Energy Optimization in Different Production Technologies of Winter Triticale Grain
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roques, S.E.; Kindred, D.R.; Clarke, S. Triticale out-performs wheat on range of UK soils with a similar nitrogen requirement. J. Agric. Sci. 2017, 155, 261–281. [Google Scholar] [CrossRef]
- Derejko, A.; Studnicki, M.; Wójcik-Gront, E.; Gacek, E. Adaptive grain yield patterns of Triticale (×Triticosecale Wittmack) cultivars in six regions of Poland. Agronomy 2020, 10, 415. [Google Scholar] [CrossRef] [Green Version]
- Mergoum, M.; Macpherson, H.G. (Eds.) Triticale Improvement and Production; Food Agriculture Organization of the United Nations: Rome, Italia, 2004. [Google Scholar]
- Kindred, D.R.; Sylvester-Bradley, R. Routes to reducing the N requirements of high yielding wheat crops. Asp. Appl. Biol. 2010, 105, 97–106. [Google Scholar]
- Estrada-Campuzano, G.; Slafer, G.A.; Miralles, D.J. Differences in yield, biomass and their components between triticale and wheat grown under contrasting water and nitrogen environments. Field Crop. Res. 2012, 128, 167–179. [Google Scholar] [CrossRef]
- Clarke, S.; Roques, S.; Weightman, R.; Kindred, D. Modern triticale crops for increased yields, reduced inputs, increased profitability and reduced greenhouse gas emissions from UK cereal production. AHDB Cereals Oilseeds Proj. Rep. 2016, 556, 65. [Google Scholar]
- Losert, D.; Maurer, H.P.; Marulanda, J.J.; Würschum, T. Phenotypic and genotypic analyses of diversity and breeding progress in European triticale (× Triticosecale Wittmack). Plant Breed. 2017, 136, 18–27. [Google Scholar] [CrossRef]
- Jessop, R.S. Stress tolerance in newer triticales compared to other cereals. In Triticale: Today and Tomorrow; Springer: Dordrecht, The Netherlands, 1996; pp. 419–427. [Google Scholar]
- Schwarte, A.J.; Gibson, L.R.; Karlen, D.L.; Liebman, M.; Jannink, J.L. Planting date effects on winter triticale dry matter and nitrogen accumulation. Agron. J. 2005, 97, 1333–1341. [Google Scholar] [CrossRef] [Green Version]
- Tohver, M.; Kann, A.; Täht, R.; Mihhalevski, A.; Hakman, J. Quality of triticale cultivars suitable for growing and bread-making in northern conditions. Food Chem. 2005, 89, 125–132. [Google Scholar] [CrossRef]
- Kučerová, J. The effect of year, site and variety on the quality characteristics and bioethanol yield of winter triticale. J. Inst. Brew. 2007, 113, 142–146. [Google Scholar] [CrossRef]
- Blum, A. The abiotic stress response and adaptation of triticale—A review. Cereal Res. Commun. 2014, 42, 359–375. [Google Scholar] [CrossRef] [Green Version]
- Randhawa, H.S.; Bona, L.; Graf, R.J. Triticale breeding—Progress and prospect. In Triticale; Springer: Cham, Switzerland, 2015; pp. 15–32. [Google Scholar]
- Liu, W.; Maurer, H.P.; Leiser, W.L.; Tucker, M.R.; Weissmann, S.; Hahn, V.; Würschum, T. Potential for marker-assisted simultaneous improvement of grain and biomass yield in triticale. Bioenergy Res. 2017, 10, 449–455. [Google Scholar] [CrossRef]
- Faostat, Food and Agriculture Organization Corporate Statistical Database. Available online: http://www.apps.fao.org (accessed on 20 July 2020).
