General 3D Analytical Method for Eddy-Current Coupling with Halbach Magnet Arrays Based on Magnetic Scalar Potential and H-Functions
Abstract
:1. Introduction
2. Magnetization of Halbach Magnet Arrays
- (1)
- The relative recoil permeability of the permanent magnet region is μr = 1.
- (2)
- The conductivity of the outer yoke is zero, and the permeability is infinite. The material of the inner yoke is iron, and the relative permeability is μiron.
- (3)
- In region IV, the conductivity of copper σ is constant.
3. Magnetic Field and Eddy-Current Distribution
4. Comparison with the Finite Element Analysis
5. Eddy-Current Density Distribution and Torque
6. Harmonics and Magnetic Field Optimization
7. Conclusions
- (1)
- Based on the 3D analytical analysis, we directly express the 3D flux densities and intensities in the iron region, copper region, PM region, and air-gap region of the typical Halbach topologies and the eddy current in the copper region and the torque of ECCs. All of the analytical results of the flux densities, eddy currents, and torques are verified by the FEM. The proposed analytical model has high precision and efficiency with less calculation time.
- (2)
- The optimization of the parameters of the typical Halbach topologies is very fast, which can reduce the harmonic of ECC, increase the amplitude of a fundamental wave, and improve the torque efficiently.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Nomenclature
Ri | The inner radius of the inner yoke |
Rr | The inner radius of the permanent magnets |
Rm | The outer radius of the permanent magnets |
Rc | The inner radius of the conductor |
Rs | The outer radius of the conductor |
Ro | The outer radius of the outer yoke |
ταr | Length of the PMs |
τ | Length of the yoke (conductor) |
ni | The speeds of the inner rotor |
no | The speeds of the outer rotor |
vm | The relative velocity of the inner and outer rotor |
μ0 | The permeability of the air |
μr | The relative permeability of the permanent magnet |
μiron | The relative permeability of the iron |
B | The flux density scalar |
σ | The conductivity of the copper |
h | The radial length of the copper |
H | The magnet field intensity |
l | The radial length of the permanent magnets |
M | The residual magnetization of the permanent magnet |
Mx (y,z) | The x (y, z) direction component of M |
ϕ | The magnetic scalar potential |
θ | The angle of the angular magnetic permanent magnet |
Axk (zk) | The kth magnetization distribution factors of the permanent magnet arrays in the x (z) direction |
αr | The x-direction length ratio of the z-direction magnetized PM to τ |
αm | The x-direction length ratio of the x-direction magnetized PM to τ |
αq | The y-direction length ratio of the y-direction magnetized PM to h |
EIV | The electric field intensity in the conductor region (region IV) |
JIV | The induced current density in the conductor region (region IV) |
Te | The electromagnetic torque |
THD | The total harmonic distortion |
FA | The amplitude of the flux density |
Sboundary | The outer boundary of the solution domain |
μironx(y,z) | The x (y, z) direction of the μiron |
A | The magnetic vector potential |
References
- Canova, A.; Vusini, B. Design of axial eddy-current couplers. IEEE. Trans. Ind. Appl. 2003, 39, 725–733. [Google Scholar] [CrossRef]
