Hydraulic Characterization of the Full Scale Mock-Up of the DEMO Divertor Outer Vertical Target
Abstract
:1. Introduction
- Demonstrate the technical feasibility of manufacturing procedures, focusing the attention on the joining/welding techniques, and optimizing costs of each component applying standard practices;
- Experimentally characterize the hydraulic behavior of the plasma facing components;
- Validate the computational fluid-dynamic (CFD) model developed at the University of Palermo against experimental data.
2. Experimental Test Campaign
Steady-State Tests
3. OVT Mock-Up Cooling Circuit CFD Analysis
3.1. Model Setup
3.2. Mesh Independence Studies
- The observed convergence order ranges between 7.80 and 10.43, lower than the results obtained with the classical GCI formulation, yet outside the prescribed limits;
- GCI values calculated adopting the parameters obtained with the LS approach result between 1 and 2.7% for all of the considered mass flow rates, and are characterized by a lower spread compared to the outcomes of the original GCI formulation;
- The prescribed best-fittings with linear and quadratic functions resulted in unrealistic and underestimated asymptotic values, not compatible with the experimental results and, consequently, in excessively high GCI values.
3.3. Results and Comparison with Experimental Data
3.4. Sensitivity Analysis on the Equivalent Sand-Grain Wall Roughness
- Due to the presence of non-stationary features of the fluid flow, such as the strongly detached flow inside the inlet manifold clearly visible in Figure 12 (right), an oscillation of the results is always observed in the simulations. As a consequence, the small variations in terms of total pressure drop and mass flow distribution among PFU channels observed by varying the surface roughness are hardly recognized from the noisy nature of the results. To obtain better estimates of the effects of surface roughness sensitivity, the outcomes reported in the following were calculated by averaging the metrics of Equation (5) obtained for the five different mass flow rate cases.
- Varying the PFU channels surface roughness, a variation of total pressure drop between −0.6% and +1.8% is detected. It results in an average of m.
- Varying the swirl tape surface roughness, a variation of total pressure drop between −0.4% and +0.5% is obtained. An average of m, lower than the sensitivity to PFU channels roughness.
- Varying the OVT mock-up pipes and manifolds surface roughness, an average ≈−2.5% total pressure drop change is observed with the 1.5 m equivalent sand grain roughness. The 150 m case predicted an average 0.4% reduction in total pressure drop with respect to baseline case. This latter result is mainly related to the different wall treatment adopted, whose effect should be further investigated. As a consequence, it is not possible to provide an estimate of the parameter .
- No significant change in flow distribution, in terms of coefficient of variation, is observed modifying the surface roughness of PFU channels, swirl tape, and OVT mock-up pipes and manifolds, always resulting in a lower spread of the mass flow rates if compared to the experimental values. In particular, absolute variations within the range ±0.1% are predicted by the model, resulting in m.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Donné, A.J.H.; Morris, W. European Research Roadmap to the Realisation of Fusion Energy; EUROfusion: Garching/Munich, Germany, 2018; ISBN 978-3-00-061152-0. [Google Scholar]
- Donné, A.J.H. The European roadmap towards fusion electricity. Philos. Trans. R. Soc. 2019, 377, 20170432. [Google Scholar] [CrossRef] [Green Version]
- Federici, G.; Bachmann, C.; Barucca, L.; Baylard, C.; Biel, W.; Boccaccini, L.V.; Bustreo, C.; Ciattaglia, S.; Cismondi, F.; Corato, V.; et al. Overview of the DEMO staged design approach in Europe. Nucl. Fusion 2019, 59, 066013. [Google Scholar] [CrossRef] [Green Version]
- Mazzone, G.; You, J.H.; Bachmann, C.; Bonavolontà, U.; Cerri, V.; Coccorese, D.; Dongiovanni, D.; Flammini, D.; Frosi, P.; Forest, L.; et al. Eurofusion-DEMO Divertor—Cassette Design and Integration. Fusion Eng. Des. 2020, 157, 111656. [Google Scholar] [CrossRef]
- You, J.H.; Mazzone, G.; Bachmann, C.; Coccorese, D.; Cocilovo, V.; De Meis, D.; Di Maio, P.A.; Dongiovanni, D.; Frosi, P.; Di Gironimo, G.; et al. Progress in the initial design activities for the European DEMO divertor: Subproject “Cassette”. Fusion Eng. Des. 2017, 124, 364–370. [Google Scholar] [CrossRef]
- Mazzone, G.; You, J.H.; Cerri, V.; Coccorese, D.; Garitta, S.; Di Gironimo, G.; Marzullo, D.; Di Maio, P.A.; Vallone, E.; Tincani, A.; et al. Structural verification and manufacturing procedures of the cooling system, for DEMO divertor target (OVT). Fusion Eng. Des. 2019, 146, 1610–1614. [Google Scholar] [CrossRef]
- ANSYS Inc. ANSYS CFX-Solver Theory Guide; Release: 2020 R2; ANSYS Inc.: Canonsburg, PA, USA, 2020. [Google Scholar]
- FLEXIM F601. Available online: https://www.flexim.com/en/product/fluxus-f601 (accessed on 1 December 2021).