- Beltranena, E.; Salmon, D.F.; Goonewardene, A.; ZIjlstra, R.T. Triticale as a replacement for wheat in diets for weaned pigs. Can. J. Anim. Sci. 2008, 88, 631–635. [Google Scholar] [CrossRef]
- Djekic, V.; Mitrovic, S.; Milovanovic, M.; Djuric, N.; Kresovic, B.; Tapanarova, A.; Djermanovic, V.; Mitrovic, M. Implementation of triticale in nutrition of non-ruminant animals. Afr. J. Biotechnol. 2011, 10, 5697–5704. [Google Scholar]
- Widodo, A.E.; Nolan, J.V.; Iji, P.A. The nutritional value of new varieties of high-yielding triticale: Feeding value of triticale for broiler chickens. S. Afr. J. Anim. Sci. 2015, 45, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Alijošius, S.; Švirmickas, G.J.; Bliznikas, S.; Gružauskas, R.; Šašytė, V.; Racevičiūtė-Stupelienė, A.; Kliševičiūtė, V.; Daukšien, A. Grain chemical composition of different varieties of winter cereals. Zemdirbyste-Agriculture 2016, 103, 273–280. [Google Scholar] [CrossRef] [Green Version]
- McGoverin, C.M.; Snyders, F.; Muller, N.; Botes, W.; Fox, G.; Manley, M. A review of triticale uses and the effect of growth environment on grain quality. J. Sci. Food Agric. 2011, 91, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Agil, R.; Hosseinian, F. Dual functionality of triticale as a novel dietary source of prebiotics with antioxidant activity in fermented dairy products. Plant Foods Hum. Nutr. 2012, 67, 88–93. [Google Scholar] [CrossRef]
- Martinez, C.S.; Ribotta, P.D.; Leon, A.E.; Añon, M.C. Colour assessment on bread wheat and triticale fresh pasta. Int. J. Food Prop. 2012, 15, 1054–1068. [Google Scholar] [CrossRef]
- Senol, F.S.; Kan, A.; Coksari, G.; Orhan, I.E. Antioxidant and anticholinesterase effects of frequently consumed cereal grains using in vitro test models. Int. J. Food Sci. Nutr. 2012, 63, 553–559. [Google Scholar] [CrossRef]
- Pattison, A.L.; Trethowan, R.M. Characteristics of modern triticale quality: Commercially significant flour traits and cookie quality. Crop. Pasture Sci. 2013, 64, 874–880. [Google Scholar] [CrossRef]
- Navarro-Contreras, A.L.; Chaires-González, C.F.; Rosas-Burgos, E.C.; Borboa-Flores, J.; Wong-Corral, F.J.; Cortez-Rocha, M.O.; Cinco-Moroyoqui, F.J. Comparison of protein and starch content of substituted and complete triticales (× Triticosecale Wittmack): Contribution to functional properties. Int. J. Food Prop. 2014, 17, 421–432. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F. Triticale: Nutritional composition and food uses. Food Chem. 2018, 241, 468–479. [Google Scholar] [CrossRef]
- Rakha, A.; Åman, P.; Andersson, R. Dietary fibre in triticale grain: Variation in content, composition, and molecular weight distribution of extractable components. J. Cereal Sci. 2011, 54, 324–331. [Google Scholar] [CrossRef]
- Nakurte, I.; Klavins, K.; Kirhner, I.; Namniece, J.; Adlere, L.; Matvejevs, J.; Kronberga, A.; Kokare, A.; Strazdina, V.; Legzdina, L.; et al. Discovery of lunasin peptide in triticale (× Triticosecale Wittmack). J. Cereal Sci. 2012, 56, 510–514. [Google Scholar] [CrossRef]
- Bielski, S.; Dubis, B.; Budzyński, W. Influence of nitrogen fertilisation on the technological value of semi-dwarf grain winter triticale varieties Alekto and Gniewko. Pol. J. Nat. Sci. 2015, 30, 325–336. [Google Scholar]
- Fraś, A.; Gołębiewska, K.; Gołębiewski, D.; Mańkowski, D.R.; Boros, D.; Szecówka, P. Variability in the chemical composition of triticale grain, flour and bread. J. Cereal Sci. 2016, 71, 66–72. [Google Scholar] [CrossRef]
- Panasiewicz, K.; Koziara, W.; Sulewska, H. Evaluation of technological quality in grain and flour of winter triticale (Triticosecale Wittm.) from controlled cultivation conditions. Pol. J. Nat. Sci. 2018, 33, 89–99. [Google Scholar]
