41. [Google Scholar] [CrossRef]
- Eltom, H.; Makkawi, M.; Abdullatif, O.; Alramadan, K. High-Resolution Facies and Porosity Models of the Upper Jurassic Arab-D Carbonate Reservoir Using an Outcrop Analogue, Central Saudi Arabia. Arab. J. Geosci. 2013, 6, 4323–4335. [Google Scholar] [CrossRef]
- Morad, D.; Nader, F.H.; Gasparrini, M.; Morad, S.; Rossi, C.; Marchionda, E.; Al Darmaki, F.; Martines, M.; Hellevang, H. Comparison of the Diagenetic and Reservoir Quality Evolution between the Anticline Crest and Flank of an Upper Jurassic Carbonate Gas Reservoir, Abu Dhabi, United Arab Emirates. Sediment. Geol. 2018, 367, 96–113. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Wadood, B.; Khan, S.; Ahmed, S.; Ali, F.; Saboor, A. Integrating the Palynostratigraphy, Petrography, X-Ray Diffraction and Scanning Electron Microscopy Data for Evaluating Hydrocarbon Reservoir Potential of Jurassic Rocks in the Kala Chitta Range, Northwest Pakistan. J. Pet. Explor. Prod. Technol. 2020, 10, 3111–3123. [Google Scholar] [CrossRef]
- Morycowa, E.; Moryc, W. Rozwój utworów jurajskich na Przedgórzu Karpat w rejonie Dąbrowy Tarnowskiej—Szczucina. Rocz. Pol. Tow. Geol. 1976, 46, 231–288. [Google Scholar]
- Gutowski, J.; Urbaniec, A.; Złonkiewicz, Z.; Bobrek, L.; Świetlik, B.; Gliniak, P. Upper Jurassic and Lower Cretaceous of the Middle Polish Carpathian Foreland. Biul. Państw. Inst. Geol. 2007, 426, 1–26. [Google Scholar]
- Świdrowska, J.; Hakenberg, M.; Poluhtovič, C.; Seghedi, A.; Višnâkov, G. Evolution of the Mezozoic Basin on the Southwestern Edge of the East European Craton (Poland, Ukraine, Moldova, Romania). Stud. Geol. Pol. 2008, 130, 3–130. [Google Scholar]
- Matyja, B.A. Development of the Mid-Polish Trough versus Late Jurassic Evolution in the Carpathian Foredeep Area. Tethys 2009, 53, 49–61. [Google Scholar]
- Urbaniec, A.; Bobrek, L.; Świetlik, B. Litostratygrafia i charakterystyka mikropaleontologiczna utworów kredy dolnej w środkowej części przedgórza Karpat. Prz. Geol. 2010, 58, 1161–1175. [Google Scholar]
- Krajewski, M.; Matyszkiewicz, J.; Król, K.; Olszewska, B. Facies of the Upper Jurassic-Lower Cretaceous Deposits from the Southern Part of the Carpathian Foredeep Basement in the Kraków-Rzeszów Area (Southern Poland). Ann. Soc. Geol. Pol. 2011, 81, 269–290. [Google Scholar]
- Kosakowski, P.; Leśniak, G.; Krawiec, J. Reservoir Properties of the Palaeozoic—Mesozoic Sedimentary Cover in the Kraków—Lubaczów Area (SE Poland). Ann. Soc. Geol. Pol. 2012, 82, 51–64. [Google Scholar]
- Urbaniec, A. Charakterystyka litofacjalna utworów jury górnej i kredy dolnej w rejonie Dąbrowa Tarnowska—Dębica w oparciu o interpretację danych sejsmicznych i otworowych. Pr. Nauk. Inst. Nafty Gazu 2021, 232, 1–240. [Google Scholar] [CrossRef]
- Rutkowski, J. Senonian in the Area of Miechów, Southern Poland. Rocz. Pol. Tow. Geol. 1965, 35, 3–53. [Google Scholar]
- Marcinowski, R. The Transgressive Cretaceous (Upper Albian through Turonian). Acta Geol. Pol. 1974, 24, 117–217. [Google Scholar]
