Novel Data Compression Algorithm for Transmission Line Condition Monitoring
Abstract
:1. Introduction
2. Compression Algorithm of Transmission Line Online Monitoring Network
2.1. Network Architecture of the Algorithm
2.2. Improved Wavelet Threshold Denoising Algorithm
- (1)
- The sampling frequency of nodes is;
- (2)
- The variable P is the Sink precision threshold for data processing;
- (3)
- The variable PP is the mark of precision processing.
- (1)
- The noisy signal is decomposed into multiple layers by wavelet transform, and the corresponding coefficient of each layer is .
- (2)
- Through the threshold processing of wavelet decomposition coefficient , the estimated wavelet coefficient is obtained to make as small as possible. The soft threshold function is selected as the threshold function:
- (3)
- The estimated wavelet coefficient is used for wavelet reconstruction to obtain the estimated signal , that is, the denoised signal.
2.3. The Neighborhood Index Sequence Algorithm
3. Experimental Results and Analysis
3.1. Wavelet Compression Analysis
3.2. NIS Compression Analysis
3.3. WCNIS Compression Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ke, L.I.; Yongcun, F.A.; Dongmei, D.E.; Lei, W.A.; Jinfu, L.I.; Jian, Z.H. An Energy Efficiency Compressed Sensing Algorithm in Wireless Sensor Network of Microgrid. J. Southwest Univ. Sci. Technol. (Natl. Sci. Ed.) 2018, 33, 88. [Google Scholar]
- Schoellhammer, T.; Greenstein, B.; Osterweil, E.; Wimbrow, M.; Estrin, D. Lightweight Temporal Compression of Microclimate Datasets; UCLA: Los Angeles, CA, USA, 2004. [Google Scholar]
- Das, P.; Chakraborty, B.; Sarkar, G.; Sen, S.; Mukherjee, A.; De, T. Implementing Dial-On-Demand Technique for Inter and Intra Cluster Communication in Energy Conserving Postbox Delay Tolerant Networks. In Proceedings of the International Conference on Computational Intelligence, Communications, and Business Analytics, Kalyani, India, 27–28 July 2018; Springer: Singapore, 2018; pp. 243–256. [Google Scholar]
- Ahmad, M.S.; Lata, S.; Mehfuz, S.; Ahmad, A. Lossless Compression Algorithm for Energy Efficient Wireless Sensor Network. In Proceedings of the 2019 International Conference on Power Electronics, Control and Automation (ICPECA), New Delhi, India, 16–17 November 2019; pp. 1–4. [Google Scholar]
- Liang, Y.; Li, Y. An Efficient and Robust Data Compression Algorithm in Wireless Sensor Networks. IEEE Commun. Lett. 2014, 18, 439–442. [Google Scholar] [CrossRef]
- Kolo, J.G.; Shanmugam, S.A.; Lim, D.W.; Ang, L.M.; Seng, K.P. An Adaptive Lossless Data Compression Scheme for Wireless Sensor Networks. J. Sens. 2012, 2012, 539638. [Google Scholar] [CrossRef]
- Kiely, A.; Xu, M.; Song, W.Z.; Huang, R.; Shirazi, B. Adaptive Linear Filtering Compression on realtime sensor networks. Comput. J. 2010, 53, 1606–1620. [Google Scholar] [CrossRef]
- Liang, Y.; Peng, W. Minimizing energy consumptions in wireless sensor networks via two-modal transmission. ACM SIGCOMM Comput. Commun. Rev. 2010, 40, 12. [Google Scholar] [CrossRef] [Green Version]
- Kolo, J.G.; Shanmugam, S.A.; Lim, D.W.; Ang, L.M. Fast and efficient lossless adaptive compression scheme for wireless sensor networks. Comput. Electr. Eng. 2015, 41, 275–287. [Google Scholar] [CrossRef]
- Kasirajan, P.; Larsen, C.; Jagannathan, S. A New Adaptive Compression Scheme for Data Aggregation in Wireless Sensor Networks. In Proceedings of the 2010 IEEE Wireless Communication and Networking Conference, Sydney, Australia, 18–21 April 2010; pp. 1–6. [Google Scholar]
- Marcelloni, F.; Vecchio, M. A Simple Algorithm for Data Compression in Wireless Sensor Networks. IEEE Commun. Lett. 2008, 12, 411–413. [Google Scholar] [CrossRef]
