Interval Load Flow for Uncertainty Consideration in Power Systems Analysis
Abstract
:1. Introduction
2. Interval Arithmetic
3. Interval Load Flow
3.1. Algorithm Description
3.2. Illustrative Example
4. Probabilistic Load Flow
5. Test and Results
5.1. IEEE 34-Bus Radial TEST System
5.2. IEEE 69-Bus Distribution Network
5.3. 192-Bus Brazilian Distribution Network
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Monticelli, A.J. Fluxo de Carga em Redes de Energia Eletrica; Edgar Blucher Ltda: São Paulo, Brazil, 1983. [Google Scholar]
- Allan, R.N.; Al-Shakarchi, M.R.G. Probabilistic A.C. Load Flow. Proc. Inst. Electr. Eng. 1976, 123, 531–536. [Google Scholar] [CrossRef]
- Borkowska, B. Probabilistic Load Flow. IEEE Trans. Power Appar. Syst. 1974, PAS-93, 752–759. [Google Scholar] [CrossRef]
- Primadianto, A.; Lu, C. A Review on Distribution System State Estimation. IEEE Trans. Power Syst. 2017, 32, 3875–3883. [Google Scholar] [CrossRef]
- de Oliveira, L.W.; Seta, F.D.S.; de Oliveira, E.J. Optimal reconfiguration of distribution systems with representation of uncertainties through interval analysis. Int. J. Electr. Power Energy Syst. 2016, 83, 382–391. [Google Scholar] [CrossRef]
- Pereira, L.; da Costa, V.; Rosa, A. Interval arithmetic in current injection power flow analysis. Int. J. Electr. Power Energy Syst. 2012, 43, 1106–1113. [Google Scholar] [CrossRef]
- Araujo, B.M.C.; da Costa, V.M. New Developments in the Interval Current Injection Power Flow Formulation. IEEE Latin Am. Trans. 2018, 16, 1969–1976. [Google Scholar] [CrossRef]
- Seta, F.d.S.; de Oliveira, L.W.; de Oliveira, E.J. Distribution System Planning with Representation of Uncertainties Based on Interval Analysis. J. Control Autom. Electr. Syst. 2020, 31, 494–510. [Google Scholar] [CrossRef]
- Del Monego, A.; Fernandes, T. Optimal Power Flow Analysis with Interval Mathematics-the Krawczyk Method. In Proceedings of the 12th Latin-American Congress on Electricity Generation and Transmission-Clagtee 2017, Mar del Plata, Argentina, 12–15 November 2017. [Google Scholar]
- Moore, R.E. Interval Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
- Mori, H.; Yuihara, A. Calculation of multiple power flow solutions with the Krawczyk method. In Proceedings of the 1999 IEEE International Symposium on Circuits and Systems (ISCAS), Orlando, FL, USA, 30 May–2 June 1999; Volume 5, pp. 94–97. [Google Scholar] [CrossRef]
- Rasmussen, T.B.; Yang, G.; Nielsen, A.H. Interval estimation of voltage magnitude in radial distribution feeder with minimal data acquisition requirements. Int. J. Electr. Power Energy Syst. 2019, 113, 281–287. [Google Scholar] [CrossRef]
- Yu, H.; Chung, C.Y.; Wong, K.P.; Lee, H.W.; Zhang, J.H. Probabilistic Load Flow Evaluation With Hybrid Latin Hypercube Sampling and Cholesky Decomposition. IEEE Trans. Power Syst. 2009, 24, 661–667. [Google Scholar] [CrossRef]
- Fu, C.; Xu, Y.; Yang, Y.; Lu, K.; Gu, F.; Ball, A. Response analysis of an accelerating unbalanced rotating system with both random and interval variables. J. Sound Vib. 2020, 466, 115047. [Google Scholar] [CrossRef]
- Cheng, W.; Cheng, R.; Shi, J.; Zhang, C.; Sun, G.; Hua, D. Interval Power Flow Analysis Considering Interval Output of Wind Farms through Affine Arithmetic and Optimizing-Scenarios Method. Energies 2018, 11, 3176. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Gu, W.; Wang, Y.; Chen, C. An Affine Arithmetic-Based Power Flow Algorithm Considering the Regional Control of Unscheduled Power Fluctuation. Energies 2017, 10, 1794. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wu, Z.; Dou, X.; Hu, M.; Xu, Y. Interval power flow analysis via multi-stage affine arithmetic for unbalanced distribution network. Electr. Power Syst. Res. 2017, 142, 1–8. [Google Scholar] [CrossRef]