- Jørgensen, J.R.; Deleuran, L.C.; Wollenweber, B. Prospects of whole grain crops of wheat, rye and triticale under different fertilizer regimes for energy production. Biomass Bioenergy 2007, 31, 308–317. [Google Scholar] [CrossRef]
- Beres, B.; Pozniak, C.; Eudes, F.; Graf, R.; Randhawa, H.; Salmon, D.; Mcleod, G.; Dion, Y.; Irvine, B.; Voldeng, H.; et al. Canadian ethanol feedstock study to benchmark the relative performance of triticale: I. Agronomics. Agron. J. 2013, 105, 1695–1706. [Google Scholar] [CrossRef]
- Cantale, C.; Petrazzuolo, F.; Correnti, A.; Farneti, A.; Felici, F.; Latini, A.; Galeffi, P. Triticale for bioenergy production. Agric. Sci. Procedia 2016, 8, 609–616. [Google Scholar] [CrossRef]
- Kossatz, H.L.; Rose, S.H.; Viljoen-Bloom, M.; van Zyl, W.H. Production of ethanol from steam exploded triticale straw in a simultaneous saccharification and fermentation process. Process Biochem. 2017, 53, 10–16. [Google Scholar] [CrossRef]
- Mupondwa, E.; Li, X.; Tabil, L. Integrated bioethanol production from triticale grain and lignocellulosic straw in Western Canada. Ind. Crops Prod. 2018, 117, 75–87. [Google Scholar] [CrossRef]
- Agudelo, R.; García-Aparicio, M.P.; Görgens, J.F. Impact of triticale cultivar (× Triticosecale sp. Wittmack) and location on pretreatment requirements and fermentable sugars yield. Biomass Conv. Bioref. 2020, 10, 107–118. [Google Scholar] [CrossRef]
- Dassanayake, G.D.M.; Kumar, A. Techno-economic assessment of triticale straw for power generation. Appl. Energy 2012, 98, 236–245. [Google Scholar] [CrossRef]
- Sanaei, S.; Stuart, P.R. Systematic assessment of triticale-based biorefinery strategies: Techno-economic analysis to identify investment opportunities. Biofuels Bioprod. Bioref. 2018, 12 (Suppl. S1), 46–59. [Google Scholar] [CrossRef]
- Lewandowski, I.; Kauter, D. The influence of nitrogen fertilizer on the yield and combustion quality of whole grain crops for solid fuel use. Ind. Crops Prod. 2003, 17, 103–117. [Google Scholar] [CrossRef]
- Amon, T.; Amon, B.; Kryvoruchko, V.; Machmuller, A.; Hopfner-Sixt, K.; Bodiroza, V.; Hrbek, R.; Friedel, J.; Pötsch, E.; Wagentristl, H.; et al. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour Technol. 2007, 98, 3204–3212. [Google Scholar] [CrossRef]
- Teghammar, A.; Karimi, K.; Horváth, I.S.; Taherzadeh, M.J. Enhanced biogas production from rice straw, triticale straw and softwood spruce by NMMO pretreatment. Biomass Bioenergy 2012, 36, 116–120. [Google Scholar] [CrossRef]
- Weightman, R.M.; Davis-Knight, H. Triticale as a low input cereal for alcohol production II. Potential to reduce greenhouse gas emissions relative to bioethanol from wheat. Asp. Appl. Biol. 2008, 90, 135–142. [Google Scholar]
- Pejin, D.; Mojovic, L.J.; Vucurovic, V.; Pejin, J.; Dencic, S.; Rakin, M. Fermentation of wheat and triticale hydrolysates: A comparative study. Fuel 2009, 88, 1625–1628. [Google Scholar] [CrossRef]
- Obuchowski, W.; Banaszak, Z.; Makowska, A.; Luczak, M. Factors affecting usefulness of triticale grain for bioethanol production. J. Sci. Food Agric. 2010, 90, 2506–2511. [Google Scholar] [CrossRef]
- Kindred, D.; Weightman, R.; Roques, S.; Sylvesterbradley, R. Low nitrogen input cereals for bioethanol production. Asp. Appl. Biol. 2010, 101, 37–44. [Google Scholar]
- Beres, B.; Pozniak, C.; Bressler, D.; Gibreel, A.; Eudes, F.; Graf, R.; Randhawa, H.; Salmon, D.; Mcleod, G.; Dion, Y.; et al. Canadian ethanol feedstock study to benchmark the relative performance of triticale: II. Grain quality and ethanol production. Agron. J. 2013, 105, 1707–1720. [Google Scholar] [CrossRef] [Green Version]
- Bielski, S.; Dubis, B.; Jankowski, K. The energy efficiency of production and conversion of winter triticale biomass into biofuels. Przemysł Chem. 2015, 94, 1798–1801. (In Polish) [Google Scholar]