- Zhu, Y.D. Optimization of Compression Transmission Method for Multimedia Network Image Data. Recent Adv. Electr. Electron. Eng. 2016, 9, 23–28. [Google Scholar]
- Xiao, L. An Algorithm of Wavelet Data Compression Based on Wireless Sensor Network. J. Digit. Inf. Manag. 2013, 11, 54–61. [Google Scholar]
- Kösters, M.; Leufken, J.; Schulze, S.; Sugimoto, K.; Klein, J.; Zahedi, R.; Hippler, M.; Leidel, S.; Fufezan, C. pymzML v2. 0: Introducing a highly compressed and seekable gzip format. Bioinformatics 2018, 34, 2513–2514. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Zhu, H.; Wu, H. Farmland multi-parameter wireless sensor network data compression strategy. Int. J. Ad Hoc Ubiquitous Comput. 2018, 29, 221. [Google Scholar] [CrossRef]
- Jayapandiyan, J.R.; Kavitha, C.; Sakthivel, K. Optimal Secret Text Compression Technique for Steganographic Encoding by Dynamic Ranking Algorithm. J. Phys. Conf. Ser. 2020, 1427, 012005. [Google Scholar] [CrossRef]
- Moffat, A. Huffman coding. ACM Comput. Surv. (CSUR) 2019, 52, 1–35. [Google Scholar] [CrossRef]
- Hao, W.; Xiang, L.; Li, Y.; Yang, P.; Shen, X. Reversible natural language watermarking using synonym substitution and arithmetic coding. Comput. Mater. Contin. 2018, 55, 541–559. [Google Scholar]
- Gungor, V.C.; Lu, B.; Hancke, G.P. Opportunities and Challenges of Wireless Sensor Networks in Smart Grid. IEEE Trans. Ind. Electron. 2010, 57, 3557–3564. [Google Scholar] [CrossRef] [Green Version]
- Sandoval, R.M.; Garcia-Sanchez, A.J.; Molina-Garcia-Pardo, J.M.; Garcia-Sanchez, F.; Garcia-Haro, J. Radio-Channel Characterization of Smart Grid Substations in the 2.4GHz ISM Band. IEEE Trans. Wirel. Commun. 2017, 16, 1294–1307. [Google Scholar] [CrossRef]
- Sandoval, R.M.; Garcia-Sanchez, A.J.; Garcia-Haro, J. Improving RSSI-based path-loss models accuracy for critical infrastructures: A Smart Grid substation case-study. IEEE Trans. Ind. Inform. 2018, 14, 2230–2240. [Google Scholar] [CrossRef]
- Wang, K.; Xu, C.; Zhang, Y.; Guo, S.; Zomaya, A.Y. Robust Big Data Analytics for Electricity Price Forecasting in the Smart Grid. IEEE Trans. Big Data 2019, 5, 34–45. [Google Scholar] [CrossRef]
- Uthayakumar, J.; Vengattaraman, T.; Dhavachelvan, P. A new lossless neighborhood indexing sequence (NIS) algorithm for data compression in wireless sensor networks. Ad. Hoc. Netw. 2019, 83, 149–157. [Google Scholar]
- Lu, J.Z.; Liu, Y.; Wu, C.; Zhang, H.X.; Zhou, T.J. Research on satellite monitoring and alarm algorithm of transmission line mountain fire. Chin. J. Electr. Eng. 2015, 5, 5512–5519. [Google Scholar]
- Lu, J.; Liu, Y.; Wu, C.; Zhang, H.; Zhou, T. Study on Satellite Monitoring and Alarm Calculation Algorithm of Wild Fire Near Transmission Lines. Proc. CSEE 2015, 5, 5512–5519. [Google Scholar]
- Kong, P.-Y.; Liu, C.-W.; Jiang, J.-A. Cost-Efficient Placement of Communication Connections for Transmission Line Monitoring. IEEE Trans. Ind. Electron. 2017, 64, 4058–4067. [Google Scholar] [CrossRef]
- Fateh, B.; Govindarasu, M.; Ajjarapu, V. Wireless Network Design for Transmission Line Monitoring in Smart Grid. IEEE Trans. Smart Grid 2013, 4, 1076–1086. [Google Scholar] [CrossRef]
Category | Edition |
---|---|
Operating system | Windows10 |
CPU | Intel Core i9-10900k |
GPU | NVIDIA GeForce GTX 3080 |
RAM | 32 Gb |
Transmission Line Temperature | Ambient Relative Humidity | Leakage Current | Ambient Wind Speed | Conductor Wind Speed | Rainfall | |
---|---|---|---|---|---|---|
Transmission line temperature | 1 | 0.137 | 0.913 | 0.102 | 0.155 | 0.015 |
Ambient relative humidity | 0.137 | 1 | 0.318 | 0.067 | 0.132 | 0.365 |
Leakage current | 0.913 | 0.318 | 1 | 0.118 | 0.142 | 0.102 |
Ambient wind speed | 0.102 | 0.067 | 0.118 | 1 | 0.914 | 0.043 |
Conductor wind speed | 0.155 | 0.132 | 0.142 | 0.914 | 1 | 0.073 |
