Prospects for Solar Energy Development in Belarus and Tatarstan
Abstract
:1. Introduction
- Unused—in full volume;
- Violated—in full volume;
- Settlements—part of the roof and facades;
2. Materials and Methods
2.1. Methodology of PV Potential Assessment
2.2. Solar Electricity Production Cost Forecasting
3. Results and Discussion
3.1. Resource and Technical PV Potential Assessment
3.2. Solar Electricity Production Cost Forecasting
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brodny, J.; Tutak, M. Analyzing Similarities between the European Union Countries in Terms of the Structure and Volume of Energy Production from Renewable Energy Sources. Energies 2020, 13, 913. [Google Scholar] [CrossRef] [Green Version]
- Jäger-Waldau, A. The Untapped Area Potential for Photovoltaic Power in the European Union. Clean Technol. 2020, 2, 440–446. [Google Scholar] [CrossRef]
- Gul, M.; Kotak, Y.; Muneer, T. Review on recent trend of solar photovoltaic technology. Energy Explor. Exploit. 2016, 34, 485–526. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Callejo, L.; Gallardo-Saavedra, S.; Gómez, V.A. A review of photovoltaic systems: Design, operation and maintenance. Sol. Energy 2019, 188, 426–440. [Google Scholar] [CrossRef]
- Sampaio, P.G.V.; González, M.O.A. Photovoltaic solar energy: Conceptual framework. Renew. Sustain. Energy Rev. 2017, 74, 590–601. [Google Scholar] [CrossRef]
- Pater, S. Long-Term Performance Analysis Using TRNSYS Software of Hybrid Systems with PV-T. Energies 2021, 14, 6921. [Google Scholar] [CrossRef]
- Vo, T.T.E.; Ko, H.; Huh, J.-H.; Park, N. Overview of Solar Energy for Aquaculture: The Potential and Future Trends. Energies 2021, 14, 6923. [Google Scholar] [CrossRef]
- Koppelaar, R. Solar-PV energy payback and net energy: Meta-assessment of study quality, reproducibility, and results harmonization. Renew. Sustain. Energy Rev. 2017, 72, 1241–1255. [Google Scholar] [CrossRef]
- Espinosa, N.; Hösel, M.; Angmo, D.; Krebs, F.C. Solar cells with one-day energy payback for the factories of the future. Energy Environ. Sci. 2012, 5, 5117–5132. [Google Scholar] [CrossRef]
- Chang, B.; Starcher, K. Evaluation of wind and solar energy investments in Texas. Renew. Energy 2019, 132, 1348–1359. [Google Scholar] [CrossRef]
- Wu, P.; Ma, X.; Ji, J.; Ma, Y. Review on Life Cycle Assessment of Energy Payback of Solar Photovoltaic Systems and a Case Study. Energy Procedia 2017, 105, 68–74. [Google Scholar] [CrossRef]
- Chandel, M.; Agrawal, G.; Mathur, S.; Mathur, A. Techno-economic analysis of solar photovoltaic power plant for garment zone of Jaipur city. Case Stud. Therm. Eng. 2014, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Vo, T.T.E.; Ko, H.; Huh, J.; Park, N. Overview of Possibilities of Solar Floating Photovoltaic Systems in the OffShore Industry. Energies 2021, 14, 6988. [Google Scholar] [CrossRef]
- Rataj, M.; Berniak-Woźny, J.; Plebańska, M. Poland as the EU Leader in Terms of Photovoltaic Market Growth Dynamics—Behind the Scenes. Energies 2021, 14, 6987. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Renewable Power Generation Costs in 2020; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2021; ISBN 978-92-9260-348-9. [Google Scholar]
- [Data/Information/Map] Obtained from the “Global Solar Atlas 2.0, a Free, Web-Based Application is Developed and Operated by the Company Solargis s.r.o. on Behalf of the World Bank Group, Utilizing Solargis Data, with Funding Provided by the Energy Sector Management Assistance Program (ESMAP). Available online: https://globalsolaratlas.info (accessed on 15 April 2021).
