Modified Power Factor Correction (PFC) Control and Printed Circuit Board (PCB) Design for High-Efficiency and High-Power Density On-Board Charger
Abstract
:1. Introduction
2. Modified PFC ON/OFF Control
2.1. Conventional Interleaved Totem-Pole Bridgeless Boost PFC Converter
2.2. Concept of Modified PFC ON/OFF Control
2.3. Analysis of Modifed PFC ON/OFF Control
3. D-PCB Design for High-Power Density OBC
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Greenhouse Gas Emissions from a Typical Passenger Vehicle. Available online: https://www.epa.gov-/greenvehicles/greenhousegas-emissions-typical-passenger-vehicle (accessed on 31 March 2018).
- CO2 Emission Standards for Passenger Cars and LightCommercial Vehicles in the European Union. Available online: https://theicct.org/publications/ldv-co2-stds-eu-2030-update-jan2019 (accessed on 31 January 2019).
- Global EV Outlook 2019. May 2019. Available online: https://www.iea.org/reports/global-ev-outlook-2019 (accessed on 15 February 2020).
- Shen, Y.; Zhao, W.; Chen, Z.; Cai, C. Full-Bridge LLC Resonant Converter With Series-Parallel Connected Transformers for Electric Vehicle On-Board Charger. IEEE Access 2018, 6, 13490–13500. [Google Scholar] [CrossRef]
- Lim, C.-Y.; Moon, G.W. Phase-Shifted Full-Bridge DC-DC Converter with High Efficiency and High Power Density Using CenterTapped Clamp Circuit for Battery Charging in Electric Vehicles. IEEE Trans. Power Electron. 2019, 34, 10945–10959. [Google Scholar] [CrossRef]
- Patil, D.; Agarwal, V. Compact Onboard Single-Phase EV Battery Charger with Novel Low-Frequency Ripple Compensator and Optimum Filter Design. IEEE Trans. Vehicular Technol. 2016, 65, 1948–1956. [Google Scholar] [CrossRef]
- Lu, J.; Mallik, A.; Khaligh, A. Dynamic Strategy for Efficiency Estimation in a CCM-Operated Front-End PFC Converter for Electric Vehicle Onboard Charger. IEEE Trans. Transp. Electr. 2017, 3, 545–553. [Google Scholar] [CrossRef]
- Meher, S.R.; Banerjee, S.; Vankayalapati, B.T.; Singh, R.K. A Reconfigurable On-Board Power Converter for Electric Vehicle with Reduced Switch Count. IEEE Trans. Veh. Technol. 2020, 60, 3760–3772. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, C.; Wang, M.; Si, Y.; Lie, Y.; Lei, Q. HighEfficiency High-Power-Density CLLC Resonant Converter with LowStray-Capacitance and Well-Heat-Dissipated Planar Transformer for EV On-Board Charger. IEEE Trans. Power Electron. 2020, 35, 10831–10851. [Google Scholar] [CrossRef]
- Huber, L.; Jang, Y.; Jovanovic, M. Performance Evaluation of Bridgeless PFC Boost Rectifiers. IEEE Trans. Power Electron. 2008, 23, 1381–1390. [Google Scholar] [CrossRef]
- Liu, Z.; Lee, F.C.; Li, Q.; Yang, Y. Design of GaN-Based MHz TotemPole PFC Rectifier. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 799–807. [Google Scholar] [CrossRef]
- Fischer, G.S.; Rech, C.; de Novaes, Y.R. Extensions of LeadingEdge Modulated One-Cycle Control for Totem-Pole Bridgeless Rectifiers. IEEE Trans. Power Electron. 2020, 35, 5447–5460. [Google Scholar] [CrossRef]
- Jeong, Y.; Park, M.-H.; Moon, G.W. High-Efficiency Zero-VoltageSwitching Totem-Pole Bridgeless Rectifier with Integrated Inrush Current Limiter Circuit. IEEE Trans. Ind. Electron. 2020, 67, 7421–7429. [Google Scholar] [CrossRef]
- Su, B.; Lu, Z. An Interleaved Totem-Pole Boost Bridgeless Rectifier with Reduced Reverse-Recovery Problems For Power Factor Correction. IEEE Trans. Power Electron. 2010, 25, 1406–1415. [Google Scholar]
- Park, M.-H.; Baek, J.; Jeong, Y.; Moon, G.W. An Interleaved TotemPole Bridgeless Boost PFC Converter with Soft-Switching Capability Adopting Phase-Shifting Control. IEEE Trans. Power Electron. 2019, 34, 10610–10618. [Google Scholar] [CrossRef]
