Archimedes Screw Design: An Analytical Model for Rapid Estimation of Archimedes Screw Geometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Basis
2.2. Evaluation Criteria
3. Results and Analysis
4. Analytical Method for Designing Archimedes Screws
- (1)
- (2)
- Use Equation (3) to determine the Archimedes screw’s length.
- (3)
- Use Equation (11) to determinate the overall (outer) diameter DO of the Archimedes screw based on the desired ω, δ, σ and Ξ values. Or,Use Equation (16) to design Archimedes screw similar to the current installed ASGs in hydropower plants (δ = 0.5, σ = 1, Ξ = 69%, η ≈ 1.61 and ψ = 3/7). For example, for Q = 9 m3/s using Equation (16) results . Comparison of the calculated DO with Table 2. indicates that this is a very close outer diameter to the Künzelsau hydropower plant Archimedes screw ( = 4.1 m) with is designed for almost the same flow rate. Or, for Q = 1 m3/s, Equation (18) gives which is almost the same as the average of Bischofsmais, Mühlen and Vadodara ASTs’ outer diameters (1.6 m, 1.5 m and 1.7 m respectively).
- (4)
- Determinate the inner diameter () and screw pitch (S) based on the estimated ( using the following equations:
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Effective cross-sectional area at the screw’s inlet | (m2) | |
Maximum cross-sectional water area at the screw’s inlet | (m2) | |
The outer diameter’s cross-sectional area | (m2) | |
Coefficient of dimensionless flow rate | (-) | |
Coefficient of dimensionless area constant | (-) | |
Coefficient of dimensionless rotation speed constant | (-) | |
The inner diameter of the Archimedes screw | (m) | |
The outer diameter of the Archimedes screw | (m) | |
The estimated value | ||
The average of the estimations | ||
Fill height of water in a bucket of screw | (-) | |
Upper (inlet) water level of the screw | (m) | |
Lower (outlet) water level of the screw | (m) | |
The available head | (m) | |
Gap width (The gap between the trough and screw) | (m) | |
T total length of the screw | (m) | |
The mean absolute percentage error | (%) | |
n | The number of data points in the dataset | |
Number of helical planed surfaces | (-) | |
The observed value | ||
The average of the observed data | ||
PE | The percentage (percent) error | (%) |
Total flow rate passing through the screw | (m3/s) | |
The maximum flow rate that could pass through a screw when and | (m3/s) | |
The volumetric flow rate that passes through the cross-sectional area of at the speed of . | (m3/s) | |
r | Radios | (m) |
R | Pearson correlation | (%) |
Pitch of the screw (Distance along the screw axis for one complete helical plane turn) | (m) | |
Axial transport velocity | (m/s) | |
y | The cross section fill height | (rad) |
The free surface elevations at the upstream | (m) | |
ZL | The free surface elevations at the downstream | (m) |
Thinclination angle of the screw | (rad) | |
The screw’s pitch to outer diameter ratio ( | (-) | |
The constant accounting for screw geometry, rotation speed and fill level in the power function form of the diameter equation | (s3/7m−2/7) | |
θ | Angle of sector | (rad) |
The screw’s inner to outer diameter ratio () | (-) | |
The dimensionless inlet depth of the screw | (-) | |
The value of power in the power function form of diameter equation | (-) | |
ω | The rotation speed of the screw | (rad/s) |
The maximum rotation speed of the screw (Muysken limit) | (rad/s) | |
Subscripts | ||
i | inner | |
min | minimum | |
Max | Maximum | |
O | Outer |
References
- Muller, G.; Senior, J. Simplified theory of Archimedean screws. J. Hydraul. Res. 2009, 47, 666–669. [Google Scholar] [CrossRef]
- Kibel, P. Fish Monitoring and Live Fish Trials. Archimedes Screw Turbine, River Dart. Phase 1 Report: Live Fish Trials, Smolts, Leading Edge Assessment, Disorientation Study, Outflow Monitoring; Fishtek Consulting Ltd.: Moretonhampstead, UK, 2007. [Google Scholar]
- Boys, C.A.; Pflugrath, B.D.; Mueller, M.; Pander, J.; Deng, Z.; Geist, J. Physical and hydraulic forces experienced by fish passing through three different low-head hydropower turbines. Mar. Freshw. Res. 2018, 69, 1934–1944. [Google Scholar] [CrossRef]
- McNabb, C.D.; Liston, C.R.; Borthwick, S.M. Borthwick. Passage of Juvenile Chinook Salmon and other Fish Species through Archimedes Lifts and a Hidrostal Pump at Red Bluff, California. Trans. Am. Fish. Soc. 2003, 132, 326–334. [Google Scholar] [CrossRef]