- Tincani, A.; Di Maio, P.A.; Dell’Orco, G.; Ricapito, I.; Riccardi, B.; Vella, G. Steady state and transient thermal hydraulic characterization of full-scale ITER divertor plasma facing components. Fusion Eng. Des. 2008, 83, 1034–1037. [Google Scholar] [CrossRef]
- Manglik, R.M.; Bergles, A.E. Swirl Flow Heat Transfer and Pressure Drop with Twisted-Tape Inserts; Advances in Heat Transfer; Elsevier: Amsterdam, The Netherlands, 2003; Volume 36, pp. 183–266. [Google Scholar] [CrossRef]
- International Association for the Properties of Water and Steam. Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam; IAPWS: Lucerne, Switzerland, 2007. [Google Scholar]
- Roache, P.J. Verification of Codes and Calculations. AIAA J. 1998, 36, 696–702. [Google Scholar] [CrossRef]
- Eça, L.; Hoekstra, M. A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies. J. Comput. Phys. 2014, 262, 104–130. [Google Scholar] [CrossRef]
- Mahaffy, J.; Chung, B.; Song, C.; Dubois, F.; Graffard, E.; Ducros, F.; Heitsch, M.; Scheuerer, M.; Henriksson, M.; Komen, E.; et al. Best Practice Guidelines for the Use of CFD in Nuclear Reactor Safety Applications; NEA/CSNI/R(2014)11; International Atomic Energy Agency (IAEA): Vienna, Austria, 2015. [Google Scholar]
- Di Maio, P.A.; Burlon, R.; Mazzone, G.; Quartararo, A.; Vallone, E.; You, J.H. Hydraulic assessment of an upgraded pipework arrangement for the DEMO divertor plasma facing components cooling circuit. Fusion Eng. Des. 2021, 168, 112368. [Google Scholar] [CrossRef]
- Raffray, A.R.; Schlosser, J.; Akiba, M.; Araki, M.; Chiocchio, S.; Driemeyer, D.; Escourbiac, F.; Grigoriev, S.; Merola, M.; Tivey, R.; et al. Critical heat flux analysis and R&D for the design of the ITER divertor. Fusion Eng. Des. 1999, 45, 377–407. [Google Scholar] [CrossRef]
- You, J.H.; Mazzone, G.; Visca, E.; Bachmann, C.; Autissier, E.; Barrett, T.; Cocilovo, V.; Crescenzi, F.; Domalapally, P.K.; Dongiovanni, D.; et al. Conceptual design studies for the European DEMO divertor: Rationale and first results. Fusion Eng. Des. 2016, 109–111, 1598–1603. [Google Scholar] [CrossRef] [Green Version]
- Di Maio, P.A.; Garitta, S.; You, J.H.; Mazzone, G.; Vallone, E. Thermal-hydraulic study of the DEMO divertor cassette body cooling circuit equipped with a liner and two reflector plates. Fusion Eng. Des. 2021, 167, 112227. [Google Scholar] [CrossRef]
- Aupoix, B. Roughness Corrections for the k–ω Shear Stress Transport Model: Status and Proposals. J. Fluids Eng. 2014, 137. [Google Scholar] [CrossRef]
T [°C] | G [kg/s] | [bar] |
---|---|---|
12.438 ± 0.191 | 0.510 ± 0.015 | |
20.223 ± 0.202 | 1.268 ± 0.013 | |