- Marcinowski, R.; Radwański, A. The Mid-Cretaceous Transgression onto the Central Polish Uplands (Marginal Part of the Central European Basin). Zitteliana 1983, 10, 65–96. [Google Scholar]
- Kudrewicz, R.; Oleszwska-Nejbert, D. Upper Cretaceous “Echinoidlagerstätten” in the Kraków Area. Ann. Soc. Geol. Pol. 1997, 67, 1–12. [Google Scholar]
- Remin, Z. Biostratigraphy of the Santonian in the SW Margin of the Holy Cross Mountains near Lipnik, a Potential Reference Section for Extra-Carpathian Poland. Acta Geol. Pol. 2004, 54, 587–596. [Google Scholar]
- Jurkowska, A. Inoceramid Stratigraphy and Depositional Architecture of the Campanian and Maastrichtian of the Miechów Synclinorium (Southern Poland). Acta Geol. Pol. 2016, 66, 59–84. [Google Scholar] [CrossRef]
- Jawor, W.; Jawor, E. Perspektywy poszukiwawcze w piaskowcach cenomanu na przykładzie złoża gazu ziemnego Rylowa. Nafta 1989, 45, 3–9. [Google Scholar]
- Jȩdrzejowska-Zwinczak, H.; Jawor, E.; Żuławiński, K. Nowe elementy w interpretacji danych sejsmicznych dla utworów cenomańskich na przedgórzu Karpat. Prz. Geol. 1996, 44, 375–380. [Google Scholar]
- Marzec, P.; Pietsch, K. Thin-Bedded Strata and Tuning Effect as Causes of Seismic Data Anomalies in the Top Part of the Cenomanian Sandstone in the Grobla-Rajsko-Rylowa Area (Carpathian Foreland, Poland). Geol. Q. 2012, 56, 691–710. [Google Scholar] [CrossRef] [Green Version]
- Heller, I.; Moryc, W. Stratygrafia utworów kredy górnej przedgórza Karpat. Biul. Inst. Geol. 1984, 24, 63–108. [Google Scholar]
- Baran, U.; Jawor, E. Nowe możliwości poszukiwawcze złóż ropy naftowej i gazu ziemnego w obszarze Jastrząbka-Żukowice-Pilzno. Nafta 1988, 44, 161–166. [Google Scholar]
- Karnkowski, P. Uwarunkowania akumulacji węglowodorów na obszarze przedgórza Karpat. Nafta-Gaz 1999, 11, 665–678. [Google Scholar]
- Chopra, S.; Marfurt, K.J. Seismic Attributes for Prospect Identification and Reservoir Characterization; Society of Exploration Geophysicists, European Association of Geoscientists and Enginners: Tulsa, OK, USA, 2005. [Google Scholar]
- Chopra, S.; Marfurt, K.J. Seismic attribute expression of differential compaction. Leading Edge 2012, 31, 1418–1422. [Google Scholar] [CrossRef]
- Torrado, L.; Mann, P.; Bhattacharya, J. Application of seismic attributes and spectral decomposition for reservoir characterization of a complex fluvial system: Case study of the Carbonera Formation, Llanos foreland basin, Colombia. Geophysics 2014, 79, B221–B230. [Google Scholar] [CrossRef]
- Li, X.; Chen, Q.; Wu, C.; Liu, H.; Fang, Y. Application of multi-seismic attributes analysis in the study of distributary channels. Mar. Pet. Geol. 2016, 75, 192–202. [Google Scholar] [CrossRef]
- El Redini, N.A.H.; Bakr, A.M.A.; Dahroug, S.M. Seismic data interpretation for hydrocarbon potential, for Safwa/Sabbar field, East Ghazalat onshore area, Abu Gharadig basin, Western Desert, Egypt. NRIAG J. Astron. Geophys. 2017, 6, 287–299. [Google Scholar] [CrossRef]
