Numerical Investigations of Film Cooling and Particle Impact on the Blade Leading Edge
Abstract
:1. Introduction
2. Numerical Method
2.1. Computational Model
2.2. Gas Phase
2.3. Particle Phase
2.4. Validation of the Simulated Method
3. Results and Discussion
3.1. Investigation of Film Cooling Performance
3.2. Investigation of Particle Trajectories
4. Conclusions
- For the film-cooled blade leading edge, film cooling effectiveness on the centerline increases with the inlet flow angle. Film cooling performance decreases with the increase in the blowing ratio, especially at the suction side.
- Due to low inertia, small particles (1 μm and 5 μm) hardly impact the blade surface, and particles on the blade are mostly captured. Impact efficiency increases gradually with the increase in particle size. For particles with a size of 50 μm, the total impact efficiency exceeds 400%, which indicates that there are multiple bounces between particles and the blade surface.
- The blowing ratio has little effect on impact efficiency and capture efficiency, except for the capture efficiency of 10 μm particles. The particles are more likely to impact blades with an incidence angle of 143°. Moreover, invasion efficiencies of small particles (1 μm and 5 μm) are almost zero. The value of invasion efficiency is about 12% when the particle size reaches 50 μm. Therefore, these results indicate that the film cooling holes are blocked mainly by large particles.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
dp | Particle size (μm) |
E | Young’s modulus (Pa) |
F | Force (N) |
h | Enthalpy (kJ/kg) |
H | Blade height, (mm) |
k | Turbulent kinetic energy (J/kg) |
Kc | Composite Young’s modulus |
M | Blowing ratio = ρcVc/ρmVm |
P | Pressure (Pa) |
PS | Pressure side |
s | Coordinate along the blade surface (mm) |
SS | Suction side |
T | Temperature (K) |
Tg | Free stream gas temperature (K) |
u | Velocity (m/s) |
Vcr | Critical capture velocity (m/s) |
WA | Particle sticking constant |
X, Y, Z | Coordinate direction |
Greek symbols | |
β1 | Inlet flow angle (deg) |
ε | Turbulent dissipation rate (m2/s3) |
η | Film cooling effectiveness = (Taw−T1)/(Tc−T1) |
ηca | Capture efficiency |
ηim | Impact efficiency |
ηin | Invasion efficiency |
λ | Thermal conductivity (W/m·K) |
ρ | Density (kg/m3) |
τ | Stress tensor (N/m2) |
v | Poisson ratio |
Subscripts | |
1 | Mainstream inlet value |
2 | Mainstream outlet value |
aw | Adiabatic surface |
c | Secondary flow value |
ca | Capture value |
cr | Critical value |
fri | Wall friction value |
im | Impact value |
in | Invasion value |
m | Mainstream value |
n | Normal to boundary |
p | Particle property |
s | Blade surface |
tc | Critical wall shear value |
to | Total value |
References
- Guan, P.; Ai, Y.T.; Fei, C.W. An enhanced flow-thermo-structural modeling and validation for the integrated analysis of a film cooling nozzle guide vane. Energies 2019, 12, 2775. [Google Scholar] [CrossRef] [Green Version]
- Prapamonthon, P.; Yooyen, S.; Sleesongsom, S.W.; Dipasquale, D.; Xu, H.Z.; Wang, J.H.; Ke, Z.Q. Investigation of cooling performances of a non-film-cooled turbine vane coated with a thermal barrier coating using conjugate heat transfer. Energies 2018, 11, 1000. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Wu, N.; Ran, F.Y.; Wang, J.H. Numerical investigation on the transpiration cooling of three-dimensional hypersonic inlet. Aerosp. Sci. Technol. 2020, 106, 106152. [Google Scholar] [CrossRef]
- Jin, X.; Shen, C.B.; Wu, X.Y. Numerical study on regenerative cooling characteristics of kerosene scramjets. Int. J. Aerosp. Eng. 2020, 2020, 8813929. [Google Scholar] [CrossRef]
- Jeong, Y.S.; Park, J.S. Effect of inlet compound angle of backward injection film cooling hole. Energies 2020, 13, 808. [Google Scholar] [CrossRef] [Green Version]
- Laycock, R.; Fletcher, T.H. Independent effects of surface and gas temperature on coal fly ash deposition in gas turbines at temperatures up to 1400 °C. ASME J. Eng. Gas Turb. Power 2016, 138, 021402. [Google Scholar] [CrossRef]