- Kibel, P.; Pike, R.; Coe, T. Archimedes Screw Turbine Fisheries Assessment. Phase II: Eels and Kelts; Publisher: Moretonhampstead, UK, 2008. [Google Scholar]
- Kibel, P.; Pike, R.; Coe, T. The Archimedes Screw Turbine: Assessment of Three Leading Edge Profiles; Publisher: Moretonhampstead, UK, 2009. [Google Scholar]
- United Kingdom Environment Agency. Hydropower Good Practice Guidelines Screening requirements. J. Hydraul. Res. 2012, 4, 1–16. [Google Scholar]
- Piper, A.T.; Rosewarne, P.J.; Wright, R.M.; Kemp, P.S. The impact of an Archimedes screw hydropower turbine on fish migration in a lowland river. Ecol. Eng. 2018, 118, 31–42. [Google Scholar] [CrossRef]
- Pauwels, I.S.; Baeyens, R.; Toming, G.; Schneider, M.; Buysse, D.; Coeck, J.; Tuhtan, J. Multi-species assessment of injury, mortality, and physical conditions during downstream passage through a large archimedes hydrodynamic screw (Albert canal, Belgium). Sustainability 2020, 12, 8722. [Google Scholar] [CrossRef]
- Lashofer, A.; Hawle, W.; Pelikan, B. State of technology and design guidelines for the Archimedes screw turbine. In Proceedings of the Hydro 2012—Innovative Approaches to Global Challenges, online, 1–8 October 2012; Available online: https://bit.ly/3pC7Vah (accessed on 17 November 2021).
- VANDEZANDE BVBA. Lock of Hasselt—Hybrid Hydropower Screw/Screw Pump. Youtube, 5 Jul. 2018. Available online: https://youtu.be/FUlYjkzAIs8 (accessed on 8 August 2021).
- Simmons, S. A Computional Fluid Dynamic Analysis of Archimedes Screw Generators. Master’s Thesis, University of Guelph, Guelph, ON, Canada, 2018. [Google Scholar]
- Simmons, S.C.; Lubitz, W.D. Analysis of internal fluid motion in an Archimedes screw using computational fluid mechanics. J. Hydraul. Res. 2020, 2020, 1–15. [Google Scholar] [CrossRef]
- Shahverdi, K.; Loni, R.; Maestre, J.; Najafi, G. CFD numerical simulation of Archimedes screw turbine with power output analysis. Ocean Eng. 2021, 231, 108718. [Google Scholar] [CrossRef]
- Shahverdi, K.; Loni, R.; Ghobadian, B.; Gohari, S.; Marofi, S.; Bellos, E. Numerical Optimization Study of Archimedes Screw Turbine (AST): A case study. Renew. Energy 2020, 145, 2130–2143. [Google Scholar] [CrossRef]
- Shahverdi, K. Modeling for prediction of design parameters for micro-hydro Archimedean screw turbines. Sustain. Energy Technol. Assess. 2021, 47, 101554. [Google Scholar] [CrossRef]
- Dragomirescu, A. Design considerations for an Archimedean screw hydro turbine. IOP Conf. Ser. Earth Environ. Sci. 2021, 664, 12034. [Google Scholar] [CrossRef]
- YoosefDoost, A.; Lubitz, W. Archimedes screw turbines: A sustainable development solution for green and renewable energy generation—A review of potential and design procedures. Sustainability 2020, 12, 7352. [Google Scholar] [CrossRef]
- Nuernbergk, D.M.; Rorres, C. Analytical Model for Water Inflow of an Archimedes Screw Used in Hydropower Generation. J. Hydraul. Eng. 2013, 139, 213–220. [Google Scholar] [CrossRef]
- Brada, K.; Radlik, K.-A. Wasserkraftschnecke: Eigenschaften und Verwendung. In Heat Exchange and Renewable Energy Sources International Symposium; Politechnika Szczecinska: Szczecin, Poland, 1996; pp. 43–52. [Google Scholar]
- Aigner, D. Current Research in Hydraulic Engineering 1993–2008; Institut für Wasserbau und Technisch Hydromechanik der TU. Association: Dresden, Germany, 2008. [Google Scholar]
- Schmalz, W. Studies on fish migration and control of possible fish loss caused by the hydrodynamic screw and hydropower plant. In Fischo—Kologische und Limnol. Untersuchungsstelle Sudthurign, Rep.; Thüringer Landesanstalt für Umwelt und Geol: Jena, Germany, 2010. [Google Scholar] [CrossRef]
- Lashofer, A.; Kaltenberger, F.; Pelikan, B. Does the archimedean screw turbine stand the test? (Wie gut bewährt sich die Wasserkraftschnecke in der Praxis?). WasserWirtschaft 2011, 101, 76–81. [Google Scholar] [CrossRef]
- Nuernbergk, D.M. Wasserkraftschnecken—Berechnung und Optimaler Entwurf von Archimedischen Schnecken als Wasserkraftmaschine (Hydro-power Screws—Calculation and Design of Archimedes Screws), 2nd ed.; Verlag Moritz Schäfer: Detmold, Germany, 2020. [Google Scholar]
- Rehart Power. Rehart Power 2020 Referenzen. Available online: https://web.archive.org/web/20211024035002/https://www.rehart-power.de/referenzen/wasserkraftanlagen-typ-sh/hausen-sh.html (accessed on 23 October 2021).