- Wang, C.; Liu, D.; Tang, F.; Liu, C. A clustering-based analytical method for hybrid probabilistic and interval power flow. Int. J. Electr. Power Energy Syst. 2021, 126, 106605. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, H.; Shi, K.; Qiu, M.; Hua, D.; Ngan, H. An Interval Power Flow Analysis Through Optimizing-Scenarios Method. IEEE Trans. Smart Grid 2018, 9, 5217–5226. [Google Scholar] [CrossRef]
- Liao, X.; Liu, K.; Zhang, Y.; Wang, K.; Qin, L. Interval method for uncertain power flow analysis based on Taylor inclusion function. Transm. Distrib. IET Gener. 2017, 11, 1270–1278. [Google Scholar] [CrossRef]
- Liu, B.; Huang, Q.; Zhao, J.; Hu, W. A Computational Attractive Interval Power Flow Approach with Correlated Uncertain Power Injections. IEEE Trans. Power Syst. 2020, 35, 825–828. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, H.; Ngan, H.; Yang, P.; Hua, D. A Mixed Interval Power Flow Analysis Under Rectangular and Polar Coordinate System. IEEE Trans. Power Syst. 2017, 32, 1422–1429. [Google Scholar] [CrossRef]
- Tang, K.; Dong, S.; Zhu, C.; Song, Y. Affine Arithmetic-Based Coordinated Interval Power Flow of Integrated Transmission and Distribution Networks. IEEE Trans. Smart Grid 2020, 11, 4116–4132. [Google Scholar] [CrossRef]
- Wang, Z.; Alvarado, F.L. Interval arithmetic in power flow analysis. IEEE Trans. Power Syst. 1992, 7, 1341–1349. [Google Scholar] [CrossRef] [Green Version]
- Dimitrov, N.; Markov, S.; Popova, E. Extended interval arithmetics: New results and applications. In Computer Arithmetic and Enclosure Methods; North-Holland: Amsterdam, The Netherlands, 1992; pp. 225–232. [Google Scholar]
- Tinney, W.F.; Hart, C.E. Power Flow Solution by Newton’s Method. IEEE Trans. Power Appar. Syst. 1967, PAS-86, 1449–1460. [Google Scholar] [CrossRef]
- Dopazo, J.F.; Klitin, O.A.; Sasson, A.M. Stochastic load flows. IEEE Trans. Power Appar. Syst. 1975, 94, 299–309. [Google Scholar] [CrossRef]
- Allan, R.N.; Grigg, C.H.; Al-Shakarchi, M.R.G. Numerical techniques in probabilistic load flow problems. Int. J. Numer. Methods Eng. 1976, 10, 853–860. [Google Scholar] [CrossRef]
- Van Ness, J.E.; Griffin, J.H. Elimination Methods for Load-Flow Studies. Trans. Am. Inst. Electr. Eng. Part III Power Appar. Syst. 1961, 80, 299–302. [Google Scholar] [CrossRef]
- Prakash, D.; Lakshminarayana, C. Optimal siting of capacitors in radial distribution network using Whale Optimization Algorithm. Alex. Eng. J. 2017, 56, 499–509. [Google Scholar] [CrossRef] [Green Version]
- Baran, M.E.; Wu, F.F. Optimal capacitor placement on radial distribution systems. IEEE Trans. Power Deliv. 1989, 4, 725–734. [Google Scholar] [CrossRef]
- Brigatto, G.A. Modelo De Decisão Multiobjetivo Para a Busca De Estratégias Ótimas De Inserção De Empreendimentos Em Geração Distribuída. Ph.D. Thesis, Universidade Federal de Santa Catarina, Florianopolis, Brazil, 2011. [Google Scholar]
Bus | Method | Lower Angle (°) | Upper Angle (°) | Deterministic Angle (°) |
---|---|---|---|---|
5 | MCS | 0.23615 | 0.35810 | 0.31588 |
ILF | 0.26275 | 0.36900 | ||
9 | MCS | 0.48285 | 0.67387 | 0.61611 |