- Anees, A.; Shi, W.; Ashraf, U.; Xu, Q. Channel identification using 3D seismic attributes in lower Shihezi Formation of Hangjinqi area, northern Ordos Basin, China. J. Appl. Geophys. 2019, 163, 139–150. [Google Scholar] [CrossRef]
- Karnkowski, P.; Głowacki, E. O budowie geologicznej utworów podmioceńskich przedgórza Karpat Środkowych. Kwart. Geol. 1961, 5, 372–419. [Google Scholar]
- Obuchowicz, Z. Budowa geologiczna przedgórza Karpat środkowych. Pr. Inst. Geol. 1963, 30, 321–354. [Google Scholar]
- Stemulak, J.; Jawor, E. Wgłębna budowa geologiczna przedgórza Karpat w obszarze na zachód od Dunajca i Wisły. Kwart. Geol. 1963, 7, 169–186. [Google Scholar]
- Jawor, E. Wgłębna budowa geologiczna na wschód od Krakowa. Acta Geol. Pol. 1970, 20, 709–770. [Google Scholar]
- Machaniec, E.; Zapałowicz-Bilan, B. Foraminiferal Biostratigraphy and Paleobathymetry of Senonian Marls (Upper Cretaceous) in the Vicinity of Kraków (Januszowice-Korzkiew Area, Bonarka Quarry). Stud. Geol. Pol. 2005, 124, 285–295. [Google Scholar]
- Moryc, W. Budowa geologiczna podłoża miocenu w rejonie Kraków-Pilzno. Część 2. Perm i mezozoik. Nafta-Gaz 2006, 6, 263–282. [Google Scholar]
- Walaszczyk, I.; Cieśliński, S.; Sylwestrzak, H. Selected Geosites of Cretaceous Deposits in Central and Eastern Poland. Pol. Geol. Inst. Spec. Pap. 1999, 2, 71–76. [Google Scholar]
- Moryc, W.; Jachowicz, M. Utwory prekambryjskie w rejonie Bochnia-Tarnów-Dębica. Prz. Geol. 2000, 48, 601–606. [Google Scholar]
- Jachowicz-Zdanowska, M. Organic Microfossil Assemblages from the Late Ediacaran Rocks of the Małopolska Block, Southeastern Poland. Geol. Q. 2011, 55, 85–94. [Google Scholar]
- Zając, R. Stratygrafia i rozwój facjalny dewonu i dolnego karbonu południowej części podłoża zapadliska przedkarpackiego. Kwart. Geol. 1984, 28, 291–316. [Google Scholar]
- Moryc, W. Budowa geologiczna podłoża miocenu w rejonie Kraków-Pilzno. Część 1. Prekambr i paleozoik (bez permu). Nafta-Gaz 2006, 5, 197–216. [Google Scholar]
- Urbaniec, A.; Bartoń, R.; Bajewski, Ł.; Wilk, A. Wyniki interpretacji strukturalnej utworów triasu i paleozoiku przedgórza Karpat opartej na nowych danych sejsmicznych. Nafta-Gaz 2020, 9, 559–568. [Google Scholar] [CrossRef]
- Jasionowski, M. Zarys litostratygrafii osadów mioceńskich wschodniej częsści zapadliska przedkarpackiego. Biul. Państw. Inst. Geol. 1997, 375, 43–59. [Google Scholar]
- Urbaniec, A.; Stadtmüller, M.; Bartoń, R. Possibility of a More Detailed Seismic Interpretation within the Miocene Formations of the Carpathian Foredeep Based on the Well Logs Interpretation. Nafta-Gaz 2019, 9, 527–544. [Google Scholar] [CrossRef]
- Hakenberg, M.; Świdrowska, J. Evolution of the Holy Cross Segment of the Mid-Polish Trough during the Cretaceous. Kwart. Geol. 1998, 42, 239–261. [Google Scholar]
- Peryt, D.; Wyrwicka, K. “Zdarzenie beztlenowe” na granicy cenomanu i turonu w Polsce południowo-wschodniej. Prz. Geol. 1989, 37, 563–569. [Google Scholar]