20 | 25.169 ± 0.188 | 1.845 ± 0.013 |
30.087 ± 0.152 | 2.567 ± 0.041 | |
35.041 ± 0.186 | 3.393 ± 0.058 | |
14.513 ± 0.073 | 0.650 ± 0.006 | |
22.560 ± 0.113 | 1.514 ± 0.059 | |
40 | 25.035 ± 0.125 | 1.821 ± 0.022 |
30.135 ± 0.151 | 2.535 ± 0.040 | |
34.912 ± 0.175 | 3.325 ± 0.061 | |
15.146 ± 0.076 | 0.665 ± 0.007 | |
20.346 ± 0.102 | 1.162 ± 0.014 | |
70 | 25.521 ± 0.134 | 1.770 ± 0.026 |
30.282 ± 0.152 | 2.419 ± 0.044 | |
34.984 ± 0.175 | 3.212 ± 0.064 | |
13.087 ± 0.066 | 0.498 ± 0.007 | |
19.705 ± 0.099 | 1.061 ± 0.023 | |
100 | 25.505 ± 0.128 | 1.723 ± 0.027 |
30.221 ± 0.151 | 2.384 ± 0.049 | |
34.974 ± 0.182 | 3.126 ± 0.062 |
T [°C] | [bar/(kg/s)] | [-] | [bar] |
---|---|---|---|
20 | 1.8253 | 7.798 | |
40 | 1.8520 | 7.864 | |
70 | 1.8728 | 7.437 | |
100 | 1.8720 | 7.232 |
Reference Conditions | |
---|---|
Analysis type | Steady-state isothermal |
Material library | Water IAPWS IF97 [11] |
Turbulence model | k- SST [7] |
Differencing scheme | High-resolution [7] |
Boundary layer modeling | Automatic wall functions [7] |
PFU channels absolute wall roughness | 2 m |
ST absolute wall roughness | 2 m |
Other regions absolute wall roughness | 15 m |
Inlet BC (temperature/pressure) | Variable according to Table 4 |
Outlet BC (mass flow rate) |
Test # [-] | [bar] | G [kg/s] | [°C] |
---|---|---|---|
1 | 1.42 | 12.27 | 17.85 |
2 | 3.92 | 21.27 | 20.38 |
3 | 5.93 | 25.29 | 21.61 |
4 | 8.73 | 30.09 | 24.06 |
5 | 12.09 | 35.05 | 25.33 |
Mesh #1 | Mesh #2 | Mesh #3 | Mesh #4 | |
---|---|---|---|---|
Element size OVT/PFUs [mm] | 10.4/1.3 | 8.0/1.0 | 6.15/0.77 | 4.73/0.59 |
First layer thickness [m] | 20 | |||
Surface with<10 at Test #5 [%] | ≈80 | |||
Number of layers [-] | 12 | |||
Layer growth rate OVT/PFUs [-] | 1.68/1.42 | 1.65/1.39 | 1.61/1.36 | 1.58/1.33 |
Number of nodes [-] | ||||
Number of elements [-] | ||||
Node density [m] | ||||
Orthogonality Factor (average/min) | 0.59/0.01 | 0.61/0.01 | 0.67/0.01 | 0.72/0.01 |
Expansion factor (average/max) | 2/617 | 2/607 | 2/299 | 2/258 |
Aspect ratio (average/max) | 38/1830 | 29/1415 | 19/1582 | 17/1077 |
G [kg/s] | [bar] | |||
---|---|---|---|---|
Mesh #1 | Mesh #2 | Mesh #3 | Mesh #4 | |
12.27 | 0.500 | 0.475 | 0.462 | 0.460 |
21.27 | 1.394 | 1.335 | 1.303 | 1.296 |
25.29 | 1.935 | 1.851 | 1.816 | 1.812 |
30.09 | 2.687 | 2.575 | 2.509 | 2.509 |
35.05 | 3.597 | 3.454 | 3.367 | 3.358 |
G [kg/s] | Original GCI Formulation | LS GCI Formulation | ||||
---|---|---|---|---|---|---|
Asymptotic Values | GCI [%] | Asymptotic Values | GCI [%] | |||
12.27 | 0.458 | 9.43 | 1.31 | 0.456 | 8.53 | 2.18 |
21.27 | 1.289 | 8.54 | 1.52 | 1.285 | 7.80 | 2.40 |