- Bons, J.P. A review of surface roughness effects in gas turbines. ASME J. Turbomach. 2010, 132, 021004. [Google Scholar] [CrossRef]
- Wang, J.J.; Lin, Y.J.; Xu, W.W.; Li, Q.; Abhijit, D. Effects of blade roughness on particle deposition in flue gas turbines. Powder Technol. 2019, 353, 426–432. [Google Scholar] [CrossRef]
- Alqallaf, J.; Ali, N.; Teixeira, J.A.; Addali, A. Solid particle erosion behaviour and protective coatings for gas turbine compressor blades—A review. Processes 2020, 8, 984. [Google Scholar] [CrossRef]
- Wammack, J.E.; Crosby, J.; Fletcher, D.; Bons, J.P.; Fletcher, T.H. Evolution of surface deposits on a high-pressure turbine blade-Part I: Physical characteristics. ASME J. Turbomach. 2008, 130, 021020. [Google Scholar] [CrossRef]
- Mensch, A.; Thole, K. Simulations of multiphase particle deposition on a gas turbine endwall with impingement and film cooling. ASME J. Turbomach. 2015, 137, 111002. [Google Scholar] [CrossRef]
- Albert, J.E.; Bogard, D.G. Experimental simulation of contaminant deposition on a film-cooled turbine vane pressure side with a trench. ASME J. Turbomach. 2015, 135, 051008. [Google Scholar] [CrossRef]
- Bojdo, N.; Filippone, A. A simple model to assess the role of dust composition and size on deposition in rotorcraft engines. Aerospace 2019, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Hossain, A.; Naser, J.; Imteaz, M.A. CFD investigation of particle deposition in a horizontal looped turbulent pipe flow. Environ. Model. Assess. 2011, 16, 359–367. [Google Scholar] [CrossRef]
- Dahneke, B. Further measurements of the bouncing of small latex spheres. J. Colloid Interf. Sci. 1975, 51, 58–65. [Google Scholar] [CrossRef]
- Brach, R.M.; Dunn, P.F. Mathematical model of the impact and adhesion of microspheres. Aerosol. Sci. Tech. 1992, 16, 51–64. [Google Scholar] [CrossRef]
- El-Batsh, H.; Haselbacher, H. Numerical investigation of the effect of ash particle deposition on the flow field through turbine cascades. In Proceedings of the ASME Turbo Expo, Amsterdam, The Netherlands, 3–6 June 2002. [Google Scholar]
- Ai, W.G.; Fletcher, T.H. Computational analysis of conjugate heat transfer and particulate deposition on a high pressure turbine vane. ASME J. Turbomach. 2012, 134, 041020. [Google Scholar] [CrossRef] [Green Version]
- Prenter, R.; Ameri, A.; Bons, J.P. Computational simulation of deposition in a cooled high-pressure turbine stage with hot streaks. ASME J. Turbomach. 2017, 139, 091005. [Google Scholar] [CrossRef]
- Xu, W.W.; Zhu, K.H.; Wang, J.J.; Lin, Y.J.; Li, Q. Modeling and numerical analysis of the effect of blade roughness on particle deposition in a flue gas turbine. Powder Technol. 2019, 347, 59–65. [Google Scholar] [CrossRef]
- Pan, J.N.; Wang, J.J.; Chen, S.F.; Zhang, X.X.; Liu, S. Numerical study of inlet Reynolds number in fine particles deposition processes in a flue gas turbine. Powder Technol. 2018, 339, 506–520. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, Z.X.; Liu, Z.G.; Diao, W.N. Experimental study of sand particle deposition on a film-cooled turbine blade at different gas temperatures and angles of attack. Energies 2020, 13, 811. [Google Scholar] [CrossRef] [Green Version]
- Suman, A.; Casari, N.; Fabbri, E.; Mare, L.; Montomoli, F.; Pinelli, M. Generalization of particle impact behavior in gas turbine via non-dimensional grouping. Prog. Energ. Combust 2019, 74, 103–151. [Google Scholar] [CrossRef]
- Bowen, C.P.; Ameri, A.; Bons, J.P. Challenges associated with replica ting rotor blade deposition in a non-rotating annular cascade. In ASME Turbo Expo 2019: Turbine Technical Conference and Exposition; American Society of Mechanical Engineers Digital Collection: New York, NY, USA, 2019; ISBN 978-0-7918-5098-5. [Google Scholar]
- Wasistho, B. Calcia–magnesia–alumina-silica particle deposition prediction in gas turbines using a Eulerian–Lagrangian approach in computational fluid dynamics. J. Mater. Res. 2020, 35, 2288–2299. [Google Scholar] [CrossRef]