- Simmons, S.; Lubitz, W. Archimedes screw generators for sustainable energy development. In Proceedings of the 2017 IEEE Canada International Humanitarian Technology Conference (IHTC), Toronto, ON, Canada, 21–22 July 2017; pp. 144–148. [Google Scholar] [CrossRef]
- Rorres, C. The Turn of the Screw: Optimal Design of an Archimedes Screw. J. Hydraul. Eng. 2000, 126, 72–80. [Google Scholar] [CrossRef] [Green Version]
- YoosefDoost, A.; Lubitz, W.D. Development of an Equation for the Volume of Flow Passing through an Archimedes Screw Turbine. In Sustaining Tomorrow; Ting, D.S.-K., Vasel-Be-Hagh, A., Eds.; Springer: Cham, Switzerland, 2021; pp. 17–37. [Google Scholar]
- Lubitz, W.D.; Lyons, M.; Simmons, S. Performance Model of Archimedes Screw Hydro Turbines with Variable Fill Level. J. Hydraul. Eng. 2014, 140, 04014050. [Google Scholar] [CrossRef]
- Muysken, J. Calculation of the Effectiveness of the Auger. De Ingenieur 1932, 21, 77–91. [Google Scholar]
- Nagel, G. Archimedean Screw Pump Handbook; RITZ-Pumpenfabrik OHG: Schwabisch Gmund, Germany, 1968. [Google Scholar]
- Rodgers, J.L.; Nicewander, W.A. Thirteen Ways to Look at the Correlation Coefficient. Am. Stat. 1988, 42, 59–66. [Google Scholar] [CrossRef]
- YoosefDoost, A.; YoosefDoost, I.; Asghari, H.; Sadeghian, M.S. Comparison of HadCM3, CSIRO Mk3 and GFDL CM2. 1 in Prediction the Climate Change in Taleghan River Basin. Am. J. Civ. Eng. Arch. 2018, 6, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Adler, J.; Parmryd, I. Quantifying colocalization by correlation: The pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytom. Part A 2010, 77A, 733–742. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H. A new metric of absolute percentage error for intermittent demand forecasts. Int. J. Forecast. 2016, 32, 669–679. [Google Scholar] [CrossRef]
- Hanke, J.E.; Wichern, D. Business Forecasting, 9th ed.; Prentice Hall: London, UK, 2009. [Google Scholar]
- Bowerman, B.L.; O’Connell, R.T.; Koehler, A.B. Forecasting, Time Series, and Regression: An Applied Approach, 4th ed.; Thomson Brooks/Cole: Belmont, CA, USA, 2005. [Google Scholar]
- Ingenieurbüro Lashofer. Hydropower Screws in Europe. Google Maps. Available online: Efort.info/AST-Map (accessed on 3 August 2021).
- SinFin. Solvay Industrial Plant. SinFin Energy. 2019. Available online: http://www.sinfinenergy.com/en/projects/solvay/ (accessed on 8 July 2020).
- Rose, R. Linton Falls and Low Wood Hydropower Schemes. River Coast., UK Water Projects 2011, 197–202, 2011, [Online]. Available online: https://waterprojectsonline.com/ (accessed on 26 October 2021).
- Rehart Power. Hannoversch Münden CS. Available online: https://web.archive.org/web/20211027000737/https://www.rehart-power.de/en/reference-projects/hydropower-screw-type-cs/hannoversch-muenden-cs.html (accessed on 26 October 2021).