ILF | 0.53320 | 0.69891 | ||
23 | MCS | 0.70353 | 1.00872 | 0.90243 |
ILF | 0.78490 | 1.01959 | ||
27 | MCS | 0.79289 | 1.13820 | 1.00895 |
ILF | 0.88240 | 1.13499 | ||
33 | MCS | 0.52957 | 0.72857 | 0.66792 |
ILF | 0.58067 | 0.75503 |
Bus | Method | Lower Magnitude (p.u.) | Upper Magnitude (p.u.) | Deterministic Magnitude (p.u.) |
---|---|---|---|---|
5 | MCS | 0.97556 | 0.97868 | 0.97603 |
ILF | 0.97479 | 0.97729 | ||
9 | MCS | 0.96113 | 0.96639 | 0.96197 |
ILF | 0.95999 | 0.96396 | ||
23 | MCS | 0.94417 | 0.95144 | 0.94601 |
ILF | 0.94318 | 0.94885 | ||
27 | MCS | 0.93963 | 0.94997 | 0.94166 |
ILF | 0.93861 | 0.94474 | ||
33 | MCS | 0.95896 | 0.96466 | 0.95992 |
ILF | 0.95784 | 0.96201 |
Bus | Method | Lower Angle (°) | Upper Angle (°) | Deterministic Angle (°) |
---|---|---|---|---|
2 | MCS | −0.00140 | −0.00089 | −0.00122 |
ILF | −0.00133 | −0.00223 | ||
29 | MCS | −0.00587 | −0.00421 | −0.00530 |
ILF | −0.00578 | −0.00482 | ||
48 | MCS | −0.06559 | −0.03440 | −0.05247 |
ILF | −0.05724 | −0.04770 | ||
54 | MCS | 0.00461 | 0.37110 | 0.19470 |
ILF | 0.12409 | 0.26530 | ||
63 | MCS | 0.33813 | 187.126 | 112.526 |
ILF | 0.90650 | 134.402 |
Bus | Method | Lower Magnitude (p.u.) | Upper Magnitude (p.u.) | Deterministic Magnitude (p.u.) |
---|---|---|---|---|
2 | MCS | 0.99996 | 0.99997 | 0.99996 |
ILF | 0.99996 | 0.99997 | ||
29 | MCS | 0.99984 | 0.99987 | 0.99985 |
ILF | 0.99984 | 0.99986 | ||
48 | MCS | 0.99840 | 0.99883 | 0.99854 |
ILF | 0.99847 | 0.99980 | ||
54 | MCS | 0.96770 | 0.97738 | 0.97141 |
ILF | 0.96985 | 0.97296 | ||
63 | MCS | 0.89464 | 0.93411 | 0.91165 |
ILF | 0.90679 | 0.91652 |
Bus | Method | Lower Angle (°) | Upper Angle (°) | Deterministic Angle (°) |
---|---|---|---|---|
8 | MCS | −0.24610 | −0.21364 | −0.24170 |
ILF | −0.27692 | −0.20648 | ||
36 | MCS | −0.90111 | −0.76996 | −0.87943 |
ILF | −100.956 | −0.75299 | ||
64 | MCS | −0.44769 | −0.38699 | −0.43892 |
ILF | −0.50307 | −0.37477 | ||
113 | MCS | −0.86144 | −0.73693 | −0.84702 |
ILF | −0.97206 | −0.72197 | ||
187 | MCS | −0.91812 | −0.78600 | −0.89612 |
ILF | −102.858 | −0.76365 |
Bus | Method | Lower Magnitude (p.u.) | Upper Magnitude (p.u.) | Deterministic Magnitude (p.u.) |
---|---|---|---|---|
8 | MCS | 0.98727 | 0.98888 | 0.98795 |
ILF | 0.98732 | 0.99176 | ||
36 | MCS | 0.95602 | 0.96027 | 0.95686 |
ILF | 0.95461 | 0.95911 | ||
64 | MCS | 0.97824 | 0.97994 | 0.97827 |
ILF | 0.97713 | 0.97939 | ||
113 | MCS | 0.95754 | 0.96171 | 0.95849 |
ILF | 0.95632 | 0.96066 | ||
187 | MCS | 0.95603 | 0.95959 | 0.95612 |
ILF | 0.95612 | 0.95842 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogueira, W.C.; Garcés Negrete, L.P.; López-Lezama, J.M. Interval Load Flow for Uncertainty Consideration in Power Systems Analysis. Energies 2021, 14, 642. https://doi.org/10.3390/en14030642
Nogueira WC, Garcés Negrete LP, López-Lezama JM. Interval Load Flow for Uncertainty Consideration in Power Systems Analysis. Energies. 2021; 14(3):642. https://doi.org/10.3390/en14030642
Chicago/Turabian StyleNogueira, Wallisson C., Lina Paola Garcés Negrete, and Jesús M. López-Lezama. 2021. "Interval Load Flow for Uncertainty Consideration in Power Systems Analysis" Energies 14, no. 3: 642. https://doi.org/10.3390/en14030642
APA StyleNogueira, W. C., Garcés Negrete, L. P., & López-Lezama, J. M. (2021). Interval Load Flow for Uncertainty Consideration in Power Systems Analysis. Energies, 14(3), 642. https://doi.org/10.3390/en14030642