- Bielski, S.; Romaneckas, K.; Novikova, A.; Šarauskis, E. Are higher input levels to triticale growing technologies effective in biofuel production system? Sustainability 2019, 11, 5915. [Google Scholar] [CrossRef] [Green Version]
- Agudelo, R.A.; García-Aparicio, M.P.; Görgens, J.F. Steam explosion pretreatment of triticale (× Triticosecale Wittmack) straw for sugar production. New Biotechnol. 2016, 33, 153–163. [Google Scholar] [CrossRef]
- Lewandowski, I.; Schmidt, U. Nitrogen, energy and land use efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agric. Ecosyst. Environ. 2006, 112, 335–346. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.C.; Kindred, D.R.; Brosnan, J.M.; Weightman, R.M.; Shepherd, M.; Sylvester-Bradley, R. Wheat as a feedstock for alcohol production. In HGCA Research Review; HGCA: Warwickshire, UK, 2006; Volume 61, pp. 50–60. [Google Scholar]
- Jansone, I.; Malecka, S.; Miglane, V. Suitability of winter triticale varieties for bioethanol production in Latvia. Agron. Res. 2010, 8, 573–582. [Google Scholar]
- Swanston, J.S.; Smith, P.L.; Thomas, W.T.B.; Sylvester-Bradley, R.; Kindred, D.; Brosnan, J.M.; Bringhurst, T.A.; Agu, R.C. Stability, across environments, of grain and alcohol yield, in soft wheat varieties grown for grain distilling or bioethanol production. J. Sci. Food Agric. 2014, 94, 3234–3240. [Google Scholar] [CrossRef]
- Klikocka, H.; Kasztelan, A.; Zakrzewska, A.; Wyłupek, T.; Szostak, B.; Skwaryło-Bednarz, B. The energy efficiency of the production and conversion of spring triticale grain into bioethanol. Agronomy 2019, 9, 423. [Google Scholar] [CrossRef] [Green Version]
- Dubis, B.; Jankowski, K.J.; Załuski, D.; Sokólski, M. The effect of sewage sludge fertilization on the biomass yield of giant miscanthus and the energy balance of the production process. Energy 2020, 206, 11818910. [Google Scholar] [CrossRef]
- Schroll, H. Energy-flow and ecological sustainability in Danish agriculture. Agric. Ecosyst. Environ. 1994, 51, 301–310. [Google Scholar] [CrossRef]
- Alluvione, F.; Moretti, B.; Sacco, D.; Grignani, C. EUE (energy use efficiency) of cropping systems for a sustainable agriculture. Energy 2011, 36, 4468–4481. [Google Scholar] [CrossRef]
- Patterson, M.G. What is Energy Efficiency? Concepts, Indicators and Methodological Issues. Energy Policy 1996, 24, 377–390. [Google Scholar] [CrossRef]
- Rathke, G.W.; Diepenbrock, W. Energy balance of winter oilseed rape (Brassica napus L.) cropping as related to nitrogen supply and preceding crop. Eur. J. Agron. 2006, 24, 35–44. [Google Scholar] [CrossRef]
- Risoud, B. Energy efficiency of various French farming systems: Questions to sustainability. In International Conference Sustainable Energy: New Challenges for Agriculture and Implications for Land Use; Wageningen University: Wageningen, The Netherlands, 2000. [Google Scholar]
- Hülsbergen, K.J.; Feil, B.; Biermann, S.; Rathke, G.W.; Kalk, W.D.; Diepenbrock, W. A method of energy balancing in crop production and its application in a long-term fertilizer trial. Agric. Ecosyst. Environ. 2001, 86, 303–321. [Google Scholar] [CrossRef]
- Gundogmus, E.; Bayramoglu, Z. Energy input use on organic farming: A comparative analysis on organic versus conventional farms in Turkey. J. Agron. 2006, 5, 16–22. [Google Scholar] [CrossRef]
- Castoldi, N.; Bechini, L. Integrated sustainability assessment of cropping systems with agro-ecological and economic indicators in northern Italy. Eur. J. Agron. 2010, 32, 59–72. [Google Scholar] [CrossRef]
- Ozkan, B.; Akcaoz, H.; Fert, C. Energy input–output analysis in Turkish agriculture. Renew. Energy 2004, 29, 39–51. [Google Scholar] [CrossRef]
- Dyer, J.A.; Desjardins, R.L. Simulated farm fieldwork, energy consumption and related greenhouse gas emissions in Canada. Biosyst. Eng. 2003, 85, 503–513. [Google Scholar] [CrossRef]
- Lal, R. Carbon emission from farm operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef]