Rainfall | 0.015 | 0.365 | 0.102 | 0.043 | 0.073 | 1 |
Character | ASCII | Binary | Based on ‘0’ Ergodic | Traversal Codeword Bits of ‘0’ | Based on ‘1’ Ergodic | Traversal Codeword Bits of ‘1’ | Optimized Codeword Bit |
---|---|---|---|---|---|---|---|
H | 104 | 1101000 | 10-1,1, 0, 0 | 4 | 11-0, 1 | 2 | 2 |
e | 101 | 1100101 | 10-1, 0, 1 | 3 | 11-1, 10, 0 | 4 | 3 |
l | 109 | 1101100 | 10-1, 10, 0 | 4 | 11-0, 1, 0 | 3 | 3 |
o | 111 | 1101111 | 10-1 | 1 | 11-0, 1, 0, 0, 0 | 5 | 1 |
w | 119 | 1110111 | 10-10 | 2 | 11-0, 0, 1, 0, 0 | 5 | 2 |
space | 32 | 0100000 | 00-1, 0, 0, 0, 0 | 5 | 01-0 | 1 | 1 |
r | 114 | 1110010 | 10-10, 0, 1 | 4 | 11-0, 0, 10 | 4 | 4 |
d | 100 | 1100100 | 10-1, 0, 1, 0 | 4 | 11-0, 10 | 3 | 3 |
Running Time of Algorithm T/s Amount of Data Transmitted | 512 | 1024 | 1536 | 2048 | 2560 | 3072 | 3584 | 4096 | 4608 | 5120 |
---|---|---|---|---|---|---|---|---|---|---|
NIS | 0.0243 | 0.0472 | 0.0648 | 0.0854 | 0.1402 | 0.1657 | 0.2053 | 0.2548 | 0.3251 | 0.3458 |
WCNIS | 0.0186 | 0.0352 | 0.0453 | 0.0563 | 0.0701 | 0.0832 | 0.0964 | 0.1147 | 0.1532 | 0.1632 |
Dataset Name | Dataset Size before Compression (Bit) | Compressed Dataset Size (Bit) | Compression Ratio CR (%) |
---|---|---|---|
Line temperature | 8920 | 7874 | 88.27 |
Ambient humidity | 8712 | 6681 | 76.69 |
Rainfall | 8836 | 7441 | 84.21 |
Wind speed | 8933 | 6113 | 68.43 |
Leakage current | 8156 | 6912 | 84.48 |
Dataset Name | Compression Ratio CR (%) | |||||
---|---|---|---|---|---|---|
LEC [19] | S-LZW [20] | ALDC [21] | FELACS [22] | NIS [23] | This Paper | |
Line temperature | 64.54 | 31.36 | 67.43 | 68.12 | 72.31 | 88.27 |
Ambient humidity | 51.98 | 23.14 | 58.35 | 56.41 | 59.87 | 76.69 |
Rainfall | 62.86 | 32.45 | 66.38 | 67.31 | 70.87 | 84.21 |
Wind speed | 49.37 | 22.05 | 51.79 | 62.77 | 55.68 | 68.43 |
Leakage current | 50.35 | 31.24 | 65.34 | 58.66 | 78.21 | 84.48 |
Dataset Name | Compression Efficiency (Bit/Sample) | |||||
---|---|---|---|---|---|---|
LEC [19] | S-LZW [20] | ALDC [21] | FELACS [22] | NIS [23] | This Paper | |
Line temperature | 5.6432 | 11.1734 | 5.2245 | 5.2484 | 5.1259 | 1.9268 |
Ambient humidity | 7.3498 | 12.5673 | 6.5869 | 6.8251 | 5.9822 | 3.5189 |
Rainfall | 6.1322 | 11.6715 | 5.4136 | 5.3349 | 4.7554 | 2.4656 |
Wind speed | 8.2334 | 12.5322 | 7.8045 | 7.5812 | 7.5431 | 4.0643 |
Leakage current | 9.6523 | 11.3654 | 6.9635 | 6.7452 | 5.3329 | 3.5841 |
Dataset Name | Compression Ratio (%) | |||||
---|---|---|---|---|---|---|
Gzip [24] | Bzip2 [25] | Rar | Huffman [26] | Count [27] | This Paper | |
Line temperature | 34.76 | 55.27 | 61.95 | 22.43 | 21.01 | 88.27 |
Ambient humidity | 31.35 | 45.87 | 52.31 | 22.34 | 22.87 | 76.69 |
Rainfall | 37.96 | 58.28 | 60.05 | 22.87 | 23.98 | 84.21 |
Wind speed | 27.58 | 43.22 | 45.26 | 18.52 | 18.21 | 68.43 |
Leakage current | 23.56 | 50.36 | 51.32 | 18.67 | 20.53 | 66.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Jia, L.; Hu, T.; Deng, F.; Chen, Z.; Sun, T.; Feng, Y. Novel Data Compression Algorithm for Transmission Line Condition Monitoring. Energies 2021, 14, 8275. https://doi.org/10.3390/en14248275
Liu G, Jia L, Hu T, Deng F, Chen Z, Sun T, Feng Y. Novel Data Compression Algorithm for Transmission Line Condition Monitoring. Energies. 2021; 14(24):8275. https://doi.org/10.3390/en14248275
Chicago/Turabian StyleLiu, Gang, Lei Jia, Taishan Hu, Fangming Deng, Zheng Chen, Tong Sun, and Yanchong Feng. 2021. "Novel Data Compression Algorithm for Transmission Line Condition Monitoring" Energies 14, no. 24: 8275. https://doi.org/10.3390/en14248275
APA StyleLiu, G., Jia, L., Hu, T., Deng, F., Chen, Z., Sun, T., & Feng, Y. (2021). Novel Data Compression Algorithm for Transmission Line Condition Monitoring. Energies, 14(24), 8275. https://doi.org/10.3390/en14248275