- Leary, P.N.; Peryt, D. The Late Cenomanian Oceanic Anoxic Event in the Western Anglo-Paris Basin and Southeast Danish-Polish Trough: Survival Strategies of and Recolonisation by Benthonic Foraminifera. Hist. Biol. 1991, 5, 321–338. [Google Scholar] [CrossRef]
- de Bruin, G.; McBeath, K.; Hemstra, N. Unravelling a Carbonate System: Technical Advances in Seismic Sequence Stratigraphy. First Break 2007, 25, 57–61. [Google Scholar] [CrossRef]
- de Groot, P.; Huck, A.; De Bruin, G.; Hemstra, N.; Bedford, J. The Horizon Cube: A Step Change in Seismic Interpretation! Lead. Edge 2010, 9, 1048–1055. [Google Scholar] [CrossRef]
- Ligtenberg, H.J.; de Bruin, G.; Hemstra, N.; Geel, C. Sequence Stratigraphic Interpretation in the Wheeler Transformed (Flattened) Seismic Domain. In Proceedings of the 68th European Association of Geoscientists and Engineers Conference and Exhibition Incorporating SPE EUROPEC 2006: Opportunities in Mature Areas, Vienna, Austria, 12–15 June 2006. [Google Scholar]
- Qayyum, F.; de Groot, P.; Hemstra, N. Using 3D Wheeler Diagrams in Seismic Interpretation—The Horizon Cube Method. First Break 2012, 30, 103–109. [Google Scholar] [CrossRef]
- Watkinson, M.P.; Hart, M.B.; Joschi, A. Cretaceous Tectonostratigraphy and the Development of the Cauvery Basin, Southeast India. Pet. Geosci. 2007, 13, 181–191. [Google Scholar] [CrossRef]
- Haqiqie, F.A.; Sunardi, E.; Ilmii, N.N.; Ginting, A.S. Determination of Potential Hydrocarbon and Tectonostratigraphy Analysis Based on 2D Seismic in Padamarang Sub-Basin, Bone Basin, South Part of Sulawesi. J. Geol. Sci. Appl. Geol. 2018, 2, 38–48. [Google Scholar]
- Nikishin, A.M.; Kopaevich, L.F. Tectonostratigraphy as a Basis for Paleotectonic Reconstructions. Moscow Univ. Geol. Bull. 2009, 64, 65–74. [Google Scholar] [CrossRef]
- Qayyum, F.; Catuneanu, O.; de Groot, P. Historical Developments in Wheeler Diagrams and Future Directions. Basin Res. 2015, 27, 336–350. [Google Scholar] [CrossRef]
- McDonough, K.J.; Bouanga, E.; Pierard, C.; Horn, B.; Emmet, P.; Gross, J.; Danforth, A.; Sterne, N.; Granath, J. Wheeler-Transformed 2D Seismic Data Yield Fan Chronostratigraphy of Offshore Tanzania. Lead. Edge 2013, 32, 162–170. [Google Scholar] [CrossRef]
- Ramirez, F.A. Tectonostratigraphic Evolution of a Suprasalt Minibasin, Oligocene-Miocene Western Slope of the Gulf of Mexico. Master’s Thesis, University of Texas, El Paso, TX, USA, 2016. [Google Scholar]
- Mantilla, O.; Castellanos, J.; Ramirez, V.; Hurtado, D.; Rubio, C. Tectono–stratigraphic Events of the Northern Caribbean Offshore Colombia. In Proceedings of the AAPG International Conference and Exhibition, Cartagena, Colombia, 8–11 September 2013. [Google Scholar]
- Kenyon, I.C.; McClay, K.; Scarselli, N. 4-D Tectono-Stratigraphy, Inverted Fault Architecture and Implications on Hydrocarbon Migration within the Taranaki Basin, Offshore New Zealand.pdf. 2016. Available online: https://figshare.com/articles/journal_contribution/4-D_Tectono-stratigraphy_Inverted_Fault_Architecture_and_implications_on_Hydrocarbon_Migration_within_the_Taranaki_Basin_Offshore_New_Zealand_pdf/4253771/1 (accessed on 1 November 2021).