- Tzilivakis, J.; Warner, D.J.; May, M.; Lewis, K.A.; Jaggard, K. An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK. Agric. Syst. 2005, 85, 101–119. [Google Scholar] [CrossRef] [Green Version]
- Wood, R.; Lenzen, M.; Dey, C.; Lundie, S. A comparative study of some environmental impacts of conventional and organic farming in Australia. Agric. Syst. 2006, 89, 324–348. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Dubis, B.; Sokólski, M.M.; Załuski, D.; Bórawski, P.; Szempliński, W. Productivity and energy balance of maize and sorghum grown for biogas in a large-area farm in Poland: An 11-yearfield experiment. Ind. Crop. Prod. 2020, 148, 112326. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Sokólski, M.M.; Dubis, B.; Załuski, D.; Szempliński, W. Sweet sorghum—Biomass production and energy balance at different levels of agricultural inputs. A six-year field experiment in north-eastern Poland. Eur. J. Agron. 2020, 119, 126119. [Google Scholar] [CrossRef]
- Pawlak, J. Efficiency of energy inputs in polish agriculture. Rocz. Nauk Roln. 2012, 1, 121–128. (In Polish) [Google Scholar]
- Ivanova, A.; Tsenov, N. Production potencial of new triticale varieties grown in the region of Dobrudzha. Agric. Sci. Technol. 2014, 6, 243–246. [Google Scholar]
- Bielski, S. Effect of nitrogen fertilization and fungicide protection on winter triticale wholesomeness. Acta Sci. Pol. Agric. 2015, 14, 3–14. [Google Scholar]
- Dubis, B.; Winnicki, T.; Budzyński, W.S.; Jankowski, K.J. Cost-effectiveness of the production of short-straw winter triticale cultivar Alekto. Acta Sci. Pol. Agric. 2015, 14, 11–20. [Google Scholar]
- Dubis, B.; Bogucka, B.; Smaciarz, W. The effect of production system intensity on the yield of winter triticale (× Triticosecale Wittm. ex A. Camus) cultivar Alekto. Acta Sci. Pol. Agric. 2017, 16, 199–206. [Google Scholar]
- Bielski, S.; Romaneckas, K.; Šarauskis, E. Impact of nitrogen and boron fertilization on winter triticale productivity parameters. Agronomy 2020, 10, 279. [Google Scholar] [CrossRef] [Green Version]
- Snyder, C.S.; Bruulsema, T.W.; Jensen, T.L.; Fixen, P.E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ. 2009, 133, 247–266. [Google Scholar] [CrossRef]
- Hirel, B.; Tétu, T.; Lea, P.; Dubois, F. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 2011, 3, 1452–1485. [Google Scholar] [CrossRef]
- Raun, W.R.; Johnson, G.V. Improving nitrogen use efficiency for cereal production. Agron. J. 1999, 91, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Bielski, S. Energy balance evaluation of winter triticale production. Engineering for rural development. In Proceedings of the 14th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 20–22 May 2015; pp. 552–557. [Google Scholar]
- Clements, D.R.; Weise, S.F.; Brown, R.; Stonehouse, D.P.; Hume, D.J.; Swanton, C.J. Energy analysis of tillage and herbicide inputs in alternative weed management systems. Agric. Ecosyst. Environ. 1995, 52, 119–128. [Google Scholar] [CrossRef]
- Uhlin, H.E. Energy productivity of technological agriculture-lessons from the transition of Swedish agriculture. Agric. Ecosyst. Environ. 1999, 73, 63–81. [Google Scholar] [CrossRef]
- Deike, S.; Pallutt, B.; Christen, O. Investigations on the energy efficiency of organic and integrated farming with specific emphasis on pesticide use intensity. Eur. J. Agron. 2008, 28, 461–470. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources, 2nd ed.; World Soil Resources Reports No. 103; FAO: Rome, Italy, 2006; p. 132. [Google Scholar]
- Meier, U. Growth stages of mono- and dicotyledonous plants. In BBCH Monograph; Julius Kühn-Institut: Quedlinburg, Germany, 2018; Available online: https://www.julius-kuehn.de/media/Veroeffentlichungen/ bbch%20epaper%20en/page.pdf (accessed on 28 May 2020).