- Landustrie. Linton Lock. Landustrie Sneek BV. 2017. Available online: https://web.archive.org/web/20210804020631/https://www.landustrie.nl/en/products/hydropower/projects/linton-lock.html (accessed on 29 July 2020).
- Fergnani, N. Hydroelectric Plants Energy Efficiency. Hydrosmart Srl. 2020. Available online: https://www.hydrosmart.it/energia-rinnovabile (accessed on 2 August 2020).
- Sto98. Marengo Hydropower Plant-Goito [Centrale Idroelettrica Marengo-Goito]. YouTube, Feb. 19, 2015. Available online: https://youtu.be/19px1EKa--4 (accessed on 19 July 2020).
- RenewablesFirst. Radyr Weir Hydro Turbines. Renewables First, Oct. 28, 2015. Available online: https://web.archive.org/web/20210804003006/https://www.renewablesfirst.co.uk/project-blog/radyr-weir-hydro-scheme/ (accessed on 5 July 2020).
- Landustrie Sneek BV. Totnes Weir (UK). Landustrie Worldwide Water Technology, Nov. 18, 2015. Available online: https://web.archive.org/web/20210803231005/https://www.landustrie.nl/fileadmin/user_upload/Totnes_Times_November_2015.pdf (accessed on 3 August 2021).
- Gratton, P.; Meadows, T.; Brook, T. Gunthorpe Weir Hydropower Scheme: Fisheries and Geomorphology Assessment. The Mill, Stroud, UK, 2019. [Online]. Available online: http://web.archive.org/web/20210804003408/https://consult.environment-agency.gov.uk/psc/canal-river-trust-27520-29519/supporting_documents/Fisheries and Geomorphology Assessment Gunthorpe Weir MD0280064047.pdf (accessed on 9 September 2021).
- Vandezande BVBA. Vandezande Specialist in Mechanics. Vandezande.com, Zeepziederijstraat, Brugge, Belgium, [Online]. Available online: https://web.archive.org/web/20210809031945/https://www.vandezande.com/sites/default/files/vandezande-folder%202017-eng%20LR04.pdf (accessed on 9 August 2021).
- Vandezande Diksmuide. Hydropower Screws Höllthal. Vandezande. Available online: https://web.archive.org/web/20210809061648/https://www.vandezande.com/en/projects/hydropower-screws-höllthal (accessed on 9 August 2021).
- Vandezande Diksmuide. PS/WKC Lock Hasselt. Vandezande. Available online: https://web.archive.org/web/20210405220637/https://www.vandezande.com/en/projects/ps-wkc-lock-hasselt (accessed on 9 August 2021).
Parameter | Description | Variable | Description | ||
---|---|---|---|---|---|
L | (m) | Total length of the screw | ω | (rad/s) | Rotation speed of screw * |
DO | (m) | Outer diameter | hu | (m) | Upper (inlet) water level |
Di | (m) | Inner diameter | hL | (m) | Lower (outlet) water level |
S | (m) | Screw’s pitch or period [27] (The distance along the screw axis for one complete helical plane turn) | Q | (m3/s) | Volumetric flow rate passing through the screw |
N | (1) | Number of helical planed surfaces (also called blades, flights or starts [27]) | |||
β | (rad) | Inclination Angle of the Screw | |||
Gw | (m) | The gap between the trough and screw. |
ID | Name | DO (m) | H (m) | Q (m3/s) | P (kW) | Note | Ref. |
---|---|---|---|---|---|---|---|
1 | Haddo | 1.4 | 5 | 0.5 | 15.9 | * | [17,25] |
2 | Indore | 1.4 | 5.3 | 0.6 | 19 | * | [17,25] |
3 | Mühlen | 1.5 | 3 | 1 | 21 | * | [17,25] |
4 | Bischofsmais | 1.6 | 3.16 | 1 | 21 | * | [17,25] |