- Meshyk, A.; Barushka, M.; Marozava, V.; Sarkynov, E.; Meshyk, A. Climate Resource Potential to Develop Solar Power in Belarus. E3S Web Conf. 2020, 212, 01012. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Ghazvini, M.; Sadeghzadeh, M.; Nazari, M.A.; Kumar, R.; Naeimi, A.; Ming, T. Solar power technology for electricity generation: A critical review. Energy Sci. Eng. 2018, 6, 340–361. [Google Scholar] [CrossRef] [Green Version]
- Visa, I.; Burduhos, B.; Neagoe, M.; Moldovan, M.; Duta, A. Comparative analysis of the infield response of five types of photovoltaic modules. Renew. Energy 2016, 95, 178–190. [Google Scholar] [CrossRef]
- Boretti, A.; Castelletto, S.; Al-Kouz, W.; Nayfeh, J. Capacity factors of solar photovoltaic energy facilities in California, annual mean and variability. E3S Web Conf. 2020, 181, 02004. [Google Scholar] [CrossRef]
- Politaeva, N.; Smyatskaya, Y.; Al Afif, R.; Pfeifer, C.; Mukhametova, L. Development of Full-Cycle Utilization of Chlorella sorokiniana Microalgae Biomass for Environmental and Food Purposes. Energies 2020, 13, 2648. [Google Scholar] [CrossRef]
- National Statistical Committee of the Republic of Belarus. Energy Balance of the Republic of Belarus; National Statistical Committee of the Republic of Belarus: Minsk, Belarus, 2021; ISBN 978-985-7241-59-0. [Google Scholar]
- International Renewable Energy Agency. Renewable Capacity Statistics 2021; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2021; ISBN 978-92-9260-342-7. [Google Scholar]
- Electricity Prices. Available online: https://www.globalpetrolprices.com/electricity_prices/ (accessed on 21 September 2021).
- Lew, G.; Sadowska, B.; Chudy-Laskowska, K.; Zimon, G.; Wójcik-Jurkiewicz, M. Influence of Photovoltaic Development on Decarbonization of Power Generation—Example of Poland. Energies 2021, 14, 7819. [Google Scholar] [CrossRef]
- Baskutis, S.; Baskutiene, J.; Navickas, V.; Bilan, Y.; Cieśliński, W. Perspectives and Problems of Using Renewable Energy Sources and Implementation of Local “Green” Initiatives: A Regional Assessment. Energies 2021, 14, 5888. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Renewables Readiness Assessment: Belarus; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2021; ISBN 978-92-9260-353-3. [Google Scholar]
- Renewable Energy Cadastre. Available online: http://195.50.7.239/Cadastre/Map (accessed on 21 September 2021).
- Burmistrov, A.A.; Vissarionov, V.I.; Derugina, G.V. Methods for Renewable Energy Sources Resources Calculations (In Russian); MEI: Moscow, Russia, 2007; ISBN 978-5-383-00426-5. [Google Scholar]
- Bocca, A.; Chiavazzo, E.; Macii, A.; Asinari, P. Solar energy potential assessment: An overview and a fast modeling approach with application to Italy. Renew. Sustain. Energy Rev. 2015, 49, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ren, J.; Pu, Y.; Wang, P. Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis. Renew. Energy 2020, 149, 577–586. [Google Scholar] [CrossRef]
- Castillo, C.P.; Silva, F.B.; Lavalle, C. An assessment of the regional potential for solar power generation in EU-28. Energy Policy 2016, 88, 86–99. [Google Scholar] [CrossRef]
- Cho, J.; Park, S.M.; Park, A.R.; Lee, O.C.; Nam, G.; Ra, I.-H. Application of Photovoltaic Systems for Agriculture: A Study on the Relationship between Power Generation and Farming for the Improvement of Photovoltaic Applications in Agriculture. Energies 2020, 13, 4815. [Google Scholar] [CrossRef]
- Dinesh, H.; Pearce, J.M. The potential of agrivoltaic systems. Renew. Sustain. Energy Rev. 2016, 54, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Wu, W.; Hu, Y.; Liu, G. The Temporal-Spatial Distribution and Evaluation of Potential Solar Energy Resources in Northwest China. J. Nat. Resour. 2010, 25, 1738–1749. [Google Scholar] [CrossRef]
- Defaix, P.; van Sark, W.; Worrell, E.; de Visser, E. Technical potential for photovoltaics on buildings in the EU-27. Sol. Energy 2012, 86, 2644–2653. [Google Scholar] [CrossRef] [Green Version]