- Koson, S.; Chenrai, P.; Choowong, M. Seismic Attributes and Their Applications in Seismic Geomorphology. Bull. Earth Sci. Thail. 2014, 6, 1–9. [Google Scholar]
- Sarhan, M.A. The efficiency of seismic attributes to differentiate between massive and non-massive carbonate successions for hydrocarbon exploration activity. NRIAG J. Astron. Geophys. 2017, 6, 311–325. [Google Scholar] [CrossRef] [Green Version]
- Bartoń, R.; Urbaniec, A. Wykorzystanie pomiarów PPS do uszczegółowienia interpretacji sejsmicznej 3D na przykładzie utworów dolnego paleozoiku. Nafta-Gaz 2018, 9, 655–668. [Google Scholar] [CrossRef]
- Ashraf, U.; Zhu, P.; Yasin, Q.; Anees, A.; Imraz, M.; Mangi, H.N.; Shakeel, S. Classification of reservoir facies using well log and 3D seismic attributes for prospect evaluation and field development: A case study of Sawan gas field, Pakistan. J. Pet. Sci. Eng. 2019, 175, 338–351. [Google Scholar] [CrossRef]
- Taner, M.T.; Koehler, F.; Sheriff, R.E. Complex Seismic Trace Analysis. Geophysics 1979, 44, 1041–1063. [Google Scholar] [CrossRef]
- Ulrych, T.; Sacchi, M.; Graul, M.; Taner, M.T. Instantaneous Attributes: The What and the How. Explor. Geophys. 2007, 38, 213–219. [Google Scholar] [CrossRef]
- Fashagba, I.; Enikanselu, P.; Lanisa, A.; Matthew, O. Seismic Reflection Pattern and Attribute Analysis as a Tool for Defining Reservoir Architecture in ‘SABALO’ Field, Deepwater Niger Delta. J. Pet. Explor. Prod. Technol. 2020, 10, 991–1008. [Google Scholar] [CrossRef] [Green Version]
- Hart, B.S. Channel Detection in 3-D Seismic Data Using Sweetness. Am. Assoc. Pet. Geol. Bull. 2008, 92, 733–742. [Google Scholar] [CrossRef]
- Zheng, J.; Peng, G.; Sun, J.; He, D.; Qin, D. Fluid Detection of Sand-Shale Interbeds Based on a “New Sweetness” Attribute. In Proceedings of the 2017 SEG International Exposition and 88th Annual Meeting, Houston, TX, USA, 24–29 September 2017; pp. 3428–3432. [Google Scholar]
- Łaba-Biel, A.; Kwietniak, A.; Urbaniec, A. Seismic Identification of Unconventional Heterogenous Reservoirs Based on Depositional History—A Case Study of the Polish Carpathian Foredeep. Energies 2020, 13, 6036. [Google Scholar] [CrossRef]
- Partyka, G.A. Seismic Thickness Estimation: Three Approaches, Pros and Cons. In Proceedings of the 2001 SEG Annual Meeting, San Antonio, TX, USA, 9–14 September 2001. [Google Scholar]
- Puryear, C.I.; Castagna, J.P. Layer-Thickness Determination and Stratigraphic Interpretation Using Spectral Inversion: Theory and Application. Geophysics 2008, 73, R37–R48. [Google Scholar] [CrossRef]
- Partyka, G.; Gridley, J.; Lopez, J. Interpretational Applications of Spectral Decomposition in Reservoir Characterization. Lead. Edge 1999, 18, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, B.; Li, F.; Qi, J.; Bai, B. Seismic Time-Frequency Decomposition by Using a Hybrid Basis-Matching Pursuit Technique. Interpretation 2016, 4, T239–T248. [Google Scholar] [CrossRef]
- Tary, J.B.; Herrera, R.H.; Han, J.; van der Baan, M. Spectral Estimation—What Is New? What Is Next? Rev. Geophys. 2014, 52, 723–749. [Google Scholar] [CrossRef]
- Porębski, S.J.; Warchoł, M. Hyperpycnal Flows and Deltaic Clinoforms—Implications for Sedimentological Interpretations of Late Middle Miocene Fill in the Carpathian Foredeep Basin. Prz. Geol. 2006, 54, 421–429. [Google Scholar]
- Pietsch, K.; Porębski, S.J.; Marzec, P. The Use of Seismostratigraphy for Exploration of Miocene Gas-Bearing Reservoir Facies in the NE Part of the Carpathian Foreland Basin (Poland). Geologia 2010, 36, 173–186. [Google Scholar]