- Belkamel, H.; Kim, H.; Choi, S. Interleaved Totem-Pole ZVS Converter Operating in CCM for Single-Stage Bidirectional AC-DC Conversion with High-Frequency Isolation. IEEE Trans. Power Electron. 2021, 36, 3486–3495. [Google Scholar] [CrossRef]
- International Electrotechnical Commission, IEC 61851-1:2017-02. Electric Vehicle Conductive Charging System-Part 1: General Requirements; International Electrotechnical Commission: Geneva, Switzerland, 2017. [Google Scholar]
- Hanauer, D. Mode 2 Charging-Testing and Certification for International Market Access. World Electr. Veh. J. 2018, 9, 26. [Google Scholar] [CrossRef] [Green Version]
- Youn, H.-S.; Lee, J.-B.; Baek, J.-I.; Moon, G.-W. A Digital Phase Leading Filter Current Compensation (PLFCC) Technique for CCM Boost PFC Converter to Improve PF in High Line Voltage and Light Load Conditions. IEEE Trans. Power Electron. 2016, 31, 6596–6606. [Google Scholar] [CrossRef]
- Youn, H.-S.; Park, J.-S.; Park, K.-B.; Baek, J.-I.; Moon, G.-W. A Digital Predictive Peak Current Control for Power Factor Correction with LowInput Current Distortion. IEEE Trans. Power Electron. 2016, 31, 900–912. [Google Scholar] [CrossRef]
- Villar, I.; Viscarret, U.; Otaduim, I.-E.; Rufer, A. Global Loss Evaluation Methods for Nonsinusoidally Fed Medium-Frequency Power Transformers. IEEE Trans. Ind. Electron. 2009, 56, 4132–4140. [Google Scholar] [CrossRef]
- Hou, R.; Lu, J.; Chen, D. Parasitic Capacitance Eqoss Loss Mechanism, Calculation, and Measurement in Hard-Switching for GaN HEMTs. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 919–924. [Google Scholar]
- Li, B.; Li, Q.; Lee, F.C.; Liu, Z.; Yang, Y. A High-Efficiency HighDensity Wide-Bandgap Device-Based Bidirectional On-Board Charger. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 1627–1636. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; Wang, S.; Tang, J.; Ren, X.; Chen, Q. A 300-kHz 6.6-kW Bidirectional LLC Onboard Charger. IEEE Trans. Ind. Electron. 2020, 67, 1435–1445. [Google Scholar] [CrossRef]
Items | Parameters |
---|---|
Input voltage, vAC | 220 Vrms |
PFC output voltage, VO-PFC | 400 V |
Output power, PO | 1.65 kW per module |
Switching frequency, fS-PFC | 100 kHz |
Switch, QH and QL | GS66516T |
Diode, DH and DL | LL25XB60 |
Boost inductor, LB | 113 µH and EI4322 (KP50) |
Items | Parameters |
---|---|
Input voltage, VO-PFC | 400 V |
Output voltage, VO | 360 V |
Output power, PO | 3.3 kW |
Resonant frequency, fR-LLC | 500 kHz |
Switch, Q1–Q4 | GS66508T |
Diode, DS1–DS4 | SCS220AM |
Transformer | 53 µH (Lm) and PQ3535 (KP50) |
Transformer turns ratio | 19:16 |
Resonant inductor, LR | 9.32 µH and PQI3520 (KP50) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, J.; Park, M.-H.; Kim, T.; Youn, H.-S. Modified Power Factor Correction (PFC) Control and Printed Circuit Board (PCB) Design for High-Efficiency and High-Power Density On-Board Charger. Energies 2021, 14, 605. https://doi.org/10.3390/en14030605
Baek J, Park M-H, Kim T, Youn H-S. Modified Power Factor Correction (PFC) Control and Printed Circuit Board (PCB) Design for High-Efficiency and High-Power Density On-Board Charger. Energies. 2021; 14(3):605. https://doi.org/10.3390/en14030605
Chicago/Turabian StyleBaek, Jaeil, Moo-Hyun Park, Taewoo Kim, and Han-Shin Youn. 2021. "Modified Power Factor Correction (PFC) Control and Printed Circuit Board (PCB) Design for High-Efficiency and High-Power Density On-Board Charger" Energies 14, no. 3: 605. https://doi.org/10.3390/en14030605
APA StyleBaek, J., Park, M. -H., Kim, T., & Youn, H. -S. (2021). Modified Power Factor Correction (PFC) Control and Printed Circuit Board (PCB) Design for High-Efficiency and High-Power Density On-Board Charger. Energies, 14(3), 605. https://doi.org/10.3390/en14030605