- Kopetz, H.; Jossart, J.M.; Ragossnig, H.; Metschina, C. European Biomass Statistics; European Biomass Association (AEBIOM): Brussels, Belgium, 2007. [Google Scholar]
- Wójcicki, Z. Equipment, Materials and Energy Inputs in Growth-Oriented Farms; IBMER: Warszawa, Poland, 2000. (In Polish) [Google Scholar]
- Jaśkiewicz, B. The impact of production technology on yields of winter triticale under varied percentages of cereals to total cropped area. Pol. J. Agron. 2015, 23, 11–17. [Google Scholar]
- Czarnocki, S. Energy assessment of alternative technologies of preparing land for winter barley sowing. Agric. Eng. 2013, 3, 69–75. (In Polish) [Google Scholar]
- Gozubuyuk, Z.; Demir, O.; Kucukozdemir, A. Some operating parameters, energy efficiency, carbon dioxide emission and economic analysis of triticale and wheat grown in high altitude semi-arid climate conditions. J. Crop. Breed. Genet. 2019, 5, 42–53. [Google Scholar]
- Raczkowski, M. Energy expenditure in triticale cultivation with different microelements fertilization technique. Pol. J. Nat. Sci. 2010, 25, 236–243. [Google Scholar] [CrossRef]
- Vigovskis, J.; Sarkanbarde, D.; Svarta, A.; Jermuss, A.; Agafonova, L. The estimation of energy efficiency of crop rotation in long–term trials. In Proceedings of the International Scientific Conference Renewable Energy and Energy Efficiency, Jelgava, Latvia, 28–30 May 2012; pp. 56–60. [Google Scholar]
- Czarnocki, S.; Starczewski, J.; Turska, E. Energy efficiency of different variants of soil tillage the cultivation of winter triticale. Pam. Puław. 2006, 142, 43–54. (In Polish) [Google Scholar]
- Budzyński, W.; Szempliński, W.; Fedejko, B. Agricultural, quality and energetic evaluation of various spring bread wheat weed control and nitrogen fertilisation methods. Part II. Energy-consumption of cultivation. Rocz. Nauk Roln. 1996, 112, 93–101. (In Polish) [Google Scholar]
- Szempliński, W. Enviromental and agrotechnical conditions in the production of fodder spring barley in northeastern Poland. In Rozprawy i monografie; Warmia and Mazury University: Olsztyn, Poland, 2003; pp. 1–99. (In Polish) [Google Scholar]
- Dubis, B. Agricultural, energy and economic analysis of spring wheat production for human consumption. In Rozprawy i monografie; Warmia and Mazury University: Olsztyn, Poland, 2012; Volume 171, pp. 1–130. (In Polish) [Google Scholar]
- Budzyński, W.S.; Jankowski, K.J.; Jarocki, M. An analysis of the energy efficiency of winter rapeseed biomass under different farming technologies. A case study of a large-scale farm in Poland. Energy 2015, 90, 1272–1279. [Google Scholar] [CrossRef]
- Sokólski, M.; Jankowski, K.J.; Załuski, D.; Szatkowski, A. Productivity, energy and economic balance in the production of different cultivars of winter oilseed rape. A case study in north-eastern Poland. Agronomy 2020, 10, 508. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, K.J.; Budzyński, W.S.; Kijewski, Ł. An analysis of energy efficiency in the production of oilseed crops of the family Brassicaceae in Poland. Energy 2015, 81, 674–681. [Google Scholar] [CrossRef]
- Deike, S.; Pallutt, B.; Moll, E.; Christen, O. Effect of different weed control strategies on the nitrogen efficiency in cereal cropping systems. J. Plant Dis. Prot. 2006, 20, 809–816. [Google Scholar]