- Liu, Z.G.; Liu, Z.X.; Zhang, F.; Liu, Y. An experimental study of the effects of different transverse trenches on depositing and temperature on a plate with film cooling holes. Aerosp. Sci. Technol. 2019, 88, 40–50. [Google Scholar] [CrossRef]
- Suman, A.; Vulpio, A.; Fortini, A.; Fabbri, E.; Casari, N.; Merlin, M.; Pinelli, M. Experimental analysis of micro-sized particles time-wise adhesion: The influence of impact velocity and surface roughness. Int. J. Heat Mass Tran. 2021, 165, 120632. [Google Scholar] [CrossRef]
- Mu, L.; Miao, H.C.; Zhao, C.; Zhai, Z.D.; Shang, Y.; Yin, H.C. Dynamic CFD modeling evaluation of ash deposition behavior and morphology evolution with different tube arrangements. Powder Technol. 2021, 379, 279–295. [Google Scholar] [CrossRef]
- Zheng, Z.M.; Yang, W.M.; Yu, P.; Cai, Y.T.; Zhou, H.; Boon, S.K.; Subbaiah, P. Simulating growth of ash deposit in boiler heat exchanger tube based on CFD dynamic mesh technique. Fuel 2020, 259, 116083. [Google Scholar] [CrossRef]
- Han, Z.M.; Xu, Z.M.; Qu, H.W. Parametric study of the particulate fouling characteristics of vortex generators in a heat exchanger. Appl. Therm. Eng. 2020, 167, 114735. [Google Scholar] [CrossRef]
- Bohn, D.E.; Kusterer, K.A. Aerothermal investigations of mixing flow phenomena in case of radially inclined ejection holes at the leading edge. ASME J. Turbomach. 2000, 122, 334–339. [Google Scholar] [CrossRef]
- Vandoormaal, J.P.; Raithby, G.D. Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer.Heat Transfer. 1984, 7, 147–163. [Google Scholar]
- Wang, J.; Tian, K.; Zhu, H.X.; Zeng, M.; Sunden, B. Numerical investigation of particle deposition in film-cooled blade leading edge. Numer. Heat Transf. A-Appl. 2020, 77, 579–598. [Google Scholar] [CrossRef]
- Khajehhasani, S.; Jubran, B. Numerical evaluation of the performance of the sister-shaped single-hole schemes on turbine blade leading edge film cooling. In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition; American Society of Mechanical Engineers Digital Collection: New York, NY, USA, 2015; ISBN 978-0-7918-5666-6. [Google Scholar]
- Rajabinezhad, M.; Bahrami, A.; Mousavinia, M.; Seyedi, S.J.; Taheri, P. Corrosion-fatigue failure of gas-turbine blades in an oil and gas production plant. Materials 2020, 13, 900. [Google Scholar] [CrossRef] [Green Version]
Blade Configuration | Film Cooling Holes | ||
---|---|---|---|
Chord length (Lch) | 250 mm | Suction side hole | (s/Lch)SS = 0.02 |
Vane height (H) | 300 mm | Pressure side hole | (s/Lch)PS = −0.03 |
Blade pitch (tʹ) | 178.5 mm | Hole diameter (D) | 3 mm |
Staggering angle (βs) | 73° | Hole length (L) | 12.5 mm |
- | - | Hole distance (P) | 15 mm |
Flow Property | ||||
---|---|---|---|---|
Blowing ratio (M) | 0.68 | 1.03 | 1.32 | 1.53 |
Inlet pressure (P1) | 19.650 Pa | |||
Inlet temperature (T1) | 1453 K | |||
Mainstream inlet angle (β1) | 123°, 133°, 143° | |||
Outlet pressure (P2) | 14,640 Pa | |||
Coolant inlet pressure (Pc) | 19.710 Pa | 20.710 Pa | 21.710 Pa | 22.710 Pa |
Temperature ratio (Tc/T1) | 726.5 K | |||
Particle property | ||||
Particle diameter (dp) | 1 μm, 5 μm, 10 μm, 20 μm, 50 μm | |||
Mass flow rate | 5.71 × 10−6 kg/s | |||
Density | 990 kg/m3 | |||
Specific heat | 984 J/(kg·K) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, K.; Tang, Z.; Wang, J.; Vujanović, M.; Zeng, M.; Wang, Q. Numerical Investigations of Film Cooling and Particle Impact on the Blade Leading Edge. Energies 2021, 14, 1102. https://doi.org/10.3390/en14041102
Tian K, Tang Z, Wang J, Vujanović M, Zeng M, Wang Q. Numerical Investigations of Film Cooling and Particle Impact on the Blade Leading Edge. Energies. 2021; 14(4):1102. https://doi.org/10.3390/en14041102
Chicago/Turabian StyleTian, Ke, Zicheng Tang, Jin Wang, Milan Vujanović, Min Zeng, and Qiuwang Wang. 2021. "Numerical Investigations of Film Cooling and Particle Impact on the Blade Leading Edge" Energies 14, no. 4: 1102. https://doi.org/10.3390/en14041102
APA StyleTian, K., Tang, Z., Wang, J., Vujanović, M., Zeng, M., & Wang, Q. (2021). Numerical Investigations of Film Cooling and Particle Impact on the Blade Leading Edge. Energies, 14(4), 1102. https://doi.org/10.3390/en14041102