- Kwietniak, A.; Cichostępski, K.; Kasperska, M. Spectral Decomposition Using the CEEMD Method: A Case Study from the Carpathian Foredeep. Acta Geophys. 2016, 64, 1525–1541. [Google Scholar] [CrossRef] [Green Version]
- Posamantier, H.W.; Kolla, V. Seismic Geomorphology and Stratigraphy of Depositional Elements in Deepwater Settings. J. Sediment. Res. 2003, 73, 367–388. [Google Scholar] [CrossRef]
- Catuneanu, O. Principles of Sequence Similarity; Elsevier: Edmonton, AL, Canada, 2006. [Google Scholar]
- Catuneanu, O.; Abreu, V.; Bhattacharya, J.P.; Blum, M.D.; Dalrymple, R.W.; Eriksson, P.G.; Fielding, C.R.; Fisher, W.L.; Galloway, W.E.; Gibling, M.R.; et al. Towards the Standardization of Sequence Stratigraphy. Earth-Sci. Rev. 2009, 92, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Catuneanu, O.; Galloway, W.E.; Kendall, C.G.S.C.; Miall, A.D.; Posamentier, H.W.; Strasser, A.; Tucker, M.E. Sequence Stratigraphy: Methodology and Nomenclature. Newsl. Stratigr. 2011, 44, 173–245. [Google Scholar] [CrossRef] [Green Version]
- Loucks, R.G.; Sarg, J.F. Carbonate Sequence Stratigraphy—Recent Developments and Applications; The American Association of Petroleum Geologists: Tulsa, OK, USA, 1993; Volume 57. [Google Scholar]
- Zecchin, M.; Catuneanu, O. High-Resolution Sequence Stratigraphy of Clastic Shelves VI: Mixed Siliciclastic-Carbonate Systems. Mar. Pet. Geol. 2017, 88, 712–723. [Google Scholar] [CrossRef]
- Cumberpatch, Z.A.; Soutter, E.L.; Kane, I.A.; Casson, M.; Vincent, S.J. Evolution of a Mixed Siliciclastic-Carbonate Deep-Marine System on an Unstable Margin: The Cretaceous of the Eastern Greater Caucasus, Azerbaijan. Basin Res. 2021, 33, 612–647. [Google Scholar] [CrossRef]
- Embry, A.F. Sequence Boundaries and Sequence Hierarchies: Problems and Proposals. Stratigr. Northwest Eur. Margin Spec. Publ. 1995, 5, 1–11. [Google Scholar]
- Donaldson, W.S.; Plint, A.G.; Longstaffe, F.J. Tectonic and Eustatic Control on Deposition and Preservation of Upper Cretaceous Ooidal Ironstone and Associated Facies: Peace River Arch Area, NW Alberta, Canada. Sedimentology 1999, 46, 1159–1182. [Google Scholar] [CrossRef]
- Porębski, S.J. Podstawy stratygrafii sekwencji w sukcesjach klastycznych. Prz. Geol. 1996, 44, 995–1006. [Google Scholar]
- Phillips, T.B.; Jackson, C.A.L.; Norcliffe, J.R. Pre-Inversion Normal Fault Geometry Controls Inversion Style and Magnitude, Farsund Basin, Offshore Southern Norway. Solid Earth 2020, 11, 1489–1510. [Google Scholar] [CrossRef]
- King, P.R.; Thrasher, G.P. Cretaceous-Cenozoic Geology and Petroleum Systems of the Taranaki Basin, New Zealand; Institute of Geological and Nuclear Sciences Monograph 13. Institute of Geological and Nuclear Sciences: Lower Hutt, New Zealand, 1996. [Google Scholar]
- Martin-Chivelet, J. Sequence Stratigraphy of Mixed Carbonate-siliciclastic Platforms Developed in a Tectonically Active Setting, Upper Cretaceous, Betic Continental Margin (Spain). J. Sediment. Res. 1995, B65, 235–254. [Google Scholar] [CrossRef]
- Mortimore, R.; Pomerol, B. Upper Cretaceous tectonic phases and end Cretaceous inversion in the Chalk of the Anglo-Paris Basin. Proc. Geol. Assoc. 1997, 108, 231–255. [Google Scholar] [CrossRef]
- Hakenberg, M.; Świdrowska, J. Cretaceous basin evolution in the Lublin area along the Teisseyre-Tornquist zone (SE Poland). Ann. Soc. Geol. Pol. 2001, 71, 1–20. [Google Scholar]