5 | Gennkikungou | 1.6 | 1.05 | 0.99 | 7.3 | * | [17,25] |
6 | Herrenhof | 1.6 | 2.1 | 0.9 | 13.9 | * | [17,25] |
7 | Schnaittach | 1.6 | 1.35 | 0.8 | 7.5 | * | [17,25] |
8 | Vierhöfen | 1.6 | 1 | 1.2 | 8 | * | [17,25] |
9 | St. Michael | 1.7 | 3.2 | 1.2 | 26.92 | * | [17,25] |
10 | Vadodara | 1.7 | 5 | 1 | 33 | * | [17,25] |
11 | Eitting | 1.8 | 3.57 | 1.2 | 29 | * | [17,25] |
12 | Erding | 1.8 | 1.75 | 1.2 | 13.9 | * | [17,25] |
13 | Flatford Mill | 1.9 | 1.1 | 1.6 | 12.6 | * | [17,25] |
14 | Niedermühle | 1.9 | 3.17 | 1.5 | 33 | * | [17,25] |
15 | Gescher | 2 | 3.45 | 1.8 | 46 | * | [17,25] |
16 | Yvoir | 2.1 | 1.8 | 2 | 26 | * | [17,25] |
17 | Colditz | 2.2 | 3 | 1.5 | 33 | * | [17,25] |
18 | Ahornweg | 2.3 | 1.45 | 2 | 21 | [38] | |
19 | Solvay | 2.3 | 2 | 2.5 | 35 | [39] | |
20 | Stimpfach | 2.3 | 2.55 | 2.3 | 44 | * | [17,25] |
21 | Linton Falls | 2.4 | 2.7 | 2.6 | 50 | [40] | |
22 | Untermünkheim | 2.4 | 1.8 | 2.5 | 31 | * | [17,25] |
23 | Turbury Mill | 2.5 | 2.1 | 2.8 | 43 | * | [17,25] |
24 | Dautphetal | 2.6 | 2.55 | 2.5 | 45.8 | * | [17,25] |
25 | Hannoversch-Münden | 2.8 | 2.6 | 2 | 35.455 | [41] | |
26 | Wiener Neustadt | 2.8 | 4.05 | 3.5 | 98 | * | [17,25] |
27 | Pilsing | 2.9 | 3.6 | 3.2 | 8 | * | [17,25] |
28 | Linton Plant | 3 | 3.2 | 4.5 | 110 | ☆ | [18,42] |
29 | Low Wood | 3 | 7.2 | 4 | 200 | [40] | |
30 | Marengo | 3 | 1.6 | 3.7 | 51 | [43,44] | |
31 | Baiersdorff | 3.2 | 1.5 | 4.5 | 48.1 | * | [17,25] |
32 | Crescenzago | 3.2 | 2.1 | 5 | 75 | [38] | |
33 | Hausen | 3.4 | 5.8 | 6 | 250 | * | [17,25] |
34 | Hausen III Neumatt | 3.4 | 5.8 | 5.5 | 235 | [38] | |
35 | Kirchberg | 3.4 | 2.97 | 6 | 130 | * | [17,25] |
36 | Shanes Castle | 3.4 | 5 | 5.5 | 192 | * | [17,25] |
37 | Radyr | 3.5 | 3.5 | 11 | 200 | [45] | |
38 | Maple Durham | 3.6 | 1.73 | 8 | 99 | * | [17,25] |
39 | Wien | 3.6 | 1.7 | 7.1 | 84 | * | [17,25] |
40 | Totnes | 3.7 | 3.45 | 6.5 | 160 | [46] | |
41 | Künzelsau | 4.1 | 1.72 | 8.95 | 132 | [38] | |
42 | Plana | 4.1 | 3.5 | 8.73 | 220 | [38] | |
43 | Gunthorpe Weir | 4.3 | 2.03 | 14.15 | 165 | [47] | |
44 | Ham | 4.3 | 10 | 5 | 360 | [38,48] | |
45 | Höllthal | 4.3 | 2.22 | 10.5 | 220 | [38,49] | |
46 | Olen | 4.3 | 10 | 5 | 360 | [38,48] | |
47 | Hasselt | 5 | 10 | 5 | 400 | [11,50] | |
48 | Widdington Plant | 5 | 3 | 14.5 | 335 | ☆ | [18,42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
YoosefDoost, A.; Lubitz, W.D. Archimedes Screw Design: An Analytical Model for Rapid Estimation of Archimedes Screw Geometry. Energies 2021, 14, 7812. https://doi.org/10.3390/en14227812
YoosefDoost A, Lubitz WD. Archimedes Screw Design: An Analytical Model for Rapid Estimation of Archimedes Screw Geometry. Energies. 2021; 14(22):7812. https://doi.org/10.3390/en14227812
Chicago/Turabian StyleYoosefDoost, Arash, and William David Lubitz. 2021. "Archimedes Screw Design: An Analytical Model for Rapid Estimation of Archimedes Screw Geometry" Energies 14, no. 22: 7812. https://doi.org/10.3390/en14227812
APA StyleYoosefDoost, A., & Lubitz, W. D. (2021). Archimedes Screw Design: An Analytical Model for Rapid Estimation of Archimedes Screw Geometry. Energies, 14(22), 7812. https://doi.org/10.3390/en14227812