- Hornreich, R.; Shtrikman, S. Optimal design of synchronous torque couplers. IEEE Trans. Magn. 1978, 14, 800–802. [Google Scholar] [CrossRef]
- Furlani, E. Formulas for the force and torque of axial couplings. IEEE Trans. Magn. 1993, 29, 2295–2301. [Google Scholar] [CrossRef]
- Grenier, J.-M.; Pérez, R.; Picard, M.; Cros, J. Magnetic FEA direct optimization of high-power density, Halbach array permanent magnet electric motors. Energies 2021, 14, 5939. [Google Scholar] [CrossRef]
- Nehl, T.; LeQuesne, B.; Gangla, V.; Gutkowski, S.; Robinson, M.; Sebastian, T. Nonlinear two-dimensional finite element modeling of permanent magnet eddy current couplings and brakes. IEEE Trans. Magn. 1994, 30, 3000–3003. [Google Scholar] [CrossRef]
- Steentjes, S.; Boehmer, S.; Hameyer, K. Permanent Magnet Eddy-Current Losses in 2-D FEM Simulations of Electrical Machines. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Aiello, G.; Alfonzetti, S.; Dilettoso, E.; Salerno, N. Eddy Current Computation by the FEM-SDBCI Method. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Fallah, E.; Badeli, V. A New Approach for Modeling of Hysteresis in 2-D Time-Transient Analysis of Eddy Current Using FEM. IEEE Trans. Magn. 2017, 53, 1–14. [Google Scholar] [CrossRef]
- Preis, K.; Biro, O.; Ticar, I. FEM analysis of eddy current losses in nonlinear laminated iron cores. IEEE Trans. Magn. 2005, 41, 1412–1415. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, J. A Simple Method for Performance Prediction of Permanent Magnet Eddy Current Couplings Using a New Magnetic Equivalent Circuit Model. IEEE Trans. Ind. Electron. 2018, 65, 2487–2495. [Google Scholar] [CrossRef]
- Yang, C.; Peng, Z.; Tai, J.; Zhu, L.; Telezing, B.J.K.; Ombolo, P.D. Torque Characteristics Analysis of Slotted-Type Eddy-Current Couplings Using a New Magnetic Equivalent Circuit Model. IEEE Trans. Magn. 2020, 56, 1–8. [Google Scholar] [CrossRef]
- Li, Y.; Lin, H.; Yang, H.; Fang, S.; Wang, H. Analytical analysis of a novel flux adjustable permanent magnet eddy-current cou-pling with a movable stator ring. IEEE Trans. Magn. 2018, 54, 1–4. [Google Scholar]
- Li, Y.; Lin, H.; Huang, H.; Yang, H.; Tao, Q.; Fang, S. Analytical Analysis of a Novel Brushless Hybrid Excited Adjustable Speed Eddy Current Coupling. Energies 2019, 12, 308. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Li, G.-D.; Li, H.-F. Magnetic Field Analysis of 3-DOF Permanent Magnetic Spherical Motor Using Magnetic Equivalent Circuit Method. IEEE Trans. Magn. 2011, 47, 2127–2133. [Google Scholar] [CrossRef]
- Lubin, T.; Rezzoug, A. Steady-State and Transient Performance of Axial-Field Eddy-Current Coupling. IEEE Trans. Ind. Electron. 2015, 62, 2287–2296. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Liang, Q.; Cao, J.; Long, Y.; Mo, J.; Wang, S. Analytical modeling of axial-flux permanent magnet eddy current couplings with a slotted conductor topology. IEEE Trans. Magn. 2016, 52, 1–15. [Google Scholar]
- Min, K.-C.; Choi, J.-Y.; Kim, J.-M.; Cho, H.-W.; Jang, S.-M. Eddy-Current Loss Analysis of Noncontact Magnetic Device With Permanent Magnets Based on Analytical Field Calculations. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Akcay, Y.; Giangrande, P.; Tweedy, O.; Galea, M. Fast and Accurate 2D Analytical Subdomain Method for Coaxial Magnetic Coupling Analysis. Energies 2021, 14, 4656. [Google Scholar] [CrossRef]