- Wójcik-Gront, E.; Bloch-Michalik, M. Assessment of greenhouse gas emission from life cycle of basic cereals production in Poland. Zemdirbyste-Agriculture 2016, 103, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Lu, X.; Cui, Y.; Liao, Y. Tillage and crop straw methods affect energy use efficiency, economics and greenhouse gas emissions in rainfed winter wheat field of Loess Plateau in China. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2018, 68, 562–574. [Google Scholar] [CrossRef]
- Hughes, D.J.; West, J.S.; Atkins, S.D.; Gladders, P.; Jeger, M.J.; Fitt, B.D.L. Effects of disease control by fungicides on greenhouse gas emissions by UK arable crop production. Pest Manag. Sci. 2011, 67, 1082–1092. [Google Scholar] [CrossRef]
- Van Stappen, F.; Loriers, A.; Mathot, M.; Planchon, V.; Stilmant, D.; Debode, F. Organic versus conventional farming: The case of wheat production in Wallonia (Belgium). Agric. Agric. Sci. Procedia 2015, 7, 272–279. [Google Scholar] [CrossRef] [Green Version]
- Charles, R.; Jolliet, O.; Gaillard, G.; Pellet, D. Environmental analysis of intensity level in wheat crop production using life cycle assessment. Agric. Ecosyst. Environ. 2006, 113, 216–225. [Google Scholar] [CrossRef]
- Burney, J.A.; Davis, S.J.; Lobell, D.B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. USA 2009, 107, 12052–12057. [Google Scholar] [CrossRef] [Green Version]
- Grassini, P.; Cassman, K.G. High-yield maize with large net energy yield and small global warming intensity. Proc. Natl. Acad. Sci. USA 2012, 109, 1074–1079. [Google Scholar] [CrossRef] [Green Version]
- Kuesters, J.; Lammel, J. Investigations of the energy efficiency of the production of winter wheat and sugar beet in Europe. Eur. J. Agron. 1999, 11, 35–43. [Google Scholar] [CrossRef]
- Klingauf, F.; Pallutt, B. Fertilisation and Crop Protection-Efficiency or a Problem of Emission? Arch. Agron. Soil Sci. 2002, 48, 395–407. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Francis, C.A. Energy output: Input ratio of maize and sorghum management systems in eastern Nebraska. Agric. Ecosyst. Environ. 1995, 53, 271–278. [Google Scholar] [CrossRef]
- Dubis, B.; Jankowski, K.J.; Sokólski, M.M.; Załuski, D.; Bórawski, P.; Szempliński, W. Biomass yield and energy balance of fodder galega in different production technologies: An 11-year field experiment in a large-area farm in Poland. Renew. Energy 2020, 154, 813–825. [Google Scholar] [CrossRef]
Farming Operation | Date (BBCH Scale) | Levels of Agricultural Inputs | |||
---|---|---|---|---|---|
Low Input | High Input | ||||
A | B | C | D | ||
N fertilizer (kg ha−1) | 27 | 90 | 60 | 60 | 90 |
32 | 0 | 30 | 60 | 60 | |
Fungicides | 31 | none | none | 125 g ha−1 flusilazole + 250 g ha−1 carbendazim | 125 g ha−1 flusilazole + 250 g ha−1 carbendazim |
39 | none | 250 g ha−1 azoxystrobin | 72 g ha−1 flutriafol + 72 g ha−1 epoxiconazole | none |
Input | Unit | Energy Equivalent |
---|---|---|
Labor | MJ hour−1 | 40 |
Tractors | MJ kg−1 | 125 |
Machines | MJ kg−1 | 110 |
Diesel oil | MJ kg−1 | 48 |
Seeds | MJ kg−1 | 9 |
N | MJ kg−1 | 77 |
P2O5 | MJ kg−1 | 15 |
K2O | MJ kg−1 | 10 |
Pesticides | MJ kg−1 active ingredient | 300 |
Farming Operation | Parameters of Self-Propelled Machine | Parameters of Accompanying Machine | Service Life (h) | Weight (kg) | Performance of Self-Propelled Machine and Accompanying Machine (ha h−1) | Fuel Consumption (dm3 h−1) | ||
---|---|---|---|---|---|---|---|---|
Self-Propelled Machine | Accompanying Machine | Self-Propelled Machine | Accompanying Machine | |||||
Disc harrowing (5–8 cm) | 130 kW | 4.25 m (working width) | 10,000 | 1500 | 7105 | 5100 | 3.0 | 18.0 |
Fall plowing (18–22 cm) | 130 kW | 5 (number of furrows) | 10,000 | 1400 | 7105 | 2370 | 1.5 | 26.0 |