- Bódis, K.; Kougias, I.; Jäger-Waldau, A.; Taylor, N.; Szabó, S. A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union. Renew. Sustain. Energy Rev. 2019, 114, 109309. [Google Scholar] [CrossRef]
- Olivella, J.; Domenech, B.; Calleja, G. Potential of implementation of residential photovoltaics at city level: The case of London. Renew. Energy 2021, 180, 577–585. [Google Scholar] [CrossRef]
- Huang, T.; Wang, S.; Yang, Q.; Li, J. A GIS-based assessment of large-scale PV potential in China. Energy Procedia 2018, 152, 1079–1084. [Google Scholar] [CrossRef]
- El Gammal, A.; Mueller, D.; Bürckstümmer, H.; Vignal, R.; Macé, P. Technical Evaluation of BIPV Power Generation Potential in EU-28. In Proceedings of the 32nd European Photovoltaic Solar Energy Conference and Exhibition, Munich, Germany, 20–24 June 2016; pp. 2518–2522. [Google Scholar]
- Šúri, M.; Huld, T.; Dunlop, E.D.; Ossenbrink, H.A. Potential of solar electricity generation in the European Union member states and candidate countries. Sol. Energy 2007, 81, 1295–1305. [Google Scholar] [CrossRef]
- Tourlis, N.; Papandreou, V.; Leonardi, M.; Papadopoulos, A.; Patias, P.; Candelise, C.; Gharibyan, A.; Efandiyev, J.; Malochka, A.; Maghradze, N.; et al. Component 3 Report: Quantification of the Potential of Building PVs in Georgia and Other Eastern Partner Countries (EuropeAid/132574/C/SER/Multi); KANTOR Management Consultants S.A.: Brussels, Belgium, 2017; p. 59. Available online: https://hiqstep.eu/sites/default/files/HIQSTEPFiles/HiQSTEP-Solar_Study-Component%203%20fin.pdf (accessed on 15 April 2021).
- Lugo-Laguna, D.; Arcos-Vargas, A.; Nuñez-Hernandez, F. A European Assessment of the Solar Energy Cost: Key Factors and Optimal Technology. Sustainability 2021, 13, 3238. [Google Scholar] [CrossRef]
- Lai, C.S.; McCulloch, M.D. Levelized cost of electricity for solar photovoltaic and electrical energy storage. Appl. Energy 2017, 190, 191–203. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Ahn, J. Stochastic Modeling of the Levelized Cost of Electricity for Solar PV. Energies 2020, 13, 3017. [Google Scholar] [CrossRef]
Characteristics | Belarus | Tatarstan |
---|---|---|
Area, thousand km2 | 207.6 | 67.8 |
Population, millions | 9.3 | 3.9 |
Latitude | 51°11′–56°10′ | 53°58′–56°41′ |
Average air temperature, °C | 7.3 6.2–8.4 | 4.4 3.7–5.3 |
Annual mean irradiation, kWh/m2 | 1073 1007–1142 | 1095 1066–1124 |
Annual sunshine duration, h | 1730–1950 | 1763–2066 |
Customer Category | Belarus | Tatarstan |
---|---|---|
Household | 0.076 | 0.056 |
Business | 0.097 | 0.094 |
Prime cost | 0.042 | 0.035 |
Characteristics | Belarus | Tatarstan |
---|---|---|
Energy consumption, Mtoe/year | 25.9 | 14.6 |
Resource potential, Gtoe/year | 19.2 | 6.4 |
Technical potential, Mtoe/year, including: | 1783.9 | 964.0 |
Unused and disturbed lands, Mtoe/year | 84.8 | 8.3 |
Settlements, Mtoe/year | 1.1–1.5 | 0.3–0.5 |
Agricultural lands, Mtoe/year | 1697.6 | 955.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahach, U.; Brin, A.; Vankov, Y.; Verchak, K.; Afanaseva, O.; Ilyashenko, S. Prospects for Solar Energy Development in Belarus and Tatarstan. Energies 2021, 14, 8491. https://doi.org/10.3390/en14248491
Bahach U, Brin A, Vankov Y, Verchak K, Afanaseva O, Ilyashenko S. Prospects for Solar Energy Development in Belarus and Tatarstan. Energies. 2021; 14(24):8491. https://doi.org/10.3390/en14248491
Chicago/Turabian StyleBahach, Uladzimir, Anton Brin, Yuri Vankov, Konstantin Verchak, Olga Afanaseva, and Svetlana Ilyashenko. 2021. "Prospects for Solar Energy Development in Belarus and Tatarstan" Energies 14, no. 24: 8491. https://doi.org/10.3390/en14248491
APA StyleBahach, U., Brin, A., Vankov, Y., Verchak, K., Afanaseva, O., & Ilyashenko, S. (2021). Prospects for Solar Energy Development in Belarus and Tatarstan. Energies, 14(24), 8491. https://doi.org/10.3390/en14248491