- Krzywiec, P.; Gutowski, J.; Walaszczyk, I.; Wróbel, G.; Wybraniec, S. Tectonostratigraphic model of the Late Cretaceous inversion along the Nowe Miasto–Zawichost Fault Zone, SE Mid-Polish Trough. Geol. Q. 2009, 53, 27–48. [Google Scholar]
- Krzywiec, P.; Stachowska, A. Late Cretaceous Inversion of the NW Segment of the Mid-Polish Trough—How Marginal Troughs Were Formed, and Does It Matter at All? Ger. J. Geol. 2016, 167, 107–119. [Google Scholar] [CrossRef]
- Ahlrichs, N.; Noack, V.; Hübscher, C.; Seidel, E.; Warwel, A.; Kley, J. Impact of Late Cretaceous inversion and Cenozoic extension on salt structure growth in the Baltic sector of the North German Basin. Basin Res. 2021, 33, 1–31. [Google Scholar] [CrossRef]
- Stachowska, A.; Krzywiec, P. Depositional Architecture of the Upper Cretaceous Succession in Central Poland (Grudziądz-Polik Area) Based on Regional Seismic Data. Geol. Q. 2021, 65, 1–17. [Google Scholar] [CrossRef]
- Voigt, T.; Kley, J.; Voigt, S. Dawn and Dusk of Late Cretaceous Basin Inversion in Central Europe. Solid Earth 2021, 12, 1443–1471. [Google Scholar] [CrossRef]
- Xiao, H.B.; Suppe, J. Origin of Rollover. Am. Assoc. Pet. Geol. Bull. 1992, 76, 509–529. [Google Scholar]
- Gui, B.; He, D.; Chen, W.; Zhang, W. Migration of Growth Axial Surfaces and Its Implications for Multiphase Tectono-Sedimentary Evolution of the Zhangwu Fault Depression, Southern Songliao Basin, NE China. J. Geodyn. 2014, 75, 53–63. [Google Scholar] [CrossRef]
- Szász, L.; Ion, J. Crétacé Superieur Du Bassin de Babadag. Mémoires Inst. Géologie Géophysique 1988, 33, 91–149. [Google Scholar]
- Walaszczyk, I. Turonian through Santonian Deposits of the Central Polish Uplands; Their Facies Development, Inoceramid Paleontology and Stratigraphy. Acta Geol. Pol. 1992, 42, 1–122. [Google Scholar]
- Leszczyński, K. The Upper Cretaceous Carbonate-Dominated Sequences of the Polish Lowlands. Geol. Q. 1997, 41, 521–531. [Google Scholar]
- Świdrowska, J.; Hakenberg, M. Subsidence and Problem of Incipient in the Mid-Polish Trough Based on Thickness Maps and Cretaceous Lithophacies Analysis. Prz. Geol. 1999, 48, 61–68. [Google Scholar]
- Krzywiec, P. Structural Inversion of the Pomeranian and Kuiavian Segments of the Mid-Polish Trough—Lateral Variations in Timing and Structural Style. Geol. Q. 2006, 50, 151–168. [Google Scholar]
- Jasionowski, M. A Cretaceous Non-depositional Surface in the Kraków Upland (Mydlniki, Zabierzów): Burrows, Borings and Stromatolites. Ann. Soc. Geol. Pol. 1995, 65, 63–77. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbaniec, A.; Łaba-Biel, A.; Kwietniak, A.; Fashagba, I. Seismostratigraphic Interpretation of Upper Cretaceous Reservoir from the Carpathian Foreland, Southern Poland. Energies 2021, 14, 7776. https://doi.org/10.3390/en14227776
Urbaniec A, Łaba-Biel A, Kwietniak A, Fashagba I. Seismostratigraphic Interpretation of Upper Cretaceous Reservoir from the Carpathian Foreland, Southern Poland. Energies. 2021; 14(22):7776. https://doi.org/10.3390/en14227776
Chicago/Turabian StyleUrbaniec, Andrzej, Anna Łaba-Biel, Anna Kwietniak, and Imoleayo Fashagba. 2021. "Seismostratigraphic Interpretation of Upper Cretaceous Reservoir from the Carpathian Foreland, Southern Poland" Energies 14, no. 22: 7776. https://doi.org/10.3390/en14227776
APA StyleUrbaniec, A., Łaba-Biel, A., Kwietniak, A., & Fashagba, I. (2021). Seismostratigraphic Interpretation of Upper Cretaceous Reservoir from the Carpathian Foreland, Southern Poland. Energies, 14(22), 7776. https://doi.org/10.3390/en14227776