Tillage cultivation unit (5–8 cm) | 130 kW | 4 m (working width) | 10,000 | 1800 | 7105 | 1880 | 3.5 | 17.2 |
Sowing | 184 kW | 4 m (working width) | 10,000 | 1800 | 10,980 | 5600 | 4.0 | 29.5 |
Mineral fertilization | 130 kW | 24 m (working width) | 10,000 | 2000 | 7105 | 685 | 13.5 | 8.7 |
Chemical control | 94 kW | 24 m (working width) | 10,000 | 3000 | 5166 | 5600 | 10.0 | 7.6 |
Harvest | 370 kW/10.5 m (working width) | - | 2800 | - | 20,000 | - | 4.1 | 45.0 |
Biomass transport | 130 kW | 10 Mg (carrying capacity) | 10,000 | 1400 | 7105 | 2600 | - | 8.0 |
Loading | 55 kW/2500 kg (load capacity) | - | 10,000 | - | 4922 | - | - | 3.0 |
Farming Operation | Levels of Agricultural Inputs | |||||||
---|---|---|---|---|---|---|---|---|
Low Input | High Input | |||||||
A | B | C | D | |||||
MJ ha−1 | % | MJ ha−1 | % | MJ ha−1 | % | MJ ha−1 | % | |
Tillage | 1621 | 11.2 | 1621 | 11.0 | 1621 | 9.5 | 1621 | 8.4 |
Sowing | 2107 | 14.5 | 2107 | 14.4 | 2107 | 12.3 | 2107 | 10.9 |
Mineral fertilization, including | 9165 | 63.2 | 9205 | 62.7 | 11,515 | 67.2 | 13,825 | 71.5 |
-N fertilization | 7115 | 49.1 | 7196 | 49.0 | 9506 | 55.5 | 11,816 | 61.1 |
Chemical control, including | 845 | 5.8 | 985 | 6.7 | 1131 | 6.6 | 1023 | 5.3 |
-disease control | 11 | 0.1 | 140 | 1.0 | 286 | 1.7 | 178 | 0.9 |
Grain harvest and transport | 756 | 5.2 | 756 | 5.2 | 756 | 4.4 | 756 | 3.9 |
Total | 14,494 | 100.0 | 14,674 | 100.0 | 17,130 | 100.0 | 19,332 | 100.0 |
Energy Flux | Levels of Agricultural Inputs | |||||||
---|---|---|---|---|---|---|---|---|
Low Input | High Input | |||||||
A | B | C | D | |||||
MJ ha−1 | % | MJ ha−1 | % | MJ ha−1 | % | MJ ha−1 | % | |
Labor | 208 | 1.4 | 222 | 1.5 | 230 | 1.3 | 222 | 1.1 |
Tractors and machines | 839 | 5.8 | 874 | 6.0 | 901 | 5.3 | 874 | 4.5 |
Energy carriers | 2078 | 14.3 | 2134 | 14.5 | 2164 | 12.6 | 2134 | 11.0 |
Materials, including: | 11,369 | 78.4 | 11,444 | 78.0 | 13,835 | 80.8 | 16,102 | 83.3 |
-seeds | 1674 | 11.5 | 1674 | 11.4 | 1674 | 9.8 | 1674 | 8.7 |
-mineral fertilizers | 8980 | 62.0 | 8980 | 61.2 | 11,290 | 65.9 | 13,600 | 70.4 |
-nitrogen | 6930 | 47.8 | 6930 | 47.2 | 9240 | 53.9 | 11,550 | 59.7 |
-pesticides | 715 | 4.9 | 790 | 5.4 | 871 | 5.1 | 828 | 4.3 |
-fungicides | 11 | 0.1 | 75 | 0.5 | 156 | 0.9 | 113 | 0.6 |
Total | 14,494 | 100.0 | 14,674 | 100.0 | 17,130 | 100.0 | 19,332 | 100.0 |
Energy Indicators | Levels of Agricultural Inputs | |||
---|---|---|---|---|
Low Input | High Input | |||
A | B | C | D | |
Energy output (GJ ha−1) | 141.8 | 153.5 | 163.3 | 158.6 |
Energy gain (GJ ha−1) | 127.3 | 138.8 | 146.2 | 139.2 |
Energy efficiency ratio | 9.8 | 10.5 | 9.5 | 8.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szempliński, W.; Dubis, B.; Lachutta, K.M.; Jankowski, K.J. Energy Optimization in Different Production Technologies of Winter Triticale Grain. Energies 2021, 14, 1003. https://doi.org/10.3390/en14041003
Szempliński W, Dubis B, Lachutta KM, Jankowski KJ. Energy Optimization in Different Production Technologies of Winter Triticale Grain. Energies. 2021; 14(4):1003. https://doi.org/10.3390/en14041003
Chicago/Turabian StyleSzempliński, Władysław, Bogdan Dubis, Krzysztof Michał Lachutta, and Krzysztof Józef Jankowski. 2021. "Energy Optimization in Different Production Technologies of Winter Triticale Grain" Energies 14, no. 4: 1003. https://doi.org/10.3390/en14041003
APA StyleSzempliński, W., Dubis, B., Lachutta, K. M., & Jankowski, K. J. (2021). Energy Optimization in Different Production Technologies of Winter Triticale Grain. Energies, 14(4), 1003. https://doi.org/10.3390/en14041003