25.29 | 1.809 | 12.31 | 0.42 | 1.805 | 10.43 | 1.01 |
30.09 | 2.509 | 49.77 | 0.00 | 2.489 | 8.73 | 2.34 |
35.05 | 3.353 | 13.81 | 0.38 | 3.328 | 7.81 | 2.67 |
G [kg/s] | [bar] | [bar] | [%] |
---|---|---|---|
12.27 | 0.460 | 0.495 | −7.22% |
21.27 | 1.296 | 1.354 | −4.32% |
25.29 | 1.812 | 1.859 | −2.56% |
30.09 | 2.509 | 2.567 | −2.26% |
35.05 | 3.358 | 3.384 | −0.77% |
[kg/s] | [kg/s] | [%] | ||
---|---|---|---|---|
G = 12.27 kg/s | Numerical | 0.323/0.303 | 0.005 | 1.59 |
Experimental | 0.331/0.229 | 0.008 | 2.54 | |
G = 21.27 kg/s | Numerical | 0.560/ 0.523 | 0.010 | 1.83 |
Experimental | 0.578/0.518 | 0.015 | 2.75 | |
G = 25.29 kg/s | Numerical | 0.666/0.622 | 0.012 | 1.85 |
Experimental | 0.686/0.617 | 0.014 | 2.16 | |
G = 30.09 kg/s | Numerical | 0.791/0.739 | 0.015 | 1.94 |
Experimental | 0.811/0.729 | 0.021 | 2.72 | |
G = 35.05 kg/s | Numerical | 0.921/0.863 | 0.016 | 1.78 |
Experimental | 0.955/0.832 | 0.029 | 3.23 |
G [kg/s] | [%] | [%] |
---|---|---|
12.27 | 5.90 | 2.29 |
21.27 | 8.22 | 2.23 |
25.29 | 4.35 | 1.40 |
30.09 | 7.63 | 3.11 |
35.05 | 9.36 | 2.20 |
[μm] | [μm] | [μm] | |
---|---|---|---|
Baseline | 2 | 2 | 15 |
PFU channels | 1–4 | 2 | 15 |
Swirl tapes | 2 | 1–4 | 15 |
OVT mock-up pipes and manifolds | 2 | 2 | 1.5–150 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tincani, A.; Castrovinci, F.M.; Cuzzani, M.; Di Maio, P.A.; Di Piazza, I.; Martelli, D.; Mazzone, G.; Quartararo, A.; Vallone, E.; You, J.-H. Hydraulic Characterization of the Full Scale Mock-Up of the DEMO Divertor Outer Vertical Target. Energies 2021, 14, 8086. https://doi.org/10.3390/en14238086
Tincani A, Castrovinci FM, Cuzzani M, Di Maio PA, Di Piazza I, Martelli D, Mazzone G, Quartararo A, Vallone E, You J-H. Hydraulic Characterization of the Full Scale Mock-Up of the DEMO Divertor Outer Vertical Target. Energies. 2021; 14(23):8086. https://doi.org/10.3390/en14238086
Chicago/Turabian StyleTincani, Amelia, Francesca Maria Castrovinci, Moreno Cuzzani, Pietro Alessandro Di Maio, Ivan Di Piazza, Daniele Martelli, Giuseppe Mazzone, Andrea Quartararo, Eugenio Vallone, and Jeong-Ha You. 2021. "Hydraulic Characterization of the Full Scale Mock-Up of the DEMO Divertor Outer Vertical Target" Energies 14, no. 23: 8086. https://doi.org/10.3390/en14238086
APA StyleTincani, A., Castrovinci, F. M., Cuzzani, M., Di Maio, P. A., Di Piazza, I., Martelli, D., Mazzone, G., Quartararo, A., Vallone, E., & You, J. -H. (2021). Hydraulic Characterization of the Full Scale Mock-Up of the DEMO Divertor Outer Vertical Target. Energies, 14(23), 8086. https://doi.org/10.3390/en14238086