- Teymoori, S.; Rahideh, A.; Moayed-Jahromi, H.; Mardaneh, M. 2-D Analytical Magnetic Field Prediction for Consequent-Pole Permanent Magnet Synchronous Machines. IEEE Trans. Magn. 2016, 52, 1–14. [Google Scholar] [CrossRef]
- Belguerras, L.; Mezani, S.; Lubin, T. Analytical Modeling of an Axial Field Magnetic Coupler With Cylindrical Magnets. IEEE Trans. Magn. 2021, 57, 1–5. [Google Scholar] [CrossRef]
- Jin, P.; Tian, Y.; Lu, Y.; Guo, Y.; Lei, G.; Zhu, J. 3-D Analytical Magnetic Field Analysis of the Eddy Current Coupling With Halbach Magnets. IEEE Trans. Magn. 2020, 56, 1–4. [Google Scholar] [CrossRef]
- Lubin, T.; Rezzoug, A. 3-D Analytical Model for Axial-Flux Eddy-Current Couplings and Brakes Under Steady-State Conditions. IEEE Trans. Magn. 2015, 51, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jin, P.; Yuan, Y.; Jian, G.; Lin, H.; Fang, S.; Yang, H. Static characteristics of novel air-cored linear and rotary Halbach permanent magnet actuator. IEEE Trans. Magn. 2014, 50, 977–980. [Google Scholar] [CrossRef]
- Lubin, T.; Rezzoug, A. Improved 3-D Analytical Model for Axial-Flux Eddy-Current Couplings With Curvature Effects. IEEE Trans. Magn. 2017, 53, 1–9. [Google Scholar] [CrossRef]
- Jin, P.; Yuan, Y.; Lin, H.; Fang, S.; Ho, S.L. General analytical method for magnetic field analysis of Halbach magnet arrays based on magnetic scalar potential. J. Magn. 2013, 18, 95–104. [Google Scholar] [CrossRef]
Number | Region | Range of z-Direction | Range of x-Direction |
---|---|---|---|
I | Inner yoke region | Ri < z < Rr | −τ/2 < x < τ/2 |
II | PMs region | Rr < z < Rm | −ταr/2 < x < ταr/2 |
III | Air-gap region | Rm < z < Rc | −τ/2 < x < τ/2 |
IV | Conductor region | Rc < z < Rs | −τ/2 < x < τ/2 |
V | Outer yoke region | Rs < z < Ro | −τ/2 < x < τ/2 |
Item | THD | FA(T) | Position |
---|---|---|---|
Non-Halbach | 0.2382 | 0.8574 | αr = 1, or θ = 0° |
Initial design | 0.1408 | 0.9934 | αr = 0.33, θ = 45° |
Preferred THD | 0.1270 | 1.0986 | αr = 0.35, θ = 54° |
Preferred FA | -- | 1.1051 | Preferred Region |
Worst THD | 0.3327 | 0.7051 | αr = 0.04, θ = 90° |
Worst FA | 0.3107 | 0.6290 | αr = 0, θ = 90° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; He, X.; Jin, P.; Huang, Q.; Yang, S.; Chen, M. General 3D Analytical Method for Eddy-Current Coupling with Halbach Magnet Arrays Based on Magnetic Scalar Potential and H-Functions. Energies 2021, 14, 8458. https://doi.org/10.3390/en14248458
Lu X, He X, Jin P, Huang Q, Yang S, Chen M. General 3D Analytical Method for Eddy-Current Coupling with Halbach Magnet Arrays Based on Magnetic Scalar Potential and H-Functions. Energies. 2021; 14(24):8458. https://doi.org/10.3390/en14248458
Chicago/Turabian StyleLu, Xiaoquan, Xinyi He, Ping Jin, Qifeng Huang, Shihai Yang, and Mingming Chen. 2021. "General 3D Analytical Method for Eddy-Current Coupling with Halbach Magnet Arrays Based on Magnetic Scalar Potential and H-Functions" Energies 14, no. 24: 8458. https://doi.org/10.3390/en14248458
APA StyleLu, X., He, X., Jin, P., Huang, Q., Yang, S., & Chen, M. (2021). General 3D Analytical Method for Eddy-Current Coupling with Halbach Magnet Arrays Based on Magnetic Scalar Potential and H-Functions. Energies, 14(24), 8458. https://doi.org/10.3390/en14248458